版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
第41講橢圓及其性質(zhì)(精講)題型目錄一覽①橢圓的定義及其應(yīng)用②求橢圓的標(biāo)準(zhǔn)方程③橢圓的幾何性質(zhì)④橢圓的離心率一、知識(shí)點(diǎn)梳理一、知識(shí)點(diǎn)梳理一、橢圓的定義平面內(nèi)與兩個(gè)定點(diǎn)SKIPIF1<0的距離之和等于常數(shù)SKIPIF1<0(SKIPIF1<0)的點(diǎn)的軌跡叫做橢圓,這兩個(gè)定點(diǎn)叫做橢圓的焦點(diǎn),兩焦點(diǎn)的距離叫做橢圓的焦距,記作SKIPIF1<0,定義用集合語言表示為:SKIPIF1<0注意:當(dāng)SKIPIF1<0時(shí),點(diǎn)的軌跡是線段;當(dāng)SKIPIF1<0時(shí),點(diǎn)的軌跡不存在.二、橢圓的方程、圖形與性質(zhì)焦點(diǎn)的位置焦點(diǎn)在SKIPIF1<0軸上焦點(diǎn)在SKIPIF1<0軸上圖形標(biāo)準(zhǔn)方程SKIPIF1<0SKIPIF1<0統(tǒng)一方程SKIPIF1<0參數(shù)方程SKIPIF1<0SKIPIF1<0第一定義到兩定點(diǎn)SKIPIF1<0的距離之和等于常數(shù)2SKIPIF1<0,即SKIPIF1<0(SKIPIF1<0)范圍SKIPIF1<0且SKIPIF1<0SKIPIF1<0且SKIPIF1<0頂點(diǎn)SKIPIF1<0、SKIPIF1<0SKIPIF1<0、SKIPIF1<0SKIPIF1<0、SKIPIF1<0SKIPIF1<0、SKIPIF1<0軸長(zhǎng)長(zhǎng)軸長(zhǎng)SKIPIF1<0,短軸長(zhǎng)SKIPIF1<0長(zhǎng)軸長(zhǎng)SKIPIF1<0,短軸長(zhǎng)SKIPIF1<0對(duì)稱性關(guān)于SKIPIF1<0軸、SKIPIF1<0軸對(duì)稱,關(guān)于原點(diǎn)中心對(duì)稱焦點(diǎn)SKIPIF1<0、SKIPIF1<0SKIPIF1<0、SKIPIF1<0焦距SKIPIF1<0SKIPIF1<0離心率SKIPIF1<0對(duì)于過橢圓上一點(diǎn)SKIPIF1<0的切線方程,只需將橢圓方程中SKIPIF1<0換為SKIPIF1<0,SKIPIF1<0換為SKIPIF1<0可得焦半徑最大值SKIPIF1<0,最小值SKIPIF1<0【常用結(jié)論】1.過橢圓的焦點(diǎn)與橢圓的長(zhǎng)軸垂直的直線被橢圓所截得的線段稱為橢圓的通徑,其長(zhǎng)為SKIPIF1<0.①橢圓上到中心距離最小的點(diǎn)是短軸的兩個(gè)端點(diǎn),到中心距離最大的點(diǎn)是長(zhǎng)軸的兩個(gè)端點(diǎn).②橢圓上到焦點(diǎn)距離最大和最小的點(diǎn)是長(zhǎng)軸的兩個(gè)端點(diǎn).距離的最大值為SKIPIF1<0,距離的最小值為SKIPIF1<0.2.橢圓的切線①橢圓SKIPIF1<0上一點(diǎn)SKIPIF1<0處的切線方程是SKIPIF1<0;②過橢圓SKIPIF1<0外一點(diǎn)SKIPIF1<0,所引兩條切線的切點(diǎn)弦方程是SKIPIF1<0;③橢圓SKIPIF1<0與直線SKIPIF1<0相切的條件是SKIPIF1<0.二、題型分類精講二、題型分類精講題型一橢圓的定義及其應(yīng)用策略方法橢圓定義的應(yīng)用類型及方法(1)探求軌跡:確認(rèn)平面內(nèi)與兩定點(diǎn)有關(guān)的軌跡是不是橢圓.(2)應(yīng)用定義轉(zhuǎn)化:涉及焦半徑的問題,常利用|PF1|+|PF2|=2a實(shí)現(xiàn)等量轉(zhuǎn)換.(3)焦點(diǎn)三角形問題:常把正、余弦定理同橢圓定義相結(jié)合,求焦點(diǎn)、三角形的面積等問題.【典例1】(單選題)橢圓SKIPIF1<0的兩個(gè)焦點(diǎn)分別為SKIPIF1<0,過SKIPIF1<0的直線交橢圓于A、B兩點(diǎn),則SKIPIF1<0的周長(zhǎng)是(
)A.10 B.12 C.16 D.20【答案】D【分析】根據(jù)橢圓定義進(jìn)行求解.【詳解】由題意得SKIPIF1<0,由橢圓定義可知,SKIPIF1<0,所以SKIPIF1<0的周長(zhǎng)為SKIPIF1<0.故選:D【題型訓(xùn)練】一、單選題1.方程SKIPIF1<0的化簡(jiǎn)結(jié)果是()A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【答案】C【分析】由方程的幾何意義及橢圓定義得出結(jié)果即可.【詳解】方程的幾何意義為動(dòng)點(diǎn)SKIPIF1<0到定點(diǎn)SKIPIF1<0和SKIPIF1<0的距離和為10,并且SKIPIF1<0,所以動(dòng)點(diǎn)的軌跡為以兩個(gè)定點(diǎn)為焦點(diǎn),定值為SKIPIF1<0的橢圓,所以SKIPIF1<0,SKIPIF1<0,根據(jù)SKIPIF1<0,所以橢圓方程為SKIPIF1<0.故選:C.2.已知點(diǎn)P為橢圓SKIPIF1<0上的一點(diǎn),SKIPIF1<0,SKIPIF1<0為該橢圓的兩個(gè)焦點(diǎn),若SKIPIF1<0,則SKIPIF1<0(
)A.SKIPIF1<0 B.SKIPIF1<0 C.1 D.3【答案】C【分析】利用橢圓的定義進(jìn)行求解.【詳解】因?yàn)辄c(diǎn)P為橢圓SKIPIF1<0上的一點(diǎn),所以SKIPIF1<0,因?yàn)镾KIPIF1<0,所以SKIPIF1<0.故選:C.3.橢圓SKIPIF1<0的兩個(gè)焦點(diǎn)分別為SKIPIF1<0,過SKIPIF1<0的直線交橢圓于A、B兩點(diǎn),則SKIPIF1<0的周長(zhǎng)是(
