版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
江蘇省連云港市2022年中考數(shù)學試卷
一、選擇題(本大題共有8小題,每小題3分,共24分.)
1.-3的倒數(shù)是()
A.-3B.3C.D.
2.下列圖案中,是軸對稱圖形的是()
A-Z%B.
3.2021年12月9日,“天宮課堂”正式開詡,我國航天員在中國空間站首次進行太空授課,本次授
課結束時,網(wǎng)絡在線觀看人數(shù)累計超過14600000人次.把“14600000”用科學記數(shù)法表示為()
A.0.146x108B.1.46X107C.14.6X106D.146X105
4.在體育測試中,7名女生仰臥起坐的成績?nèi)缦拢ù?分鐘):38,42,42,45,43,45,45,則這
組數(shù)據(jù)的眾數(shù)是()
A.38B.42C.43D.45
5.函數(shù)y——1中自變量X的取值范圍是()
A.x>1B.x>0C.x<0D.x<1
6.△ABC的三邊長分別為2,3,4,另有一個與它相似的三角形DEF,其最長邊為12,則
△DEF的周長是()
A.54B.36C.27D.21
7.如圖,有一個半徑為2的圓形時鐘,其中每個刻度間的弧長均相等,過9點和11點的位置作一
條線段,則鐘面中陰影部分的面積為()
A.,?!隑.^7T-V3C.7T—2V3D.^7T—V3
8.如圖,將矩形ABCD沿著GE、EC、GF翻折,使得點A、B、。恰好都落在點。
處,且點G、0、C在同一條直線上,同時點E、。、F在另一條直線上.小煒同學得出以
下結論:
①GF||EC;②AB=^^-AD;③GE=*>DF;④0c=2五OF;(§)△COFCEG.
其中正確的是()
A.①②③B.①③④C.①④⑤D.②③④
二、填空題(本大題共8小題,每小題3分,共24分.)
9.計算:2a+3a=.
10.已知NA的補角為60°,則NA=°.
11.寫出一個在1到3之間的無理數(shù):.
12.若關于x的一元二次方程mx2+nx-1=0(m豐0)的一個解是x=1,則m+n的值
是.
13.如圖,4B是。0的直徑,AC是。0的切線,A為切點,連接BC,與。。交于點
D,連接0。.若AAOD=82°,貝ij乙C=。.
14.如圖,在6X6正方形網(wǎng)格中,AABC的頂點A、B、C都在網(wǎng)格線上,且都是小正方
形邊的中點,則sinA=.
15.如圖,一位籃球運動員投籃,球沿拋物線y=-0.2x2+x+2.25運行,然后準確落入籃筐內(nèi),
已知籃筐的中心離地面的高度為3.05m,則他距籃筐中心的水平距離OH是m.
16.如圖,在回4BCD中,/.ABC=150°.利用尺規(guī)在BC、BA上分別截取BE、BF,使
BE=BF;分別以E、F為圓心,大于jFF的長為半徑作弧,兩弧在Z.CBA內(nèi)交于點G;
作射線BG交DC于點H.若AD=8+1,則BH的長為.
三'解答題(本大題共11小題,共102分
17.計算(-10)X(-}一屆+2022。.
18.解不等式2%-1>早,并把它的解集在數(shù)軸上表示出來.
19.化簡:+七0.
x-l%2-1
20.為落實國家“雙減”政策,某校為學生開展了課后服務,其中在體育類活動中開設了四種運動項
目:4乒乓球,B排球,C籃球,。跳繩.為了解學生最喜歡哪一種運動項目,隨機抽取部分
學生進行調(diào)查(每位學生僅選一種),并將調(diào)查結果制成如下尚不完整的統(tǒng)計圖表.
問卷情況統(tǒng)計表
運動項目人數(shù)
A乒乓球m
B排球10
C籃球80
D跳繩70
(1)本次調(diào)查的樣本容量是,統(tǒng)計表中m=
(2)在扇形統(tǒng)計圖中,“B排球”對應的圓心角的度數(shù)是。;
(3)若該校共有2000名學生,請你估計該校最喜歡“A乒乓球”的學生人數(shù).
21.“石頭、剪子、布”是一個廣為流傳的游戲,規(guī)則是:甲、乙兩人都做出“石頭”“剪子”“布”3種手
勢中的1種,其中“石頭”贏“剪子”,“剪子”贏“布”,“布”贏“石頭”,手勢相同不分輸贏.假設甲、乙兩
人每次都隨意并且同時做出3種手勢中的1種.
(1)甲每次做出“石頭”手勢的概率為;
(2)用畫樹狀圖或列表的方法,求乙不輸?shù)母怕?
22.我國古代數(shù)學名著《九章算術》中有這樣一個問題:“今有共買物,人出八,盈三;人出七,不
足四.問人數(shù)、物價各幾何?”其大意是:今有幾個人共同出錢購買一件物品.每人出8錢,剩余3
錢;每人出7錢,還缺4錢.問人數(shù)、物品價格各是多少?請你求出以上問題中的人數(shù)和物品價格.
