




版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
第五章平面向量、解三角形
第一節(jié)平面向量第一部分三年高考薈萃
2010年高考題
一、選擇題
1.(2010湖南文)6.若非零向量a,b滿(mǎn)足|“l(fā)=lbl,(2a+6>6=0,則a與b的夾角為
A.30°B.60°C.120°D.150°
【答案】C
UUIUU
2.(2010全國(guó)卷2理)(8)748。中,點(diǎn)。在43上,。平方/)。5.若。3=4,2=6,
UUW
同=1,網(wǎng)=2,則CD-
1?213443
(A)—a+—b(B)—a+—b(C)—a+—b(D)—a+—b
33335555
【答案】B
【命題意圖】本試題主要考查向量的基本運(yùn)算,考查角平分線(xiàn)定理.
【解析】因?yàn)镃Q平分乙4CB,由角平分線(xiàn)定理得理=2,所以D為AB的三等
|DB||CB|1
—2—2————...2—1—2-1-
分點(diǎn),且AD=—AB=—(CB-CA),所以CD=CA+AD=—CB+—CA=—a+—b,
333333
故選B.
3.(2010遼寧文)(8)平面上0,48三點(diǎn)不共線(xiàn),設(shè)a=2,方=書(shū),則AOZ8的面積等
于
(A)桐[”而(B)洞解+0而
?引"Q而⑺WW+Q而
【答案】c
解析:
SMAB=;l£ll5lsin<£,5>=gl7RlJl-cos2<£l>=gl£ll5ljl—3片
MW
洞腳一0而
4.(2010遼寧理)(8)平面上0,A,B三點(diǎn)不共線(xiàn),設(shè)OA=a,OB=b,則AOAB的面積等于
(A)他力|2—g份2⑻7l?l2l^l2+(?b)2
(0;而|2|92_g32(D);而|2力|2十①分
【答案】C
【命題立意】本題考查了三角形面積的向量表示,考查了向量的內(nèi)積以及同角三角函數(shù)的基
本關(guān)系。
【解析】三角形的面積S=1|a|bsin〈a,b>,而
2
gjlaF.F_(麗=,JlaF|/)|2—(ab)2cos?<>
—IaII/)IJl-cos2<a,h>=—I<7IIftIsin<a,b>
22
5.(2010全國(guó)卷2文)(10)AABC中,點(diǎn)D在邊AB上,CD平分NACB,若醞=a,CA=
b,|=1,\h|=2,貝同=
1?213443
(A)—a+—b(B)—a+—b(C)—a+—b(D)—a+—b
33335555
【答案】B
【解析】B:本題考查了平面向量的基礎(chǔ)知識(shí)
BDBC
?:CD為角平分線(xiàn),;.ADAC2,AB=CB-CA=a-b,
AD^-AB^-a--bCD^CA+AD^b+-a--b^-a+-b
333,二3333
⑶設(shè)向量a=(1,0),6=(;,;),則下列結(jié)論中正確的是
6.(2010安徽文)
(A)|a|=|6|(B)ab=
2
(C)a!lb(D)a-b與6垂直
【答案】D
【解析】=(a-b)b=O,所以。一)與分垂直.
【規(guī)律總結(jié)】根據(jù)向量是坐標(biāo)運(yùn)算,直接代入求解,判斷即可得出結(jié)論.
7.(2010重慶文)(3)若向量Q=(3,〃Z),h=(2,-1),[6=0,則實(shí)數(shù)的值為
33
(A)一一(B)一
22
(C)2(D)6
【答案】D
解析:ab=6-m=0,所以m二6
8.(2010重慶理)(2)已知向量a,b滿(mǎn)足Q?6=0,同=1,同=2,,則|2"4=
A.0B.272C.4D.8
【答案】B
解析:|2a—臼=yl(2a-b)2=^4a2-4a-b+b2=次=2/
9.(2010山東文)(12)定義平面向量之間的一種運(yùn)算“”如下:對(duì)任意的。=(〃?,〃),
b-(p,q),令ab-mq-np,下面說(shuō)法錯(cuò)誤的是
(A)若a與b共線(xiàn),則ab=0
(B)ab-ba
(C)對(duì)任意的/le火,有(丸“)b=Mab)
(D)(ab)2+(a?b)2=lal2l/>l2
【答案】B
10.(2010四川理)(5)設(shè)點(diǎn)"是線(xiàn)段比的中點(diǎn),點(diǎn)/在直線(xiàn)BC外,
苑2=16,|而+祀|=|樂(lè)一祝貝ijAM\^
(4)8")4(O2(〃)1解析:由前2=16,得|a1=4
刀+刀|=|海-刀|=|就|=4
而AB+AC\=2\AM\
故AM\=2
【答案】C
11.(2010天津文)(9)如圖,在△ABC中,前=/麗,]而卜1,貝I」%?瓦=
(R)G
(D)V3
(A)2A/3VD?--(C)
2T
【答案】D
【解析】木題主要考查平面向量的基本運(yùn)算與解三角形的基礎(chǔ)知
識(shí),屬于難題。
AC?AD=\AC\?\AD\cosZDAC=1ACI?cosADAC=1NCIsinABAC
=5CsinB=V3
【溫馨提示】近幾年天津卷中總可以看到平面向量的身影,且均屬于中等題或難題,應(yīng)加強(qiáng)
平面向量的基本運(yùn)算的訓(xùn)練,尤其是與三角形綜合的問(wèn)題。
12.(2010廣東文)
5.若向量;=("),5=(2.5),;=(3,x)滿(mǎn)足條件(8>1);=30,則工=
A.60.CJ.?