)A.10 B.12 C.16 D.20【答案】D【分析】根據(jù)橢圓定義進(jìn)行求解.【詳解】由題意得SKIPIF1<0,由橢圓定義可知,SKIPIF1<0,所以SKIPIF1<0的周長(zhǎng)為SKIPIF1<0.故選:D4.已知橢圓SKIPIF1<0為兩個(gè)焦點(diǎn),SKIPIF1<0為橢圓SKIPIF1<0上一點(diǎn),若SKIPIF1<0的周長(zhǎng)為4,則SKIPIF1<0(
)A.2 B.3 C.SKIPIF1<0 D.SKIPIF1<0【答案】D【分析】根據(jù)橢圓的方程可得SKIPIF1<0的關(guān)系,結(jié)合SKIPIF1<0的周長(zhǎng),列方程求解,即得答案.【詳解】設(shè)橢圓SKIPIF1<0的焦距為SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0的周長(zhǎng)為SKIPIF1<0,解得SKIPIF1<0,故選:D5.已知SKIPIF1<0是橢圓SKIPIF1<0的兩個(gè)焦點(diǎn),點(diǎn)M在C上,則SKIPIF1<0的最大值為(
)A.8 B.9 C.16 D.18【答案】C【分析】利用橢圓的定義和基本不等式求解.【詳解】由橢圓的定義可得SKIPIF1<0,所以由基本不等式可得SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0時(shí)取得等號(hào),故選:C.6.已知SKIPIF1<0的頂點(diǎn)SKIPIF1<0在橢圓SKIPIF1<0上,頂點(diǎn)SKIPIF1<0是橢圓的一個(gè)焦點(diǎn),且橢圓的另外一個(gè)焦點(diǎn)在SKIPIF1<0邊上,則SKIPIF1<0的周長(zhǎng)是(
)A.12 B.SKIPIF1<0 C.16 D.10【答案】C【分析】利用橢圓的定義求解即可.【詳解】設(shè)橢圓的另外一個(gè)焦點(diǎn)為SKIPIF1<0,如圖,
則SKIPIF1<0的周長(zhǎng)為SKIPIF1<0,故選:C.7.已知橢圓SKIPIF1<0的左、右焦點(diǎn)分別為SKIPIF1<0,SKIPIF1<0,點(diǎn)P是橢圓C上的動(dòng)點(diǎn),SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0的最小值為(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】A【分析】根據(jù)橢圓定義得SKIPIF1<0,再利用基本不等式求解最值即可.【詳解】因?yàn)辄c(diǎn)P是橢圓SKIPIF1<0上的動(dòng)點(diǎn),SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0即SKIPIF1<0時(shí),等號(hào)成立.故選:A.8.已知橢圓C:SKIPIF1<0的左、右焦點(diǎn)分別為SKIPIF1<0,SKIPIF1<0,A是C上一點(diǎn),SKIPIF1<0,則SKIPIF1<0的最大值為(
)A.7 B.8 C.9 D.11【答案】A【分析】根據(jù)橢圓的定義可得SKIPIF1<0,利用SKIPIF1<0可求SKIPIF1<0的最大值.【詳解】
設(shè)橢圓的半焦距為SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0,如圖,連接SKIPIF1<0,則SKIPIF1<0,而SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0共線且SKIPIF1<0在SKIPIF1<0中間時(shí)等號(hào)成立,故SKIPIF1<0的最大值為SKIPIF1<0.故選:A.9.已知SKIPIF1<0是橢圓SKIPIF1<0的左焦點(diǎn),點(diǎn)SKIPIF1<0在SKIPIF1<0上,SKIPIF1<0在SKIPIF1<0上,則SKIPIF1<0的最大值是(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】A【分析】求得圓心坐標(biāo)和半徑,利用橢圓得到定義轉(zhuǎn)化為SKIPIF1<0,結(jié)合圓的性質(zhì),求得SKIPIF1<0,進(jìn)而得到答案.【詳解】由SKIPIF1<0,可得SKIPIF1<0,可得圓SKIPIF1<0的圓心坐標(biāo)為SKIPIF1<0,半徑SKIPIF1<0,由橢圓SKIPIF1<0,可得SKIPIF1<0,設(shè)橢圓的右焦點(diǎn)為SKIPIF1<0,根據(jù)橢圓的定義可得SKIPIF1<0,所以SKIPIF1<0,又由SKIPIF1<0,如圖所示,當(dāng)點(diǎn)SKIPIF1<0四點(diǎn)共線時(shí),即SKIPIF1<0時(shí),SKIPIF1<0取得最小值,最小值為SKIPIF1<0,所以SKIPIF1<0.故選:A.二、填空題10.若SKIPIF1<0,SKIPIF1<0,點(diǎn)P到SKIPIF1<0,SKIPIF1<0的距離之和為10,則點(diǎn)P的軌跡方程是【答案】SKIPIF1<0【分析】根據(jù)橢圓的第一定義,得到SKIPIF1<0,得到SKIPIF1<0,進(jìn)而計(jì)算求解,可得答案.【詳解】因?yàn)镾KIPIF1<0,所以點(diǎn)SKIPIF1<0的軌跡是以SKIPIF1<0,SKIPIF1<0為焦點(diǎn)的橢圓,其中SKIPIF1<0,故點(diǎn)P的軌跡方程為SKIPIF1<0.故答案為:SKIPIF1<011.已知橢圓SKIPIF1<0的左、右焦點(diǎn)分別為SKIPIF1<0,SKIPIF1<0,過SKIPIF1<0的直線交橢圓于A,B兩點(diǎn),若SKIPIF1<0,則SKIPIF1<0.【答案】10【分析】根據(jù)橢圓的定義可得SKIPIF1<0,結(jié)合題意即可求解.【詳解】因?yàn)镾KIPIF1<0,SKIPIF1<0,SKIPIF1<0,兩式相加得SKIPIF1<0.又SKIPIF1<0SKIPIF1<0,所以SKIPIF1<0.故答案為:10.12.已知橢圓SKIPIF1<0的左、右焦點(diǎn)分別為SKIPIF1<0、SKIPIF1<0,若橢圓上的點(diǎn)SKIPIF1<0滿足SKIPIF1<0,則SKIPIF1<0【答案】SKIPIF1<0【分析】根據(jù)橢圓定義,得到SKIPIF1<0,再由題中條件,即可得出結(jié)果.