23.如圖,在平面直角坐標系xOy中,一次函數(shù)y=ax+b(ao0)的圖像與反比例函數(shù)y-
的圖像交于P、Q兩點?點P(-4,3),點Q的縱坐標為一2.
(1)求反比例函數(shù)與一次函數(shù)的表達式;
(2)求XPOQ的面積.
24.我市的花果山景區(qū)大圣湖畔屹立著一座古塔——阿育王塔,是蘇北地區(qū)現(xiàn)存最高和最古老的寶
塔.小明與小亮要測量阿育王塔的高度,如圖所示,小明在點A處測得阿育王塔最高點C的仰角
^CAE=45。,再沿正對阿育王塔方向前進至B處測得最高點C的仰角4CBE=53。,AB=
10m;小亮在點G處豎立標桿FG,小亮的所在位置點D、標桿頂F、最高點C在一條直線
上,F(xiàn)G=1.5m,GD=2m.
(1)求阿育王塔的高度CE;
(2)求小亮與阿育王塔之間的距離ED.
(注:結果精確到0.01m,參考數(shù)據(jù):sin53°?0.799,cos53°?0.602,tan53°?
1.327)
25.如圖,四邊形ABCD為平行四邊形,延長AD到點E,使DE=力。,且BE1DC.
(1)求證:四邊形DBCE為菱形;
(2)若4DBC是邊長為2的等邊三角形,點P、M、N分別在線段BE、BC、CE
上運動,求PM+PN的最小值.
26.已知二次函數(shù)y=x2+(m—2)x+m—4,其中m>2.
(1)當該函數(shù)的圖象經(jīng)過原點0(0,0),求此時函數(shù)圖象的頂點/的坐標;
(2)求證:二次函數(shù)y=x2+(m-2)x+m-4的頂點在第三象限;
(3)如圖,在(1)的條件下,若平移該二次函數(shù)的圖象,使其頂點在直線y=-x-2上運
動,平移后所得函數(shù)的圖象與y軸的負半軸的交點為B,求△AOB面積的最大值.
27.如圖
【問題情境】
在一次數(shù)學興趣小組活動中,小昕同學將一大一小兩個三角板按照如圖1所示的方式擺放.其中
乙4cB=乙DEB=90°,zB=30。,BE=AC=3.
【問題探究】
小昕同學將三角板DEB繞點B按順時針方向旋轉.
(1)如圖2,當點E落在邊AB上時,延長DE交BC于點F,求BF的長.
(2)若點C、E、D在同一條直線上,求點D到直線BC的距離.
(3)連接0C,取。。的中點G,三角板DEB由初始位置(圖1),旋轉到點C、B、
D首次在同一條直線上(如圖3),求點G所經(jīng)過的路徑長.
(4)如圖4,G為DC的中點,則在旋轉過程中,點G到直線AB的距離的最大值
是.
答案解析部分
L【答案】C
2.【答案】A
3.【答案】B
4.【答案】D
5.【答案】A
6.【答案】C
7.【答案】B
8.【答案】B
9.【答案】5a
10.【答案】120
11.【答案】V2(答案不唯一)
12.【答案】1
13.【答案】49
14.【答案】1
15.【答案】4
16.【答案】V2
17.【答案】解:原式=5-4+1=2.
18.【答案】解:去分母,得:2(2x-l)>3x-l,
去括號,得:4x-2>3x-l,
移項,合并得:4x-3x>-l+2,
合并同類項,解得:x>l,
???不等式的解集在數(shù)軸上表示如下,
—?----1----1---i---1---?.
-2-1012
19.【答案】解:原式=巖+全苧
_x+1+x2—3x
x2—1
_%2—2%+1
%2—1
二(%球
%2—1
二(%-1)2
(%+1)(%-1)
x—1
=x+l'
20.【答案】(1)200;40
(2)18
(3)解:該校最喜歡“A乒乓球”的學生人數(shù)嚼x2000=400人.
答:估計該校最喜歡“A乒乓球”的學生人數(shù)約為400人.
21.【答案】(1)|
(2)解:畫出樹狀圖如圖所示:
二甲、乙兩人同時做出手勢的情況一共有9種,其中乙不輸?shù)那闆r有6種,
?'?P<21不輸〉=5=/
答:乙不輸?shù)母怕适莬.
22.【答案】解:設人數(shù)為x人,
由題意,得:8x-3=7x+4,
解得:x=7,
???人數(shù)為7人,物品價格=8x7-3=53錢.
答:有7人,物品價格是53錢.
23.【答案】(1)解:?.?一次函數(shù)y=ax+b(a#))與反比例函數(shù)=y=](k#0)圖象交于P、Q,且P
(-4,3),
;.k=-4x3=-12,
二反比例函數(shù)表達式為y=-莖,
又:Q點的縱坐標為-2,
:.Q(6,-2),
把P、Q兩點的坐標代入一次函數(shù)解析式,
???{嘉七,解得憶?