解:(8a-K)=(8.8)-(2.5)=(6.3)
(8a-2>c=6x3+3x=30=x=4,選C
13.(2010福建文)
S.若向WJ=(x.:5(xeM,則"x=4"是"|&卜5”的
A.充分而不必要條件B.必要而不充分條件
C.充嬖條件D.既不充分又不必要條件
【答案】A
【解析】由x=4需;=(4.力所以舊卜5】反之.由|1|=5可幻x=±4?
【命題意圖】本題零查平面向量.常用邏輯用語(yǔ)等基礎(chǔ)知識(shí).
14.(2010全國(guó)卷1文)(11)已知圓。的半徑為1,PA、PB為該圓的兩條切線(xiàn),A、B為兩
切點(diǎn),那么蘇?麗的最小值為
(A)-4+V2⑻—3+0(C)—4+20(D)-3+272
【答案】D
【命題意圖】本小題主要考查向量的數(shù)量積運(yùn)算與圓的切線(xiàn)長(zhǎng)定理,著重考查最值的求法一
一判別式法,同時(shí)也考查了考生綜合運(yùn)用數(shù)學(xué)知識(shí)解題的能力及運(yùn)算能力.
即力—(1+丁口2—y=0,由r是實(shí)數(shù),所以
A=[-(l+j;)]2-4xlx(-y)>0,y2+6y+l>Q,解得yV-3-2忘或y2-3+2血.
故(蘇?麗)min=-3+2JL此時(shí)X=VV2-1.
mafic.O17ADDnnnPA?PB-(PA\(PB\cOS01/tan—COS,
【解析2】設(shè)44PB=。,0<。<乃,,八)12J
2夕l-sin^Yl-2sin^1
cos
l-2sin2^2e
____2換元:x=sin'—,0<x<l,
.id2
sin-
2
向.而二(j)(-2,)=2X+,_3N2層3
XX
【解析3】建系:園的方程為/+;/=1,設(shè)44%),8(七,一凹),尸*0,0),
尸/?尸8=(須一/,必),(為一/,—%)=片_2石玉)十片一切2
2
AO-LPA=>(X),?(Xj-xo,yj=0=>X]-x}xG4-=0=>x]xQ-1
—
PA?PB—Xy—2X|XQ+x;-—x;-2+x;-(1-x;)—2x;+x:-322>/23
,2
15.(2010四川文)(6)設(shè)點(diǎn)”是線(xiàn)段BC的中點(diǎn),點(diǎn)N在直線(xiàn)8c外,BC=16,
同+陽(yáng)=府-園,貝“西=
(1)8(0492(〃)1
【答案】C
解析:由8C=16,得18a=4
方+配|=|荔-%|=|元|=4
而方+配|=2|而
故AM\-2
16.(2010湖北文)8.已知A48c和點(diǎn)M滿(mǎn)足血+礪+荻=0.若存在實(shí)加使得
AM+AC=mAM成立,則〃?二
A.2B.3C.4D.5
【答案】B
【解析】由題目條件可知,M為△ABC的重心,連接AV并延長(zhǎng)交BC于D,
則萬(wàn)7=2①①,因?yàn)锳D為中或則觸+而=2力=加宿,
3
即2萬(wàn)=加罰②,聯(lián)立①?可得比3,故B正確.