【詳解】由題意,在橢圓SKIPIF1<0中,SKIPIF1<0,又SKIPIF1<0,所以SKIPIF1<0,因此SKIPIF1<0.故答案為:SKIPIF1<0【點(diǎn)睛】本題主要考查橢圓上的點(diǎn)到焦點(diǎn)的距離,熟記橢圓的定義即可,屬于基礎(chǔ)題型.13.已知橢圓SKIPIF1<0的左、右焦點(diǎn)分別為F1,F(xiàn)2,點(diǎn)P在橢圓上,若線段PF1的中點(diǎn)在y軸上,|PF1|-|PF2|=.【答案】SKIPIF1<0【分析】因?yàn)榫€段SKIPIF1<0的中點(diǎn)在y軸上得SKIPIF1<0的長(zhǎng),進(jìn)而求得SKIPIF1<0.【詳解】因?yàn)榫€段SKIPIF1<0的中點(diǎn)在y軸上,可得SKIPIF1<0軸,所以SKIPIF1<0軸,所以SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0.故答案為:SKIPIF1<0.14.設(shè)SKIPIF1<0是橢圓SKIPIF1<0的左焦點(diǎn),P為橢圓上任一點(diǎn),點(diǎn)Q的坐標(biāo)為SKIPIF1<0,則SKIPIF1<0的最大值為.【答案】11【分析】先確定焦點(diǎn)的坐標(biāo),再利用橢圓的定義轉(zhuǎn)化,結(jié)合線段差的特點(diǎn)可得答案.【詳解】由題意可得SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0,因?yàn)镾KIPIF1<0,所以SKIPIF1<0;因?yàn)镾KIPIF1<0,所以SKIPIF1<0.故答案為:11.
題型二求橢圓的標(biāo)準(zhǔn)方程策略方法待定系數(shù)法求橢圓標(biāo)準(zhǔn)方程的一般步驟【典例1】寫出適合下列條件的橢圓的標(biāo)準(zhǔn)方程:(1)兩個(gè)焦點(diǎn)在坐標(biāo)軸上,且經(jīng)過A(SKIPIF1<0,-2)和B(-2SKIPIF1<0,1)兩點(diǎn);(2)a=4,c=SKIPIF1<0;(3)過點(diǎn)P(-3,2),且與橢圓SKIPIF1<0有相同的焦點(diǎn).【答案】(1)SKIPIF1<0;(2)SKIPIF1<0或SKIPIF1<0;(3)SKIPIF1<0.【分析】(1)利用待定系數(shù)法求得橢圓方程;(2)求得SKIPIF1<0,根據(jù)焦點(diǎn)所在坐標(biāo)軸寫出橢圓方程;(3)首先求得SKIPIF1<0,然后利用SKIPIF1<0點(diǎn)坐標(biāo)求得SKIPIF1<0,由此求得橢圓方程.【詳解】(1)設(shè)所求橢圓方程為mx2+ny2=1(m>0,n>0,m≠n),由SKIPIF1<0和SKIPIF1<0兩點(diǎn)在橢圓上可得SKIPIF1<0,即SKIPIF1<0,解得SKIPIF1<0.故所求橢圓的標(biāo)準(zhǔn)方程為SKIPIF1<0.(2)因?yàn)閍=4,SKIPIF1<0所以b2=a2-c2=1,SKIPIF1<0所以當(dāng)焦點(diǎn)在x軸上時(shí),橢圓的標(biāo)準(zhǔn)方程是SKIPIF1<0;當(dāng)焦點(diǎn)在y軸上時(shí),橢圓的標(biāo)準(zhǔn)方程是SKIPIF1<0.(3)因?yàn)樗蟮臋E圓與橢圓SKIPIF1<0的焦點(diǎn)相同,所以其焦點(diǎn)在x軸上,且c2=5.設(shè)所求橢圓的標(biāo)準(zhǔn)方程為SKIPIF1<0.因?yàn)樗髾E圓過點(diǎn)P(-3,2),所以有SKIPIF1<0①又a2-b2=c2=5,②由①②解得a2=15,b2=10.故所求橢圓的標(biāo)準(zhǔn)方程為SKIPIF1<0.【題型訓(xùn)練】一、單選題1.“SKIPIF1<0”是“方程SKIPIF1<0表示橢圓”的(
)A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件【答案】B【分析】根據(jù)方程表示橢圓的條件求解.【詳解】方程SKIPIF1<0表示橢圓SKIPIF1<0,所以“SKIPIF1<0”是“方程SKIPIF1<0表示橢圓”的必要不充分條件,故選:B.2.設(shè)橢圓SKIPIF1<0的左、右焦點(diǎn)分別為SKIPIF1<0,上頂點(diǎn)為B.若SKIPIF1<0,則該橢圓的方程為(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】A【分析】根據(jù)題意和橢圓的幾何性質(zhì),得到SKIPIF1<0,進(jìn)而求得SKIPIF1<0的值,即可求解.【詳解】由橢圓的幾何性質(zhì),因?yàn)镾KIPIF1<0,可得SKIPIF1<0,所以SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0,所以橢圓的方程為SKIPIF1<0.故選:A.3.已知橢圓C的中心為坐標(biāo)原點(diǎn),焦點(diǎn)在y軸上,F(xiàn)1,F(xiàn)2為C的兩個(gè)焦點(diǎn),C的短軸長(zhǎng)為4,且C上存在一點(diǎn)P,使得|PF1|=6|PF2|,則C的方程可能為()A.SKIPIF1<0+SKIPIF1<0=1 B.SKIPIF1<0+SKIPIF1<0=1C.SKIPIF1<0+SKIPIF1<0=1 D.SKIPIF1<0+SKIPIF1<0=1【答案】A【分析】由題SKIPIF1<0,由SKIPIF1<0得a的取值范圍,選出橢圓的方程.【詳解】因?yàn)镾KIPIF1<0,SKIPIF1<0,可得SKIPIF1<0,又因?yàn)镾KIPIF1<0,所以SKIPIF1<0,平方可得SKIPIF1<0,由題SKIPIF1<0,所以SKIPIF1<0.故選:A.4.已知橢圓SKIPIF1<0的左、右焦點(diǎn)分別為SKIPIF1<0,M為C上一點(diǎn),若SKIPIF1<0的中點(diǎn)為SKIPIF1<0,且SKIPIF1<0的周長(zhǎng)為SKIPIF1<0,則C的標(biāo)準(zhǔn)方程為(
