版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
2024屆安徽省馬鞍山二中、安師大附中高三《天府大聯(lián)考》(一)數(shù)學(xué)試題試卷注意事項:1.答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.2019年某校迎國慶70周年歌詠比賽中,甲乙兩個合唱隊每場比賽得分的莖葉圖如圖所示(以十位數(shù)字為莖,個位數(shù)字為葉).若甲隊得分的中位數(shù)是86,乙隊得分的平均數(shù)是88,則()A.170 B.10 C.172 D.122.的展開式中有理項有()A.項 B.項 C.項 D.項3.趙爽是我國古代數(shù)學(xué)家、天文學(xué)家,大約公元222年,趙爽為《周髀算經(jīng)》一書作序時,介紹了“勾股圓方圖”,又稱“趙爽弦圖”(以弦為邊長得到的正方形是由個全等的直角三角形再加上中間的一個小正方形組成的,如圖(1)),類比“趙爽弦圖”,可類似地構(gòu)造如圖(2)所示的圖形,它是由個全等的三角形與中間的一個小正六邊形組成的一個大正六邊形,設(shè),若在大正六邊形中隨機取一點,則此點取自小正六邊形的概率為()A. B.C. D.4.已知復(fù)數(shù),則的虛部為()A.-1 B. C.1 D.5.已知點,若點在曲線上運動,則面積的最小值為()A.6 B.3 C. D.6.在平面直角坐標系中,已知是圓上兩個動點,且滿足,設(shè)到直線的距離之和的最大值為,若數(shù)列的前項和恒成立,則實數(shù)的取值范圍是()A. B. C. D.7.已知,是兩條不重合的直線,是一個平面,則下列命題中正確的是()A.若,,則 B.若,,則C.若,,則 D.若,,則8.已知向量,,且,則()A. B. C.1 D.29.當時,函數(shù)的圖象大致是()A. B.C. D.10.對某兩名高三學(xué)生在連續(xù)9次數(shù)學(xué)測試中的成績(單位:分)進行統(tǒng)計得到折線圖,下面是關(guān)于這兩位同學(xué)的數(shù)學(xué)成績分析.①甲同學(xué)的成績折線圖具有較好的對稱性,故平均成績?yōu)?30分;②根據(jù)甲同學(xué)成績折線圖提供的數(shù)據(jù)進行統(tǒng)計,估計該同學(xué)平均成績在區(qū)間110,120內(nèi);③乙同學(xué)的數(shù)學(xué)成績與測試次號具有比較明顯的線性相關(guān)性,且為正相關(guān);④乙同學(xué)連續(xù)九次測驗成績每一次均有明顯進步.其中正確的個數(shù)為()A.4 B.3 C.2 D.111.已知全集,集合,則()A. B. C. D.12.執(zhí)行如圖所示的程序框圖,若輸入,,則輸出的()A.4 B.5 C.6 D.7二、填空題:本題共4小題,每小題5分,共20分。13.若滿足約束條件,則的最小值是_________,最大值是_________.14.在△ABC中,a=3,,B=2A,則cosA=_____.15.已知正方體ABCD-A1B1C1D1棱長為2,點P是上底面16.函數(shù)f(x)=x2﹣xlnx的圖象在x=1處的切線方程為_____.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)在中,角所對的邊分別是,且.(1)求;(2)若,求.18.(12分)已知函數(shù),.(Ⅰ)判斷函數(shù)在區(qū)間上零點的個數(shù),并證明;(Ⅱ)函數(shù)在區(qū)間上的極值點從小到大分別為,,證明:19.(12分)已知拋物線,直線與交于,兩點,且.(1)求的值;(2)如圖,過原點的直線與拋物線交于點,與直線交于點,過點作軸的垂線交拋物線于點,證明:直線過定點.20.(12分)設(shè)橢圓:的左、右焦點分別為,,下頂點為,橢圓的離心率是,的面積是.(1)求橢圓的標準方程.(2)直線與橢圓交于,兩點(異于點),若直線與直線的斜率之和為1,證明:直線恒過定點,并求出該定點的坐標.21.(12分)在三棱錐中,是邊長為的正三角形,平面平面,,M、N分別為、的中點.?(1)證明:;(2)求三棱錐的體積.22.(10分)已知曲線C的極坐標方程是.以極點為平面直角坐標系的原點,極軸為x軸的正半軸,建立平面直角坐標系,直線l的參數(shù)方程是:(是參數(shù)).(1)若直線l與曲線C相交于A、B兩點,且,試求實數(shù)m值.(2)設(shè)為曲線上任意一點,求的取值范圍.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】