17.(2010山東理)(12)定義平面向量之間的一種運(yùn)算“”如下,對(duì)任意的£=(m,n),
b=(p,q),令ab=mq-np,下面說(shuō)法錯(cuò)誤的是()
A.若a與B共線(xiàn),則ab=OB.ab=ba
c.對(duì)任意的/UR,有(而)b=2(ab)D.(ab)2+(ab)2=lal2lbl2
【答案】B
【解析】若a與6共線(xiàn),則有ab=mq-np=0,故A正確;因?yàn)?a=pn-qm,而
ab=mq-np,所以有abba,故選項(xiàng)B錯(cuò)誤,故選B。
【命題意圖】本題在平面向量的基礎(chǔ)上,加以創(chuàng)新,屬創(chuàng)新題型,考查平面向量的基礎(chǔ)知識(shí)
以及分析問(wèn)題、解決問(wèn)題的能力。
uuuuuu
18.(2010湖南理)4、在H/A48c中,ZC=90°AC=4,則等于
A、-16B、-8C、8D、16
【答案】A
【解析】因?yàn)镹C=90",所以就?而=“
HrUAJ5*JC=(JC+C3>JC=(JC):+JC.C8=16,故選Ek
【命題意圖】本題考查向量的加法的運(yùn)皙,向量的數(shù)量積,層中檔題"
19.(2010年安徽理)
3、設(shè)向量a=0.0),&=(;'),則下列站途中正碉的是
A、同=陽(yáng)B、a?b=*■C、a-A與白垂直IXaHb
3.C
【解析】a-?=d.-3,(a-6)O>=0,驅(qū)a-▲與A垂直
【方法4確】利用向量的坐標(biāo)運(yùn)過(guò).■接驗(yàn)證很容易先掛除掉選項(xiàng)A、B、D.然后驗(yàn)證C即可得出結(jié)論
20.(2010湖北理)5.已知AABC和點(diǎn)M滿(mǎn)足M氏+M白+M(b=O.若存在實(shí)數(shù)m使得
->-->-->
AB+AC=mAM成立,則m=
A.2B.3C.4D.5
5.【答案】B
【解析】由題目條件可知,M為^ABC的重心,連接AM并延長(zhǎng)交BC于D,
則麗二萬(wàn)①,因?yàn)锳D為中線(xiàn)則在+而-2筋-m萬(wàn)7,
3
即2力雨②,聯(lián)立①②可得JF3,故B正確.
二、填空題
1.(2010上海文)13.在平面直角坐標(biāo)系中,雙曲線(xiàn)「的中心在原點(diǎn),它的一個(gè)焦點(diǎn)坐標(biāo)為
(75,0),3=(2,1)、&=(2,—1)分別是兩條漸近線(xiàn)的方向向量。任取雙曲線(xiàn)「上的
點(diǎn)、P,若OP=ae\+be2(a、6£7?),則Q、b滿(mǎn)足的一個(gè)等式是_456=1。
解析:因?yàn)閆=(2,1)、e2=(2,—1)是漸進(jìn)線(xiàn)方向向量,所以雙曲線(xiàn)漸近線(xiàn)方程為y=土gx,
又c=Q=2,6=1
雙曲線(xiàn)方程為二--y2=1
OP=ae\+he2-(2a+2b,a-b),
4
2
:.Q"+2份_(a_/,)=1,化簡(jiǎn)得4^6=1
4
2.(2010浙江理)(16)已知平面向量a,Z?(aK0,aH〃)滿(mǎn)足期=1,且a與£—a的夾
角為120。,則國(guó)的取值范圍是.
解析:利用題設(shè)條件及其幾何意義表示在三角形中,即可迎刃而解,本題主要考察了平面向
量的四則運(yùn)算及其兒何意義,突II;考察了對(duì)問(wèn)題的轉(zhuǎn)化能力和數(shù)形結(jié)合的能力,屬中檔題。
3.(2010陜西文)12.已知向量a=(2,-1),b=(-1,加,c=(-1,2)若(a+6)
//c,則
【答案】-1
解析:a+b=(1,加一1),由(o+b)〃c得1x2-(加一1)x(-1)=0,所以m=T
4.(2010江西理)13.已知向量Z,1滿(mǎn)足同=1,慟=2,1與3的夾
角為60。,則|£一可=
【答案】百
【解析】考查向量的夾角和向量的模長(zhǎng)公式,以及向量三角形法則、余弦
定理等知識(shí),如圖£=方1=0及£一5=麗一礪=定,由余弦定理
得邛叫=百
5.(2010浙江文)(17)在平行四邊形ABCD中,0是AC與BD的交點(diǎn),P、Q、M、N分別是
線(xiàn)段0A、OB、0C、OD的中點(diǎn),在APMC中任取一點(diǎn)記為E,在B、Q、N、D中任取一點(diǎn)記為F,
設(shè)G為滿(mǎn)足向量03=宿方的點(diǎn),則在上述的點(diǎn)G組成的集合中的點(diǎn),落在平行四邊
形ABCD外(不含邊界)的概率為。
J
國(guó)17
3
答案:-
4
6.(2010浙江文)(13)已知平面向量a,閔a|=l,網(wǎng)=2,a,(a—2Q),則|2〃+川的值是
答案:V10
7.(2010天津理)(15)如圖,在/BC中,ADA.AB,BC=43BD,
回=1,則ACZ5=.'