)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【答案】A【分析】根據(jù)SKIPIF1<0的周長(zhǎng)可得SKIPIF1<0,由SKIPIF1<0的中點(diǎn)坐標(biāo)求得M坐標(biāo),代入橢圓方程可得SKIPIF1<0關(guān)系式,解方程可得SKIPIF1<0的值,即可求得答案【詳解】因?yàn)镾KIPIF1<0的周長(zhǎng)為SKIPIF1<0,所以SKIPIF1<0,則SKIPIF1<0,又SKIPIF1<0,SKIPIF1<0的中點(diǎn)為SKIPIF1<0,所以M的坐標(biāo)為SKIPIF1<0,故SKIPIF1<0,則SKIPIF1<0,結(jié)合SKIPIF1<0,SKIPIF1<0,解得SKIPIF1<0,所以橢圓C的標(biāo)準(zhǔn)方程為SKIPIF1<0,故選:A5.已知橢圓C的焦點(diǎn)為SKIPIF1<0,SKIPIF1<0.過點(diǎn)SKIPIF1<0的直線與C交于A,B兩點(diǎn).若SKIPIF1<0的周長(zhǎng)為12,則橢圓C的標(biāo)準(zhǔn)方程為(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】B【分析】根據(jù)已知條件求得SKIPIF1<0,由此求得橢圓SKIPIF1<0的標(biāo)準(zhǔn)方程.【詳解】依題意SKIPIF1<0,解得SKIPIF1<0,由于橢圓的焦點(diǎn)在SKIPIF1<0軸上,所以橢圓SKIPIF1<0的標(biāo)準(zhǔn)方程為SKIPIF1<0.故選:B6.已知直線SKIPIF1<0經(jīng)過焦點(diǎn)在坐標(biāo)軸上的橢圓的兩個(gè)頂點(diǎn),則該橢圓的方程為(
)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【答案】C【分析】求出直線SKIPIF1<0與兩坐標(biāo)軸的焦點(diǎn)為SKIPIF1<0,SKIPIF1<0.根據(jù)SKIPIF1<0,可設(shè)橢圓的方程為SKIPIF1<0,求出SKIPIF1<0即可.【詳解】令SKIPIF1<0,可得SKIPIF1<0;令SKIPIF1<0,可得SKIPIF1<0.則由已知可得,橢圓的兩個(gè)頂點(diǎn)坐標(biāo)為SKIPIF1<0,SKIPIF1<0.因?yàn)镾KIPIF1<0,所以橢圓的焦點(diǎn)在SKIPIF1<0軸上.設(shè)橢圓的方程為SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0,所以橢圓的方程為SKIPIF1<0.故選:C.7.已知橢圓SKIPIF1<0:SKIPIF1<0右焦點(diǎn)為SKIPIF1<0,其上下頂點(diǎn)分別為SKIPIF1<0,SKIPIF1<0,點(diǎn)SKIPIF1<0,SKIPIF1<0,則該橢圓的標(biāo)準(zhǔn)方程為(
)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【答案】D【分析】由橢圓的幾何性質(zhì)可知上下頂點(diǎn)坐標(biāo),再由向量數(shù)量積可得SKIPIF1<0,即可得到答案.【詳解】根據(jù)題意可知,SKIPIF1<0,SKIPIF1<0;所以SKIPIF1<0,SKIPIF1<0,又SKIPIF1<0,所以SKIPIF1<0,可得SKIPIF1<0在橢圓中,SKIPIF1<0,又SKIPIF1<0,所以SKIPIF1<0即橢圓的標(biāo)準(zhǔn)方程為SKIPIF1<0.故選:D.8.若橢圓SKIPIF1<0的中心為坐標(biāo)原點(diǎn)?焦點(diǎn)在SKIPIF1<0軸上;順次連接SKIPIF1<0的兩個(gè)焦點(diǎn)?一個(gè)短軸頂點(diǎn)構(gòu)成等邊三角形,順次連接SKIPIF1<0的四個(gè)頂點(diǎn)構(gòu)成四邊形的面積為SKIPIF1<0,則SKIPIF1<0的方程為(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】A【分析】由題可知,SKIPIF1<0,解之即可得a和b的值,從而求得橢圓的方程;【詳解】設(shè)橢圓的標(biāo)準(zhǔn)方程為SKIPIF1<0,由題可知,SKIPIF1<0,解得SKIPIF1<0,SKIPIF1<0,故橢圓的標(biāo)準(zhǔn)方程為SKIPIF1<0.故選:A.9.阿基米德(公元前287年—公元前212年)不僅是著名的物理學(xué)家,也是著名的數(shù)學(xué)家,他利用“逼近法”得到橢圓的面積除以圓周率等于橢圓的長(zhǎng)半軸與短半軸的乘積.若橢圓C的對(duì)稱軸為坐標(biāo)軸,焦點(diǎn)在y軸上,且橢圓C的離心率為SKIPIF1<0,面積為SKIPIF1<0,則橢圓C的方程為(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】C【分析】利用待定系數(shù)法求橢圓的標(biāo)準(zhǔn)方程.【詳解】可設(shè)橢圓SKIPIF1<0的方程為SKIPIF1<0,由題意可得:SKIPIF1<0,解得:SKIPIF1<0,所以橢圓SKIPIF1<0的方程為SKIPIF1<0.故選:C二、填空題10.已知橢圓C:SKIPIF1<0+SKIPIF1<0=1(a>b>0),若長(zhǎng)軸長(zhǎng)為6,且兩焦點(diǎn)恰好將長(zhǎng)軸三等分,則此橢圓的標(biāo)準(zhǔn)方程為.【答案】SKIPIF1<0+SKIPIF1<0=1【分析】根據(jù)題意求得a=3,兩焦點(diǎn)恰好將長(zhǎng)軸三等分,求得c=1,從而寫出橢圓方程.【詳解】橢圓長(zhǎng)軸長(zhǎng)為6,即2a=6,得a=3,∵兩焦點(diǎn)恰好將長(zhǎng)軸三等分,∴2c=SKIPIF1<0·2a=2,得c=1,∴b2=a2-c2=9-1=8,∴此橢圓的標(biāo)準(zhǔn)方程為SKIPIF1<0+SKIPIF1<0=1.故答案為:SKIPIF1<011.