中位數(shù)指一串數(shù)據(jù)按從小(大)到大(?。┡帕泻?,處在最中間的那個數(shù),平均數(shù)指一串數(shù)據(jù)的算術(shù)平均數(shù).【詳解】由莖葉圖知,甲的中位數(shù)為,故;乙的平均數(shù)為,解得,所以.故選:D.【點睛】本題考查莖葉圖的應(yīng)用,涉及到中位數(shù)、平均數(shù)的知識,是一道容易題.2、B【解析】
由二項展開式定理求出通項,求出的指數(shù)為整數(shù)時的個數(shù),即可求解.【詳解】,,當,,,時,為有理項,共項.故選:B.【點睛】本題考查二項展開式項的特征,熟練掌握二項展開式的通項公式是解題的關(guān)鍵,屬于基礎(chǔ)題.3、D【解析】
設(shè),則,小正六邊形的邊長為,利用余弦定理可得大正六邊形的邊長為,再利用面積之比可得結(jié)論.【詳解】由題意,設(shè),則,即小正六邊形的邊長為,所以,,,在中,由余弦定理得,即,解得,所以,大正六邊形的邊長為,所以,小正六邊形的面積為,大正六邊形的面積為,所以,此點取自小正六邊形的概率.故選:D.【點睛】本題考查概率的求法,考查余弦定理、幾何概型等基礎(chǔ)知識,考查運算求解能力,屬于基礎(chǔ)題.4、A【解析】
分子分母同乘分母的共軛復(fù)數(shù)即可.【詳解】,故的虛部為.故選:A.【點睛】本題考查復(fù)數(shù)的除法運算,考查學(xué)生運算能力,是一道容易題.5、B【解析】
求得直線的方程,畫出曲線表示的下半圓,結(jié)合圖象可得位于,結(jié)合點到直線的距離公式和兩點的距離公式,以及三角形的面積公式,可得所求最小值.【詳解】解:曲線表示以原點為圓心,1為半徑的下半圓(包括兩個端點),如圖,直線的方程為,可得,由圓與直線的位置關(guān)系知在時,到直線距離最短,即為,則的面積的最小值為.故選:B.【點睛】本題考查三角形面積最值,解題關(guān)鍵是掌握直線與圓的位置關(guān)系,確定半圓上的點到直線距離的最小值,這由數(shù)形結(jié)合思想易得.6、B【解析】
由于到直線的距離和等于中點到此直線距離的二倍,所以只需求中點到此直線距離的最大值即可。再得到中點的軌跡是圓,再通過此圓的圓心到直線距離,半徑和中點到此直線距離的最大值的關(guān)系可以求出。再通過裂項的方法求的前項和,即可通過不等式來求解的取值范圍.【詳解】由,得,.設(shè)線段的中點,則,在圓上,到直線的距離之和等于點到該直線的距離的兩倍,點到直線距離的最大值為圓心到直線的距離與圓的半徑之和,而圓的圓心到直線的距離為,,,..故選:【點睛】本題考查了向量數(shù)量積,點到直線的距離,數(shù)列求和等知識,是一道不錯的綜合題.7、D【解析】
利用空間位置關(guān)系的判斷及性質(zhì)定理進行判斷.【詳解】解:選項A中直線,還可能相交或異面,選項B中,還可能異面,選項C,由條件可得或.故選:D.【點睛】本題主要考查直線與平面平行、垂直的性質(zhì)與判定等基礎(chǔ)知識;考查空間想象能力、推理論證能力,屬于基礎(chǔ)題.8、A【解析】
根據(jù)向量垂直的坐標表示列方程,解方程求得的值.【詳解】由于向量,,且,所以解得.故選:A【點睛】本小題主要考查向量垂直的坐標表示,屬于基礎(chǔ)題.9、B【解析】由,解得,即或,函數(shù)有兩個零點,,不正確,設(shè),則,由,解得或,由,解得:,即是函數(shù)的一個極大值點,不成立,排除,故選B.【方法點晴】本題通過對多個圖象的選擇考察函數(shù)的解析式、定義域、值域、單調(diào)性,導(dǎo)數(shù)的應(yīng)用以及數(shù)學(xué)化歸思想,屬于難題.這類題型也是近年高考常見的命題方向,該題型的特點是綜合性較強較強、考查知識點較多,但是并不是無路可循.解答這類題型可以從多方面入手,根據(jù)函數(shù)的定義域、值域、單調(diào)性、奇偶性、特殊點以及時函數(shù)圖象的變化趨勢,利用排除法,將不合題意選項一一排除.10、C【解析】