【答案】D『一-「?二
【解析】本題主要考查平面向量的基本運(yùn)算與解三角形的基礎(chǔ)知識(shí),屬于難題。
AC?AD=\ACcosZDAC=\AC\?cosZDAC=\AC\sinZBAC
-BCsinB=y/3
【解析】近兒年天津卷中總可以看到平面向量的身影,且均屬于中等題或難題,應(yīng)加強(qiáng)平面
向量的基本運(yùn)算的訓(xùn)練,尤其是與三角形綜合的問(wèn)題。
8.(2010廣東理)10.若向量二=(1,l,x),b=(1,2,1),:=(1,1,1),滿(mǎn)足條件
(0一。)?(26)二-2,則x-
【答案】2
c一Q=(0,0』一x),(c-Q)?(26)=2(0,0,1-%)?(!,2,1)=2(1-x)=-2,解得x=2.
三、解答題
1.(2010江蘇卷)15、(本小題滿(mǎn)分14分)
在平面直角坐標(biāo)系xOy中,點(diǎn)A(—"1,—2)、B(2,3)、C(—2,—1)?
(1)求以線(xiàn)段AB、AC為鄰邊的平行四邊形兩條對(duì)角線(xiàn)的長(zhǎng);
⑵設(shè)實(shí)數(shù)t滿(mǎn)足(獲一而)?而=0,求t的值。
[解析]本小題考查平面向量的兒何意義、線(xiàn)性運(yùn)算、數(shù)量積,考查運(yùn)算求解能力。滿(mǎn)分14
分。
(1)(方法一)由題設(shè)知方=(3,5),%=(—1,1),則
方+就=(2,6),海-配=(4,4).
所以I方+配1=2麗,1而一萬(wàn)1=472.
故所求的兩條對(duì)角線(xiàn)的長(zhǎng)分別為40、2廂。
(方法二)設(shè)該平行四邊形的第四個(gè)頂點(diǎn)為D,兩條對(duì)角線(xiàn)的交點(diǎn)為E,貝IJ:
E為B、C的中點(diǎn),E(0,1)
又E(0,1)為A、D的中點(diǎn),所以D(1,4)
故所求的兩條對(duì)角線(xiàn)的長(zhǎng)分別為BC=4>/2、AD=2jIU;
(2)由題設(shè)知:OC=(-2,-1),萬(wàn)一/無(wú)=(3+2/,5+力。
由(礪一/而)?而=0,得:(3+27,5+/>(—2,—1)=0,
從而57=—11,所以,=—以。
5
或者:TB-OC=tOC2,7^=(3,5),fJ空元=_U
\OCI25
2009年高考題
一、選擇題
1.(2009年廣東卷文)已知平面向量不(x,D,左(一Jr,》?),則向量a+方()
A平行于x軸B.平行于第一、三象限的角平分線(xiàn)
C.平行于歹軸D.平行于第二、四象限的角平分線(xiàn)
答案C
解析a+Z>=(0,l+x2),由1+/工0及向量的性質(zhì)可知,C正確.
2.(2009廣東卷理)一質(zhì)點(diǎn)受到平面上的三個(gè)力大,工,招(單位:牛頓)的作用而處于
平衡狀態(tài).已知月,工成60°角,且耳,B的大小分別為2和4,則巴的大小為()
A.6B.2C.275D.2s
答案D
解析F;=F:+可-2月F2cos(180°-60°)=28,所以居=,選D.
3.(2009浙江卷理)設(shè)向量a,力滿(mǎn)足:1。1=3,1>1=4,ab-0.以a,b,a-)的
模為邊長(zhǎng)構(gòu)成三角形,則它的邊與半徑為1的圓的公共點(diǎn)個(gè)數(shù)最多為()
A.3B.4C.5D.6
答案C
解析對(duì)于半徑為1的圓有一個(gè)位置是正好是三角形的內(nèi)切圓,此時(shí)只有三個(gè)交點(diǎn),
對(duì)于圓的位置稍?右移或其他的變化,能實(shí)現(xiàn)4個(gè)交點(diǎn)的情況,但5個(gè)以上的交點(diǎn)不能
實(shí)現(xiàn).
4.(2009浙江卷文)已知向量a=(1,2),》=(2,—3).若向量c滿(mǎn)足(c+a)//》,c,(“+》),
則。=()
答案D
解析不妨設(shè)C=(?7,〃),則。+。=(1+機(jī),2+〃),。+3=(3,-1),對(duì)于(c+a)〃5,
則有一3(1+/?)=2(2+〃);又cJ_(a+B),貝!J有3加一〃=0,則有加=-",〃=-(
【命題意圖】此題主要考查了平血向量的坐標(biāo)運(yùn)算,通過(guò)平面向量的平行和垂直關(guān)系的
考查,很好地體現(xiàn)了平面向量的坐標(biāo)運(yùn)算在解決具體問(wèn)題中的應(yīng)用.