若橢圓的兩焦點(diǎn)分別為SKIPIF1<0,SKIPIF1<0,點(diǎn)P在橢圓上,且三角形SKIPIF1<0的面積的最大值為12,則此橢圓方程是.【答案】SKIPIF1<0/SKIPIF1<0【分析】根據(jù)三角形SKIPIF1<0的面積的最大值求得SKIPIF1<0,進(jìn)而求得SKIPIF1<0,從而求得橢圓方程.【詳解】依題意SKIPIF1<0,橢圓焦點(diǎn)在SKIPIF1<0軸上,三角形SKIPIF1<0的面積的最大值為SKIPIF1<0,所以SKIPIF1<0,所以橢圓方程為SKIPIF1<0.故答案為:SKIPIF1<012.若一個(gè)橢圓的長(zhǎng)軸長(zhǎng)2a,短軸長(zhǎng)2b,焦距2c成等差數(shù)列,則SKIPIF1<0=.【答案】SKIPIF1<0【分析】根據(jù)等差數(shù)列的性質(zhì)和橢圓中SKIPIF1<0的關(guān)系列式,解關(guān)于a,c的方程得SKIPIF1<0,從而SKIPIF1<0,即可得出答案.【詳解】SKIPIF1<0長(zhǎng)軸長(zhǎng)2a,短軸長(zhǎng)2b,焦距2c成等差數(shù)列SKIPIF1<0,即SKIPIF1<0,平方得SKIPIF1<0,即SKIPIF1<0化簡(jiǎn)得SKIPIF1<0,即SKIPIF1<0,解得SKIPIF1<0,從而SKIPIF1<0因此,SKIPIF1<0.故答案為:SKIPIF1<0.13.已知SKIPIF1<0,SKIPIF1<0兩點(diǎn)在對(duì)稱軸為坐標(biāo)軸的橢圓上,則橢圓的標(biāo)準(zhǔn)方程為.【答案】SKIPIF1<0【分析】討論焦點(diǎn)在SKIPIF1<0軸和在SKIPIF1<0軸上兩種情況,設(shè)出橢圓的標(biāo)準(zhǔn)方程,再利用條件建立方程組,求出SKIPIF1<0,即可得到結(jié)果.【詳解】當(dāng)焦點(diǎn)在SKIPIF1<0軸上時(shí),設(shè)橢圓的標(biāo)準(zhǔn)方程為SKIPIF1<0,又因SKIPIF1<0,SKIPIF1<0在橢圓上,所以SKIPIF1<0,解得SKIPIF1<0,SKIPIF1<0,此時(shí),SKIPIF1<0,故舍棄.當(dāng)焦點(diǎn)在SKIPIF1<0軸上時(shí),設(shè)橢圓的標(biāo)準(zhǔn)方程為SKIPIF1<0,又因SKIPIF1<0,SKIPIF1<0在橢圓上,所以SKIPIF1<0,解得SKIPIF1<0,SKIPIF1<0,所以橢圓的標(biāo)準(zhǔn)方程為SKIPIF1<0.故答案為:SKIPIF1<0.三、解答題14.根據(jù)下列條件求橢圓的標(biāo)準(zhǔn)方程(1)兩個(gè)焦點(diǎn)的坐標(biāo)分別是SKIPIF1<0、SKIPIF1<0,橢圓上一點(diǎn)P到兩焦點(diǎn)距離的和等于10;(2)兩個(gè)焦點(diǎn)的坐標(biāo)分別是SKIPIF1<0、SKIPIF1<0,并且橢圓經(jīng)過點(diǎn)SKIPIF1<0;(3)橢圓經(jīng)過兩點(diǎn)SKIPIF1<0,SKIPIF1<0;(4)離心率為SKIPIF1<0且過點(diǎn)SKIPIF1<0;【答案】(1)SKIPIF1<0(2)SKIPIF1<0(3)SKIPIF1<0(4)SKIPIF1<0或SKIPIF1<0【分析】(1)依題意可得SKIPIF1<0、SKIPIF1<0,即可求出SKIPIF1<0,從而得解;(2)依題意可得SKIPIF1<0,根據(jù)橢圓的定義及兩點(diǎn)的距離公式求出SKIPIF1<0,即可求出SKIPIF1<0,從而得解;(3)設(shè)橢圓方程為SKIPIF1<0SKIPIF1<0,代入點(diǎn)的坐標(biāo)得到方程組,求出參數(shù)的值,即可得解;(4)分焦點(diǎn)在SKIPIF1<0軸、SKIPIF1<0軸兩種情況討論,分別計(jì)算可得.【詳解】(1)依題意SKIPIF1<0、SKIPIF1<0,所以SKIPIF1<0,則SKIPIF1<0,所以橢圓方程是SKIPIF1<0.(2)依題意橢圓的焦點(diǎn)在SKIPIF1<0軸上,SKIPIF1<0.又橢圓經(jīng)過點(diǎn)SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0橢圓方程是SKIPIF1<0.(3)設(shè)橢圓方程為SKIPIF1<0SKIPIF1<0,依題意可得SKIPIF1<0,解得SKIPIF1<0,所以橢圓方程是SKIPIF1<0.(4)若焦點(diǎn)在SKIPIF1<0軸上,則SKIPIF1<0,又離心率SKIPIF1<0,所以SKIPIF1<0,則SKIPIF1<0,所以橢圓方程為SKIPIF1<0;若焦點(diǎn)在SKIPIF1<0軸上,則SKIPIF1<0,又離心率SKIPIF1<0,SKIPIF1<0,解得SKIPIF1<0,所以橢圓方程為SKIPIF1<0;綜上可得,所求橢圓方程為SKIPIF1<0或SKIPIF1<0.題型三橢圓的幾何性質(zhì)策略方法利用橢圓幾何性質(zhì)求值或范圍的思路(1)將所求問題用橢圓上點(diǎn)的坐標(biāo)表示,利用坐標(biāo)范圍構(gòu)造函數(shù)或不等關(guān)系.(2)將所求范圍用a,b,c表示,利用a,b,c自身的范圍、關(guān)系求解.【典例1】(單選題)已知SKIPIF1<0、SKIPIF1<0為橢圓SKIPIF1<0的左、右焦點(diǎn),M為SKIPIF1<0上的點(diǎn),則SKIPIF1<0面積的最大值為(