利用圖形,判斷折線圖平均分以及線性相關(guān)性,成績的比較,說明正誤即可.【詳解】①甲同學(xué)的成績折線圖具有較好的對稱性,最高130分,平均成績?yōu)榈陀?30分,①錯誤;②根據(jù)甲同學(xué)成績折線圖提供的數(shù)據(jù)進行統(tǒng)計,估計該同學(xué)平均成績在區(qū)間[110,120]內(nèi),②正確;③乙同學(xué)的數(shù)學(xué)成績與測試次號具有比較明顯的線性相關(guān)性,且為正相關(guān),③正確;④乙同學(xué)在這連續(xù)九次測驗中第四次、第七次成績較上一次成績有退步,故④不正確.故選:C.【點睛】本題考查折線圖的應(yīng)用,線性相關(guān)以及平均分的求解,考查轉(zhuǎn)化思想以及計算能力,屬于基礎(chǔ)題.11、D【解析】
根據(jù)函數(shù)定義域的求解方法可分別求得集合,由補集和交集定義可求得結(jié)果.【詳解】,,,.故選:.【點睛】本題考查集合運算中的補集和交集運算問題,涉及到函數(shù)定義域的求解,屬于基礎(chǔ)題.12、C【解析】
根據(jù)程序框圖程序運算即可得.【詳解】依程序運算可得:,故選:C【點睛】本題主要考查了程序框圖的計算,解題的關(guān)鍵是理解程序框圖運行的過程.二、填空題:本題共4小題,每小題5分,共20分。13、06【解析】
作不等式組對應(yīng)的平面區(qū)域,利用目標函數(shù)的幾何意義,即可求出結(jié)果.【詳解】作出可行域,如圖中的陰影部分:求的最值,即求直線在軸上的截距最小和最大時,當直線過點時,軸上截距最大,即z取最小值,.當直線過點時,軸上截距最小,即z取最大值,.故答案為:0;6.【點睛】本題主要考查了線性規(guī)劃中的最值問題,利用數(shù)形結(jié)合是解決問題的基本方法,屬于中檔題.14、【解析】
由已知利用正弦定理,二倍角的正弦函數(shù)公式即可計算求值得解.【詳解】解:∵a=3,,B=2A,∴由正弦定理可得:,∴cosA.故答案為.【點睛】本題主要考查了正弦定理,二倍角的正弦函數(shù)公式在解三角形中的應(yīng)用,屬于基礎(chǔ)題.15、π.【解析】
設(shè)三棱錐P-ABC的外接球為球O',分別取AC、A1C1的中點O、O1,先確定球心O'在線段AC和A1C1中點的連線上,先求出球O【詳解】如圖所示,設(shè)三棱錐P-ABC的外接球為球O'分別取AC、A1C1的中點O、O1由于正方體ABCD-A則△ABC的外接圓的半徑為OA=2設(shè)球O的半徑為R,則4πR2=所以,OO則O而點P在上底面A1B1由于O'P=R=41因此,點P所構(gòu)成的圖形的面積為π×O【點睛】本題考查三棱錐的外接球的相關(guān)問題,根據(jù)立體幾何中的線段關(guān)系求動點的軌跡,屬于中檔題.16、x﹣y=0.【解析】
先將x=1代入函數(shù)式求出切點縱坐標,然后對函數(shù)求導(dǎo)數(shù),進一步求出切線斜率,最后利用點斜式寫出切線方程.【詳解】由題意得.故切線方程為y﹣1=x﹣1,即x﹣y=0.故答案為:x﹣y=0.【點睛】本題考查利用導(dǎo)數(shù)求切線方程的基本方法,利用切點滿足的條件列方程(組)是關(guān)鍵.同時也考查了學(xué)生的運算能力,屬于基礎(chǔ)題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)(2)【解析】
(1)根據(jù)正弦定理到,得到答案.(2)計算,再利用余弦定理計算得到答案.【詳解】(1)由,可得,因為,所以,所以.(2),又因為,所以.因為,所以,即.【點睛】本題考查了正弦定理和余弦定理,意在考查學(xué)生的計算能力.18、(Ⅰ)函數(shù)在區(qū)間上有兩個零點.見解析(Ⅱ)見解析【解析】