5.(2009北京卷文)已知向量a==(0,l),c=ka+b(左eR),d=a-b,如果?!╠
那么()
A.左=1且C與d同向B.左=1且c與d反向
C.4=-1且C與d同向D.4=-1且C與“反向
答案D
解析本題主要考查向量的共線(xiàn)(平行)、向量的加減法.屬于基礎(chǔ)知識(shí)、基本運(yùn)算考查.
".'a=(l,0),b—(0,1),若一=1,則c=a+6=(1,1),d=a—b=(1,—1)>
顯然,a與6不平行,排除A、B.
若左=-1,貝IIc=-a+6=(—1,1),d=-a+b=—1,1),
即c〃"且c與d反向,排除C,故選D.
6.(2009北京卷文)設(shè)D是正生鳥(niǎo)鳥(niǎo)及其內(nèi)部的點(diǎn)構(gòu)成的集合,點(diǎn)片是ME鳥(niǎo)的中心,
若集合S={PIPG"IPK國(guó)理1"=1,2,3},則集合S表示的平面區(qū)域是()
A.三角形區(qū)域B.四邊形區(qū)域
C.五邊形區(qū)域D.六邊形區(qū)域
答案D
解析本題主要考查集合與平面幾何基礎(chǔ)知識(shí).本題主要
考查閱讀與理解、信息遷移以及學(xué)生的學(xué)習(xí)潛力,考查學(xué)生
分析問(wèn)題和解決問(wèn)題的能力.屬于創(chuàng)新題型.如圖,A、B、
C、D、E、F為各邊三等分點(diǎn),答案是集合S為六邊形ABCDEF,
其中,P0A=P2A<PiA{i=\,S)即點(diǎn)P可以是點(diǎn)A.
7.(2009北京卷理)已知向量3、6不共線(xiàn),6=人+%左€心,公4一6,如果?!?,那么()
A.左=1且c與d同向B.人=1且(?與"反向
C.左=—1且c與"同向D.左=—1且c與"反向
答案D
解析本題主要考查向量的共線(xiàn)(平行)、向量的加減法.屬于基礎(chǔ)知識(shí)、基本運(yùn)算的考
查.
取a=(l,O),6=(0,1),若左=1,則c=a+6=(1,1),d-a-b-(h_l)>
顯然,a與6不平行,排除A、B.
若4=—1,貝ijc=—a+Z>=(—1,1),d=—a+Z>=—1,1),
即c〃"且c與d反向,排除C,故選D.
8.(2009山東卷理)設(shè)P是4ABC所在平面內(nèi)的一點(diǎn),BC+BA=2BP,則()
A.PA+PB=OB.PC+PA=OC.PB+PC=QD.PA+PB+PC=()
答案B
解析:因?yàn)閮?cè)+方=2而,所以點(diǎn)P為線(xiàn)段AC的中點(diǎn),所以應(yīng)該選B。
【命題立意】:本題考查了向量的加法運(yùn)算和平行四邊形法則,可以借助圖形解答.
9.(2009全國(guó)卷n文)已知向量a=(2,1),a?b-10,\a+bI=5&,則I6I=
A.y/5B.V10C.5D.25
答案C
解析本題考查平面向量數(shù)量積運(yùn)算和性質(zhì),由。+6=5&知(a+b)2=a,b2+2ab=50,
得|b|=5選C.
10.(2009全國(guó)卷I理)設(shè)a、b、c是單位向量,且a?6=0,則(a—c)?9一c)的最
小值為()
A.—2B.^2—2C.-1D.1-^2
答案D
解析,.?£,3,1是單位向量二(4一。)?伍一。)=。h-(a+b)c+c
=I-1a+B11c1=1-夜cos<a+b,c>>1-V2.
11.(2009湖北卷理)已知
P={a\a=(1,0)+加(0,1),加e火},。={61b=(1,1)+n(-l,l),weR}是兩個(gè)向量集合,
則PIQ=
()
A.Hl,1)}B.{(-1,1)}C.{(1,0)}D.{(0,1)}
答案A
解析因?yàn)椤?(1,相)5=(1-〃/+〃)代入選項(xiàng)可得PC0={(1,1)}故選A.
12.(2009全國(guó)卷^理)已知向量a=(2,l),。北=lO,la+加=5JL則lbl=()
A.#)B.V10C.5D.25
答案C
解析?/50=1o+612=1aI2+2a6+1612=5+20+1bI2/.161=5故選C.