)A.SKIPIF1<0 B.2 C.SKIPIF1<0 D.4【答案】A【分析】由于SKIPIF1<0為定值,所以當(dāng)點(diǎn)SKIPIF1<0到SKIPIF1<0的距離最大時(shí),SKIPIF1<0面積取得最大值,即當(dāng)SKIPIF1<0與短軸的一個(gè)端點(diǎn)重合時(shí),SKIPIF1<0面積的最大【詳解】由SKIPIF1<0,得SKIPIF1<0,所以SKIPIF1<0,由橢圓的性質(zhì)可知當(dāng)SKIPIF1<0與短軸的一個(gè)端點(diǎn)重合時(shí),SKIPIF1<0面積的最大,所以SKIPIF1<0面積的最大值為SKIPIF1<0,故選:A【題型訓(xùn)練】一、單選題1.橢圓SKIPIF1<0的短半軸長(zhǎng)為(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】B【分析】根據(jù)橢圓方程確定短半軸長(zhǎng)即可.【詳解】由橢圓方程知:SKIPIF1<0,即短半軸長(zhǎng)為SKIPIF1<0.故選:B2.橢圓SKIPIF1<0的焦點(diǎn)坐標(biāo)是(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】C【分析】由橢圓的標(biāo)準(zhǔn)方程求解即可.【詳解】由于橢圓標(biāo)準(zhǔn)方程為:SKIPIF1<0.SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0,則SKIPIF1<0.又SKIPIF1<0,所以焦點(diǎn)在SKIPIF1<0軸上,故焦點(diǎn)坐標(biāo)為:SKIPIF1<0.故選:C.3.已知橢圓SKIPIF1<0:SKIPIF1<0的一個(gè)焦點(diǎn)的坐標(biāo)為SKIPIF1<0,則SKIPIF1<0(
)A.1 B.2 C.5 D.9【答案】A【分析】根據(jù)焦點(diǎn)坐標(biāo)得SKIPIF1<0,根焦點(diǎn)在SKIPIF1<0軸,可以判斷SKIPIF1<0,SKIPIF1<0,根據(jù)SKIPIF1<0可得.【詳解】由題意得,SKIPIF1<0,因焦點(diǎn)在SKIPIF1<0軸,所以SKIPIF1<0,SKIPIF1<0,由SKIPIF1<0得SKIPIF1<0,解得SKIPIF1<0.故選:A4.國家體育場(chǎng)(又名鳥巢)將再次承辦奧運(yùn)會(huì)開幕式.在手工課上,張老師帶領(lǐng)同學(xué)們一起制作了一個(gè)近似鳥巢的金屬模型,其俯視圖可近似看成是兩個(gè)大小不同,扁平程度相同的橢圓,已知大橢圓的長(zhǎng)軸長(zhǎng)為40cm,短軸長(zhǎng)為20cm,小橢圓的短軸長(zhǎng)為10cm,則小橢圓的長(zhǎng)軸長(zhǎng)為(
)cm
A.30 B.10 C.20 D.SKIPIF1<0【答案】C【分析】大橢圓的離心率等于小橢圓的離心率,據(jù)此即可求解.【詳解】在大橢圓中,SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0.∵兩橢圓扁平程度相同,∴離心率相等,∴在小橢圓中,SKIPIF1<0,結(jié)合SKIPIF1<0,得SKIPIF1<0,∴小橢圓的長(zhǎng)軸長(zhǎng)為20.故選:C5.已知橢圓SKIPIF1<0的左,右焦點(diǎn)分別為SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0兩點(diǎn)都在SKIPIF1<0上,且SKIPIF1<0,SKIPIF1<0關(guān)于坐標(biāo)原點(diǎn)對(duì)稱,下列說法錯(cuò)誤的是(
)A.SKIPIF1<0的最大值為SKIPIF1<0B.SKIPIF1<0為定值C.SKIPIF1<0的焦距是短軸長(zhǎng)的2倍D.存在點(diǎn)SKIPIF1<0,使得SKIPIF1<0【答案】C【分析】由橢圓方程,結(jié)合橢圓的對(duì)稱性、定義及余弦定理判斷各項(xiàng)的正誤即可.【詳解】由題意,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,而SKIPIF1<0,SKIPIF1<0,所以A正確,C錯(cuò)誤;由橢圓的對(duì)稱性知,SKIPIF1<0,所以B正確;當(dāng)SKIPIF1<0在SKIPIF1<0軸上時(shí),SKIPIF1<0,則SKIPIF1<0為銳角,所以存在點(diǎn)SKIPIF1<0,使得SKIPIF1<0,所以D正確.
故選:C6.已知SKIPIF1<0是橢圓SKIPIF1<0上一點(diǎn),SKIPIF1<0、SKIPIF1<0分別是橢圓的左、右焦點(diǎn),若SKIPIF1<0的周長(zhǎng)為SKIPIF1<0,且橢圓的離心率為SKIPIF1<0,則橢圓上的點(diǎn)到橢圓焦點(diǎn)的最小距離為(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】B【分析】由焦點(diǎn)三角形周長(zhǎng)、橢圓離心率列方程求橢圓參數(shù),結(jié)合橢圓性質(zhì)即可確定橢圓上的點(diǎn)到橢圓焦點(diǎn)的最小距離.【詳解】設(shè)橢圓的焦距為SKIPIF1<0,且SKIPIF1<0的周長(zhǎng)為SKIPIF1<0,所以SKIPIF1<0,橢圓的離心率為SKIPIF1<0,則SKIPIF1<0,綜上,SKIPIF1<0,解得SKIPIF1<0,則橢圓上的點(diǎn)到橢圓焦點(diǎn)的最小距離為SKIPIF1<0.故選:B7.已知橢圓SKIPIF1<0的左右焦點(diǎn)分別為SKIPIF1<0,過SKIPIF1<0的直線交SKIPIF1<0于SKIPIF1<0兩點(diǎn),直線SKIPIF1<0交SKIPIF1<0軸于點(diǎn)SKIPIF1<0,若SKIPIF1<0,則橢圓SKIPIF1<0的焦距為(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】A【分析】由SKIPIF1<0且SKIPIF1<0,得到SKIPIF1<0為SKIPIF1<0的中點(diǎn),得出SKIPIF1<0軸,進(jìn)而得到SKIPIF1<0為等邊三角形,求得SKIPIF1<0,即可求解.【詳解】如圖所示,因?yàn)镾KIPIF1<0且SKIPIF1<0,所以SKIPIF1<0為SKIPIF1<0的中點(diǎn),又因?yàn)镾KIPIF1<0為SKIPIF1<0的中點(diǎn),SKIPIF1<0軸,所以SKIPIF1<0軸,所以SKIPIF1<0為等邊三角形,所以SKIPIF1<0,可得SKIPIF1<0,解得SKIPIF1<0,所以橢圓SKIPIF1<0的焦距為SKIPIF1<0.故選:A.