(Ⅰ)根據(jù)題意,,利用導(dǎo)函數(shù)研究函數(shù)的單調(diào)性,分類討論在區(qū)間的單調(diào)區(qū)間和極值,進而研究零點個數(shù)問題;(Ⅱ)求導(dǎo),,由于在區(qū)間上的極值點從小到大分別為,,求出,利用導(dǎo)數(shù)結(jié)合單調(diào)性和極值點,即可證明出.【詳解】解:(Ⅰ),,當時,,,在區(qū)間上單調(diào)遞減,,在區(qū)間上無零點;當時,,在區(qū)間上單調(diào)遞增,,在區(qū)間上唯一零點;當時,,,在區(qū)間上單調(diào)遞減,,;在區(qū)間上唯一零點;綜上可知,函數(shù)在區(qū)間上有兩個零點.(Ⅱ),,由(Ⅰ)知在無極值點;在有極小值點,即為;在有極大值點,即為,由,即,,2…,,,,,,以及的單調(diào)性,,,,,由函數(shù)在單調(diào)遞增,得,,由在單調(diào)遞減,得,即,故.【點睛】本題考查利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性和極值,通過導(dǎo)數(shù)解決函數(shù)零點個數(shù)問題和證明不等式,考查轉(zhuǎn)化思想和計算能力.19、(1);(2)見解析【解析】
(1)聯(lián)立直線和拋物線,消去可得,求出,,再代入弦長公式計算即可.(2)由(1)可得,設(shè),計算直線的方程為,代入求出,即可求出,再代入拋物線方程,求出,最后計算直線的斜率,求出直線的方程,化簡可得到恒過的定點.【詳解】(1)由,消去可得,設(shè),,則,.,解得或(舍去),.(2)證明:由(1)可得,設(shè),所以直線的方程為,當時,,則,代入拋物線方程,可得,,所以直線的斜率,直線的方程為,整理可得,故直線過定點.【點睛】本題第一問考查直線與拋物線相交的弦長問題,需熟記弦長公式.第二問考查直線方程和直線恒過定點問題,需有較強的計算能力,屬于難題.20、(1);(2)證明見解析,.【解析】
(1)根據(jù)離心率和的面積是得到方程組,計算得到答案.(2)先排除斜率為0時的情況,設(shè),,聯(lián)立方程組利用韋達定理得到,,根據(jù)化簡得到,代入直線方程得到答案.【詳解】(1)由題意可得,解得,,則橢圓的標準方程是.(2)當直線的斜率為0時,直線與直線關(guān)于
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 石河子大學(xué)《專業(yè)外語文獻閱讀與寫作一》2021-2022學(xué)年第一學(xué)期期末試卷
- 石河子大學(xué)《藥物分析家庭安全合理用藥》2022-2023學(xué)年第一學(xué)期期末試卷
- 布草洗滌承包合同
- 石河子大學(xué)《食品分析實驗》2023-2024學(xué)年第一學(xué)期期末試卷
- 老年病及預(yù)防教案中班
- 沈陽理工大學(xué)《三維工程軟件實訓(xùn)》2021-2022學(xué)年期末試卷
- 沈陽理工大學(xué)《建筑結(jié)構(gòu)選型》2022-2023學(xué)年第一學(xué)期期末試卷
- 2018年四川內(nèi)江中考滿分作文《我心中的英雄》3
- 沈陽理工大學(xué)《電工與電子技術(shù)》2023-2024學(xué)年期末試卷
- 光伏承包合伙合同與合伙協(xié)議書
- 蘇教版三年級上冊數(shù)學(xué)期末考試試卷及解析答案
- 2024年個人勞務(wù)承包合同書
- 知道網(wǎng)課智慧《睡眠醫(yī)學(xué)(廣州醫(yī)科大學(xué))》測試答案
- 如果歷史是一群喵課件
- 危大工程以及超過一定規(guī)模的危大工程范圍
- 門診導(dǎo)診課件
- 網(wǎng)架吊裝施工專項方案(技術(shù)方案)
- 上半年臨床路徑在婦產(chǎn)科的優(yōu)化策略
- 《樹立正確的“三觀”》班會課件
- 《糖尿病患者血脂管理中國專家共識(2024版)》解讀
- 影視人類學(xué)概論智慧樹知到期末考試答案2024年
評論
0/150
提交評論