13.(2009遼寧卷理)平面向量a與b的夾角為60°,a=(2,0),\b\=l則|a+24=()
A.6B.273C.4D.2
答案B
解析由已知|a|=2,|a+2b|2=a?+4a?b+4b2=4+4X2X1XCOS60°+4=12
.,.p+2Z)|=2V3
14.(2009寧夏海南卷理)已知0,N,P在A48c所在平面內(nèi),且
|萬(wàn)卜|礪|=|四|,麗+麗+近=0,且兩.而=麗.定=元?兩,則點(diǎn)0,
N,P依次是AA5C的()
A.重心外心垂心B.重心外心內(nèi)心
C.外心重心垂心D.外心重心內(nèi)心
答案C
(注:三角形的三條高線(xiàn)交于一點(diǎn),此點(diǎn)為三角型的垂心)
解析
由網(wǎng)=函=|5c|知,O為入43耶外心;由州4+赤+近=0知,O為入48皿重心
■.■PA?~PB^PB?PC,:.(7A-PCyPB^0,:.CA?PB^0,:.CALPB,
同理,45_18。,;.尸為兇8(:的垂心,選C.
15.(2009湖北卷文)若向量a=(1,1),b=(-1,1),c=(4,2),則c=()
A.3a+bB.3a-bC.-a+3bD.a+3b
答案B
解析由計(jì)算可得£=(4,2)=3之一]故選13
16.(2009湖南卷文)如圖1,D,E,F分別是AABC的邊AB,BC,CA的中點(diǎn),貝U()
A.AD+BE+CF^O
B.BD-CF+DF^()
C.AD+CE-CF=0
D.BD-BE-FC^O
答案A
圖1
解析?.?亞=麗,;.亞+爐=麗+屁=詼=定,得而+而+醞=0
或詬+而+而=而+萬(wàn)斤+方=萬(wàn)+麗=0.
17.(2009遼寧卷文)平面向量a與b的夾角為60°,a=(2,0),|b|=1,貝I||a+2b|
等于()
A.百B.26C.4D.12
答案B
解析由已知|a|=2,|a+2b|2=a2+4a?b+4b2=4+442X1+cos60°+4=12
\a+2a=2-\/3
18.(2009全國(guó)卷I文)設(shè)非零向量。,b、。滿(mǎn)足1。1=1b\=\c\,a+b=c,則>=()
A.150°B.120°C.60°D.30°
答案B
解析本小題考查向量的幾何運(yùn)算、考查數(shù)形結(jié)合的思想,基礎(chǔ)題。
解由向量加法的平行四邊形法則,知£、1可構(gòu)成菱形的兩條相鄰邊,且£、了為起
點(diǎn)處的對(duì)角線(xiàn)長(zhǎng)等于菱形的邊長(zhǎng),故選擇B。
19.(2009陜西卷文)在\ABC中,M是BC的中點(diǎn),AM=1,點(diǎn)P在AM上且滿(mǎn)足學(xué)方=2PM,
則科網(wǎng)⑸?(而+正)等于()
4444
C
9-3--3-D.9-
A.答
案1
解析由力尸=2尸"知,p為A48c的重心,根據(jù)向量的加法,?8+尸。=20〃則
O[A
JP(PB+定產(chǎn)浜^2|司網(wǎng)cos。=2x:xgxl=1
20.(2009寧夏海南卷文)已知。=(—3,2)/=(一1,0),向量6與"26垂直,則實(shí)
數(shù)/I的值為()
1111
A.一一B.-C.——D.-
7766
答案A
解析向量丸。+6=(-3A-1,22),a—2b=(—1,2),因?yàn)閮蓚€(gè)向量垂直,故
有(一3幾一1,2/1)X(-1,2)=0,即3/1+1+4丸=0,解得:2=--,故選.A.
7
21.(2009湖南卷理)對(duì)于非0向時(shí)a,b,“a〃b”的正確是()
A.充分不必要條件B.必要不充分條件
C.充分必要條件D.既不充分也不必要條件
答案A
解析由a+6=0,可得。=一6,即得a〃b,但,a〃b,不一定有。=一6,所以
“。+6=0”是的充分不必要條件。
22.(2009福建卷文)設(shè)W,b,1為同一平面內(nèi)具有相同起點(diǎn)的任意三個(gè)非零向量,且滿(mǎn)
足。與b不共線(xiàn),aleIaI=IcI,則I6?c|的值一定等于()
A.以二,%為鄰邊的平行四邊形的面積
B.以1,I為兩邊的三角形面積
C.a,,為兩邊的三角形面積
D.以1為鄰邊的平行四邊形的面積
答案A
—>—>—>—>—>->->->
解析假設(shè)。與b的夾角為。,Ib?cI=II,IcI,Icos<b,c>I
=I?I?IaI-Icos(90°±6)|=|J|-|a|”儲(chǔ)6,即為以1Z為鄰邊的平
行四邊形的面積.