8.點(diǎn)SKIPIF1<0在以SKIPIF1<0為焦點(diǎn)的橢圓SKIPIF1<0上,若線段SKIPIF1<0的中點(diǎn)在SKIPIF1<0軸上,則SKIPIF1<0是SKIPIF1<0的(
)A.3倍 B.4倍 C.5倍 D.7倍【答案】D【分析】根據(jù)線段SKIPIF1<0的中點(diǎn)M在y軸上,推出SKIPIF1<0軸,由此可設(shè)SKIPIF1<0,代入橢圓方程求出SKIPIF1<0,再根據(jù)兩點(diǎn)間的距離公式求出SKIPIF1<0和SKIPIF1<0可得解.【詳解】
由SKIPIF1<0可知SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0,∵線段SKIPIF1<0的中點(diǎn)M在y軸上,且原點(diǎn)O為線段SKIPIF1<0的中點(diǎn),所以SKIPIF1<0,所以SKIPIF1<0軸∴可設(shè)SKIPIF1<0,把SKIPIF1<0代入橢圓SKIPIF1<0,得SKIPIF1<0.∴SKIPIF1<0,SKIPIF1<0.∴SKIPIF1<0.故選:D.二、多選題9.如圖所示,“嫦娥五號(hào)”月球探測(cè)器飛行到月球附近時(shí),首先在以月球球心F為圓心的圓形軌道Ⅰ上繞月球飛行,然后在P點(diǎn)處變軌進(jìn)入以F為一個(gè)焦點(diǎn)的橢圓軌道Ⅱ繞月球飛行,最后在Q點(diǎn)處變軌進(jìn)入以F為圓心的圓形軌道Ⅲ繞月球飛行,設(shè)圓形軌道Ⅰ的半徑為R,圓形軌道Ⅲ的半徑為r,則(
)
A.軌道Ⅱ的長(zhǎng)軸長(zhǎng)為SKIPIF1<0B.軌道Ⅱ的焦距為SKIPIF1<0C.若SKIPIF1<0不變,SKIPIF1<0越小,軌道Ⅱ的短軸長(zhǎng)越大D.若SKIPIF1<0不變,SKIPIF1<0越大,軌道Ⅱ的離心率越小【答案】AB【分析】根據(jù)橢圓中一個(gè)焦點(diǎn)與長(zhǎng)軸兩頂點(diǎn)的距離分別為SKIPIF1<0,分別結(jié)合圓的半徑R和r分析選項(xiàng)即可求解.【詳解】設(shè)橢圓長(zhǎng)軸SKIPIF1<0,短軸SKIPIF1<0,焦距SKIPIF1<0,對(duì)于B,由橢圓的性質(zhì)知,SKIPIF1<0,解得SKIPIF1<0,SKIPIF1<0,故A、B正確;對(duì)于C,由上知SKIPIF1<0,若R不變,SKIPIF1<0越小,SKIPIF1<0越小,軌道Ⅱ的短軸長(zhǎng)越小,故C錯(cuò)誤;對(duì)于D,因?yàn)镾KIPIF1<0,若r不變,R越大,則SKIPIF1<0越小,所以SKIPIF1<0越大,軌道Ⅱ的離心率越大,故D錯(cuò)誤.故選:AB10.如圖所示,用一個(gè)與圓柱底面成θ(SKIPIF1<0)角的平面截圓柱,截面是一個(gè)橢圓.若圓柱的底面圓半徑為2,SKIPIF1<0,則()A.橢圓的長(zhǎng)軸長(zhǎng)等于4B.橢圓的離心率為SKIPIF1<0C.橢圓的標(biāo)準(zhǔn)方程可以是SKIPIF1<0D.橢圓上的點(diǎn)到一個(gè)焦點(diǎn)的距離的最小值為SKIPIF1<0【答案】BCD【分析】根據(jù)給定圖形,求出橢圓長(zhǎng)短半軸長(zhǎng)a,b,再逐項(xiàng)計(jì)算、判斷作答.【詳解】解:設(shè)橢圓的長(zhǎng)半軸長(zhǎng)為a,短半軸長(zhǎng)為b,半焦距為c,橢圓長(zhǎng)軸在圓柱底面上的投影為圓柱底面圓直徑,則由截面與圓柱底面成銳二面角SKIPIF1<0得:SKIPIF1<0,解得a=4,A不正確;顯然b=2,則SKIPIF1<0,離心率SKIPIF1<0,B正確;當(dāng)以橢圓長(zhǎng)軸所在直線為x軸,短軸所在直線為y軸建立平面直角坐標(biāo)系時(shí),橢圓的標(biāo)準(zhǔn)方程SKIPIF1<0,C正確;橢圓上的點(diǎn)到焦點(diǎn)的距離的最小值為SKIPIF1<0,D正確.故選:BCD.三、填空題11.已知橢圓SKIPIF1<0的離心率為SKIPIF1<0,則橢圓SKIPIF1<0的長(zhǎng)軸長(zhǎng)為.【答案】SKIPIF1<0【分析】根據(jù)橢圓的標(biāo)準(zhǔn)方程以及其離心率的定義,可得答案.【詳解】由橢圓SKIPIF1<0,顯然SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,由題意可得SKIPIF1<0,解得SKIPIF1<0,所以橢圓SKIPIF1<0的長(zhǎng)軸長(zhǎng)SKIPIF1<0.故答案為:SKIPIF1<0.12.已知橢圓SKIPIF1<0的焦點(diǎn)在x軸上,且長(zhǎng)軸長(zhǎng)是短軸長(zhǎng)的2倍,則SKIPIF1<0.【答案】4【分析】先將橢圓方程化為標(biāo)準(zhǔn)方程,然后求出長(zhǎng)軸長(zhǎng)和短軸長(zhǎng),再根據(jù)題意列方程可求得結(jié)果.