一次函數(shù)表達式為y=gx+l.
(2)解:設一次函數(shù)的圖象與y軸交點為M,如圖所示,
AM(0,1),
又:P(-4,3),Q(6,-2),
.11一
?*S“OQ=SMOM+S〉QOM=2X1X4+2X1X6=5.
24.【答案】(1)解:在RSCAE中,ZCAE=45°,
ACE=AE,
AB=10m,
ABE=AE-AB=(CE-10)m,
在RtACEB中,ZCBE=53°,
.?.tan53o=建=與方,即tan53°(CE-10)=CE,
BECE-W
解得:CE=40.58m.
答:阿育王塔的高度約為40.58m.
(2)解:VCE1ED,FG1ED,
;.CE〃FG,
/.RtACEDSRSFGD,
.FG_GDnr,1.5_2
?'CE=ED,即而用=前’
AED-54.11m.
答:小亮與阿育王塔之間的距離約為54.11m.
25.【答案】(1)證明::四邊形ABCD是平行四邊形,
,AD〃BC,AD=BC,
:DE=AD,
,DE=BC,
XVDE/7BC,
二四邊形DBCE為平行四邊形,
VBE1DC,
二四邊形DBCE為菱形.
(2)解:如圖,由菱形對稱性得點N關于BE的對稱點N在DE上,
:.PM+PN=PM+PN',
當P、M、N共線時,PM+PN=PM+PN'=MN',
過點D作DH_LBC于點H,
:DE〃BC,
/.MN'的最小值即為平行線間的距離DH的長,
VADBC是邊長為2的等邊三角形,
.?.在RtADBH中,ZDBC=60°,DB=2,
/.DH=DBsin6O°=2x2^=V3,
APM+PN的最小值為g.
26.【答案】(1)解:?.?二次函數(shù)圖象過O(0,0),
m-4=0,
,m=4,
y=x2+2x=(x+l)2-1,
二頂點A坐標為(-1,-1).
(2)證明:?.?拋物線頂點坐標為(2/-m2+8m-20m>2)
4」
A2-rn<0)
*2*4
又?;?—m+8m-20_1(m-4)2-1,
-------4-------4
2
--m+8m-20<.i^n
4.
???二次函數(shù)y==x2+(m-2)x+m-4的頂點在第三象限.
(3)解:設平移后的二次函數(shù)表達式為y=x2+bx+c,
2
...頂點坐標為寫J),
當x=0時,B(0,c)
2?
把(_?,號_)代入y=-x-2中,得c=b+:一8,
VB點在y軸的負半軸上,
.?.c<0,
9
.'.OR=-c=-b+2b-8,
4
如圖,過點A作AHLOB于點H,
由(1)可知:A(-1,-1)
...AH=1,
2
?^A,10B=10B-^//=1x(-^2^§)xl=_lh2_lfo+1=_l(h+1)2+9,
50,
.?.當b=-l時,此時c<0,AAOB的面積最大,最大值為不
O
27.【答案】(1)解:由題意得,^BEF=ABED=90°,
;在RMBE尸中,/-ABC=30°,BE=3,cosN/WC=鼠
???BF=;E^Z^=E^=2'3.
(2)解:①當點E在BC上方時,
如圖一,過點D作DHLBC于點H,
在△ABC中,Z.ACB=90°,Z.ABC=30°,AC=3,
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 條形碼、電子標簽等物聯(lián)網(wǎng)技術在文檔管理中的應用
- 2025年福建省職教高考《職測》核心考點必刷必練試題庫(含答案)
- 2025年楊凌職業(yè)技術學院高職單招語文2018-2024歷年參考題庫頻考點含答案解析
- 中國銀行個人借款合同
- 正規(guī)的借款合同范本
- 航空運輸人才培養(yǎng)與行業(yè)發(fā)展
- 事業(yè)單位的試用期勞動合同范本
- 鋼筋單項勞務承包合同
- 臨設建設工程施工勞務分包合同
- 消防產(chǎn)品的買賣合同
- (二模)遵義市2025屆高三年級第二次適應性考試試卷 地理試卷(含答案)
- 二零二五隱名股東合作協(xié)議書及公司股權代持及回購協(xié)議
- IQC培訓課件教學課件
- 2025年計算機二級WPS考試題目
- 高管績效考核全案
- 2024年上海市中考英語試題和答案
- 教育部《中小學校園食品安全和膳食經(jīng)費管理工作指引》知識培訓
- 長沙醫(yī)學院《無機化學》2021-2022學年第一學期期末試卷
- 初一到初三英語單詞表2182個帶音標打印版
- 《人力資源管理》全套教學課件
- 【課件】2024-2025學年高一上學期英語開學第一課課件
評論
0/150
提交評論