23.(2009重慶卷理)已知同=1,例=6,a(A—a)=2,則向量a與向量》的夾角是()
答案c
解析因?yàn)橛蓷l件得“/-a?=2,所以。力=2+a?=3=a-bcosa=1x6xcosa,
所以cosa=—,所以《=工
23
24.(2009重慶卷文)已知向量a=(1,1)1=(2,x),若a+1與劭一2a平行,則實(shí)數(shù)x的值
是()
A.-2B.0C.1D.2
答案D
解法1因?yàn)閍==(2,x),所以a+6=(3,x+1),46-2。=(6,4x-2),
由于a+b與46-2。平行,得6(x+l)—3(4x—2)=0,解得x=2。
解法2因?yàn)閍+b與46—2a平行,則存在常數(shù)4,使a+6=2(46-2〃),即
(2/1+1)。=(44-1)6,根據(jù)向量共線(xiàn)的條件知,向量a與6共線(xiàn),故x=2
25.(2009湖北卷理)函數(shù)y=cos(2x+工)-2的圖象/按向量a平移到L,廣的函數(shù)解析
6
式為歹=/(幻,當(dāng)》=/(x)為奇函數(shù)時(shí),向量??梢缘扔?)
4(一二,一2)5.(--,2)C.(—,-2)
6666
答案B
解析直接用代入法檢驗(yàn)比較簡(jiǎn)單.或者設(shè);二(£,,),根據(jù)定義
y-yf=cos[2(x-xz)+-]-2,根據(jù)y是奇函數(shù),對(duì)應(yīng)求出x',
6
26.(2009湖北卷文)函數(shù)”cos(2x+*-2的圖像F按向量a平移至I」F,F的解析式y(tǒng)=f(x),
當(dāng)尸f(x)為奇函數(shù)時(shí),向量a可以等于()
A.(9,一2)B.(£⑵C.(--,-2)D.(一9,2)
6666
答案D
解析由平面向量平行規(guī)律可知,僅當(dāng)£=(-9,2)時(shí),
6
7TTT
F':f(x)=cos[2(x+—)+—]-2=-sin2x為奇函數(shù),故選D.
26.(2009廣東卷理)若平面向量3,3滿(mǎn)足)+3=1,)+3平行于x軸,b=(2,-1),
貝力=__________.TfC
答案(-1,0)-(-2,-1)=(-3,1)//\
解析"+g=(1,0)或(—1,0),則Z=(1,0)-(2,—1)=(—1,1)//\
ApC
或)=(-1,0)-(2,-1)=(-3,1).
27.(2009江蘇卷)已知向量Z和向量3的夾角為30°,I箱Z屜后,則向量力和向量否的
數(shù)量積)3=.
答案3
解析考查數(shù)量積的運(yùn)算。a-b=2-43--=3
2
28.(2009安徽卷理)給定兩個(gè)長(zhǎng)度為1的平面向量04和08,它們的夾角為120°.
如圖所示,點(diǎn)C在以0為圓心的圓弧而上變動(dòng).
若OC=xOA+yOB,其中x,歹eR,則x+y
的最大值是.
答案2
解析設(shè)乙4OC=a
OC.OA=xOA.OA+ydB.OA,cosa=x-ly
OC?OB^xOA?OB+yOB?OB,'Cos(120°-a)=--x+y
;?x+y=2[cosa+cos(1200-a)]=cosa+Gsina=2sin(a+—)<2
6
29.(2009安徽卷文)在平行四邊形ABCD中,E和F分別是邊CD和BC的中點(diǎn),或
AC=1AB+lAP,其中2,LER,則:+L二
答案4/3
.—?.—?■.I—?—?.—*I—?.—?—?
解析設(shè)BC=b、=a則/尸=一6一。,AE=b——a,AC=h-a
22
24
代入條件得4=〃=—?,.丸+〃=—
33
30.(2009江西卷文)已知向量£=(3,1),坂=(1,3),"=(左,2),若(£一"),坂則
k=.
答案0
解析因?yàn)閆—"=(3—左1),所以左=0.
31.(2009江西卷理)已知向量£=(3,1),否=(1,3),3=(k,7),若(£一")〃九則
k=.
答案5
解析土上=_2=左=5
13
32.(2009湖南卷文)如圖2,兩塊斜邊長(zhǎng)相等的直角三角板拼在一一起,若AD=xAB+yAC,
解析作。設(shè)N8=ZC=ln8C=OE=0,
NDEB=60°,
2
由ZDBF=45°解得DF=BF=西烏故E+烏尸亙
2222-2
33.(2009遼寧卷文)在平面直角坐標(biāo)系xoy中,四邊形ABCD的邊AB〃DC,AD〃BC,已知點(diǎn)
A(-2,0),B(6,8),C(8,6),則D點(diǎn)的坐標(biāo)為.