【詳解】將橢圓方程化為標(biāo)準(zhǔn)形式為SKIPIF1<0,所以長(zhǎng)軸長(zhǎng)為2,短軸長(zhǎng)為SKIPIF1<0,由題意得SKIPIF1<0,解得SKIPIF1<0.故答案為:413.設(shè)P是橢圓SKIPIF1<0上任意一點(diǎn),F(xiàn)為C的右焦點(diǎn),SKIPIF1<0的最小值為SKIPIF1<0,則橢圓C的長(zhǎng)軸長(zhǎng)為.【答案】SKIPIF1<0【分析】SKIPIF1<0的最小值為SKIPIF1<0,即SKIPIF1<0,解得答案.【詳解】SKIPIF1<0的最小值為SKIPIF1<0,即SKIPIF1<0,解得SKIPIF1<0,長(zhǎng)軸長(zhǎng)為SKIPIF1<0.故答案為:SKIPIF1<014.橢圓SKIPIF1<0的內(nèi)接正方形的周長(zhǎng)為.【答案】SKIPIF1<0【分析】根據(jù)橢圓以及正方形的對(duì)稱性可設(shè)一個(gè)頂點(diǎn)為SKIPIF1<0,代入橢圓方程即可求解SKIPIF1<0,進(jìn)而可求周長(zhǎng).【詳解】根據(jù)橢圓和正方形的對(duì)稱性,不妨設(shè)橢圓的內(nèi)接正方形在第一象限的一個(gè)頂點(diǎn)為SKIPIF1<0,則SKIPIF1<0,所以周長(zhǎng)為SKIPIF1<0,故答案為:SKIPIF1<0
15.橢圓SKIPIF1<0的四個(gè)頂點(diǎn)所圍成的四邊形的面積是.【答案】40【分析】利用橢圓方程可寫出四個(gè)頂點(diǎn)的坐標(biāo),即可求出圍成的四邊形的面積.【詳解】由橢圓方程可得橢圓的四個(gè)頂點(diǎn)分別為SKIPIF1<0,故這四個(gè)頂點(diǎn)圍成的四邊形為菱形,所以面積SKIPIF1<0.故答案為:4016.已知點(diǎn)(m,n)在橢圓8x2+3y2=24上,則m的取值范圍是.【答案】SKIPIF1<0【分析】先把橢圓方程變?yōu)闃?biāo)準(zhǔn)方程,再根據(jù)橢圓的范圍求解.【詳解】因?yàn)辄c(diǎn)(m,n)在橢圓8x2+3y2=24上,即在橢圓SKIPIF1<0上,所以點(diǎn)(m,n)滿足橢圓的范圍SKIPIF1<0,因此SKIPIF1<0,即SKIPIF1<0.故答案為:SKIPIF1<0.17.在手工課上,王老師帶領(lǐng)同學(xué)們一起制作了一個(gè)近似鳥巢的金屬模型,其俯視圖可近似看成是兩個(gè)大小不同、扁平程度相同的橢圓.已知大橢圓的長(zhǎng)軸長(zhǎng)為40cm,短軸長(zhǎng)為20cm,小橢圓的短軸長(zhǎng)為10cm,則小橢圓的長(zhǎng)軸長(zhǎng)為cm.【答案】SKIPIF1<0【分析】根據(jù)兩個(gè)橢圓的離心率相同列方程,化簡(jiǎn)求得正確答案.【詳解】設(shè)小橢圓的長(zhǎng)半軸長(zhǎng)為SKIPIF1<0,SKIPIF1<0,依題意,SKIPIF1<0,則SKIPIF1<0,解得SKIPIF1<0,所以小橢圓的長(zhǎng)軸長(zhǎng)為SKIPIF1<0.故答案為:SKIPIF1<0題型四橢圓的離心率策略方法求橢圓離心率或其范圍的方法解題的關(guān)鍵是借助圖形建立關(guān)于a,b,c的關(guān)系式(等式或不等式),轉(zhuǎn)化為e的關(guān)系式,常用方法如下:(1)直接求出a,c,利用離心率公式e=eq\f(c,a)求解.(2)由a與b的關(guān)系求離心率,利用變形公式e=eq\r(1-\f(b2,a2))求解.(3)構(gòu)造a,c的齊次式.離心率e的
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024居間合同受法律保護(hù)居間合同正式合同范本
- 編劇合同編劇合同終止協(xié)議2024年
- 2024常規(guī)解除勞動(dòng)合同證明書范本
- 標(biāo)準(zhǔn)版采購協(xié)議樣本
- 大學(xué)畢業(yè)生就業(yè)意向協(xié)議書
- 人才公寓優(yōu)惠政策協(xié)議
- 個(gè)人個(gè)人存單質(zhì)押貸款合同
- 廣告拍攝合同案例
- 企業(yè)合伙協(xié)議合同樣本欣賞
- 企業(yè)勞動(dòng)合同范本匯編
- GB 16809-2008防火窗
- 2018年木地板公司組織架構(gòu)及部門職能
- 《百團(tuán)大戰(zhàn)》歷史課件
- 銀行涉農(nóng)貸款專項(xiàng)統(tǒng)計(jì)制度講解
- DB31-T 540-2022 重點(diǎn)單位消防安全管理要求
- 兒化音變課件
- 國家開放大學(xué)《傳感器與測(cè)試技術(shù)》實(shí)驗(yàn)參考答案
- 工程造價(jià)司法鑒定實(shí)施方案
- 材料成型工藝基礎(chǔ)習(xí)題答案
- 劇本寫作課件
- 計(jì)算方法第三章函數(shù)逼近與快速傅里葉變換課件
評(píng)論
0/150
提交評(píng)論