答案(0,-2)
解析平行四邊形ABCD中,礪+歷=宓+反
:.OD=OA+OC-OB^(~2,0)+(8,6)-(6,8)-(0,-2)
即D點(diǎn)坐標(biāo)為(0,-2)
7T
34.(2009年廣東卷文)(已知向量〃=(sina-2)與1=(1,cos。)互相垂直,其中6w(0,一)
2
(1)求sin。和cos。的值
(2)若5cos(夕一夕)=3j^cos0,0<°<5,求cos°的值
解(1),.二)的=sin。-2cos8=0,即sine=2cos。
又?.?sin2e+cose=l,4cos2^+cos23=1,即cos?=gsin?。1
又0€(0,-)sin0=,cos0--
255
(2)5cos(。一(p)=5(cos^cos°+sin6sin(p)=亞cos(p+275sin(p=3亞cos3
???cose=sin°,/.cos2=sin2=1-cos2cp,BPcos2^=~
T[ypl
又a<(P<3,/.cos(P=
35.(2009江蘇卷)設(shè)向量a=(4cosa,sina),1=(sin/?,4cos/?),c=(cos/?,-4sinp)
(1)若。與B-2c垂直,求tan(a+〃)的值;
(2)求iB+Jl的最大值;
(3)若tanatan/?=16,求證:a//b.
解析本小題主要考查向量的基本概念,同時(shí)考查同角三角函數(shù)的基本關(guān)系式、二倍角
的正弦、兩角和的正弦與余弦公式,考查運(yùn)算和證明得基本能力。滿(mǎn)分14分。
(1)由〃與。一2c垂直,a(b-1c)=ab-lac=0,
即4siii(a+/?)-8cos(a+1)=0,tan(a+/?)=2?
(2)b+c=(sinp+cospAcos/7一4sinp)\
|Z>+r|2=siD2/?4-2洶11?cos/?+cos2P+16cos2夕-32cos/>sin/7+16sill2/7
=1"-30sii)y(>cos/>=17-15sin2/),最大值為3
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 沈陽(yáng)航空職業(yè)技術(shù)學(xué)院《工業(yè)水處理設(shè)計(jì)》2023-2024學(xué)年第二學(xué)期期末試卷
- 浙江旅游職業(yè)學(xué)院《教師職業(yè)道德規(guī)范與教育法規(guī)》2023-2024學(xué)年第二學(xué)期期末試卷
- 畢節(jié)幼兒師范高等專(zhuān)科學(xué)?!度嵝钥纱┐骷夹g(shù)》2023-2024學(xué)年第二學(xué)期期末試卷
- 石河子工程職業(yè)技術(shù)學(xué)院《導(dǎo)游基礎(chǔ)知識(shí)應(yīng)用》2023-2024學(xué)年第二學(xué)期期末試卷
- 福建農(nóng)林大學(xué)《液壓與氣壓傳動(dòng)B》2023-2024學(xué)年第二學(xué)期期末試卷
- 貴州黔南科技學(xué)院《電子商務(wù)B》2023-2024學(xué)年第二學(xué)期期末試卷
- 中原工學(xué)院《微型計(jì)算機(jī)技術(shù)與應(yīng)用》2023-2024學(xué)年第二學(xué)期期末試卷
- 泰州2025年江蘇泰州市人民醫(yī)院招聘42人筆試歷年參考題庫(kù)附帶答案詳解
- 武漢外語(yǔ)外事職業(yè)學(xué)院《工程測(cè)量學(xué)》2023-2024學(xué)年第二學(xué)期期末試卷
- 太陽(yáng)能采暖系統(tǒng)項(xiàng)目效益評(píng)估報(bào)告
- 職業(yè)素養(yǎng)提升第2版(大學(xué)生職業(yè)素養(yǎng)指導(dǎo)課程)全套教學(xué)課件
- 2024年公安機(jī)關(guān)理論考試題庫(kù)500道【綜合卷】
- (高清版)TDT 1048-2016 耕作層土壤剝離利用技術(shù)規(guī)范
- 市場(chǎng)調(diào)研與咨詢(xún)行業(yè)的市場(chǎng)調(diào)研方法創(chuàng)新培訓(xùn)
- 2024年人工智能助力社會(huì)治理現(xiàn)代化
- 29.4常見(jiàn)腫瘤標(biāo)志物講解
- 華為企業(yè)大學(xué)培訓(xùn)體系
- 2024年四川成都市公共交通集團(tuán)有限公司招聘筆試參考題庫(kù)含答案解析
- 學(xué)生獎(jiǎng)勵(lì)兌換券模板
- 鑄牢中華民族共同體意識(shí)主題班會(huì)教案
- 成品倉(cāng)主管述職報(bào)告
評(píng)論
0/150
提交評(píng)論