版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
2021-2022高考數(shù)學(xué)模擬試卷注意事項(xiàng)1.考試結(jié)束后,請將本試卷和答題卡一并交回.2.答題前,請務(wù)必將自己的姓名、準(zhǔn)考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認(rèn)真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準(zhǔn)考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應(yīng)選項(xiàng)的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知橢圓的左、右焦點(diǎn)分別為,,上頂點(diǎn)為點(diǎn),延長交橢圓于點(diǎn),若為等腰三角形,則橢圓的離心率A. B.C. D.2.用電腦每次可以從區(qū)間內(nèi)自動生成一個實(shí)數(shù),且每次生成每個實(shí)數(shù)都是等可能性的.若用該電腦連續(xù)生成3個實(shí)數(shù),則這3個實(shí)數(shù)都小于的概率為()A. B. C. D.3.大衍數(shù)列,米源于我國古代文獻(xiàn)《乾坤譜》中對易傳“大衍之?dāng)?shù)五十”的推論,主要用于解釋我國傳統(tǒng)文化中的太極衍生原理,數(shù)列中的每一項(xiàng),都代表太極衍生過程中,曾經(jīng)經(jīng)歷過的兩儀數(shù)量總和.已知該數(shù)列前10項(xiàng)是0,2,4,8,12,18,24,32,40,50,…,則大衍數(shù)列中奇數(shù)項(xiàng)的通項(xiàng)公式為()A. B. C. D.4.正項(xiàng)等差數(shù)列的前和為,已知,則=()A.35 B.36 C.45 D.545.若滿足,且目標(biāo)函數(shù)的最大值為2,則的最小值為()A.8 B.4 C. D.66.設(shè)i是虛數(shù)單位,若復(fù)數(shù)()是純虛數(shù),則m的值為()A. B. C.1 D.37.已知平面和直線a,b,則下列命題正確的是()A.若∥,b∥,則∥ B.若,,則∥C.若∥,,則 D.若,b∥,則8.若各項(xiàng)均為正數(shù)的等比數(shù)列滿足,則公比()A.1 B.2 C.3 D.49.已知展開式的二項(xiàng)式系數(shù)和與展開式中常數(shù)項(xiàng)相等,則項(xiàng)系數(shù)為()A.10 B.32 C.40 D.8010.若函數(shù)的圖象上兩點(diǎn),關(guān)于直線的對稱點(diǎn)在的圖象上,則的取值范圍是()A. B. C. D.11.函數(shù)的圖象在點(diǎn)處的切線為,則在軸上的截距為()A. B. C. D.12.在直三棱柱中,己知,,,則異面直線與所成的角為()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知若存在,使得成立的最大正整數(shù)為6,則的取值范圍為________.14.已知數(shù)列為正項(xiàng)等比數(shù)列,,則的最小值為________.15.若函數(shù),則的值為______.16.已知三棱錐中,,,則該三棱錐的外接球的表面積是________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)如圖,直三棱柱中,底面為等腰直角三角形,,,,分別為,的中點(diǎn),為棱上一點(diǎn),若平面.(1)求線段的長;(2)求二面角的余弦值.18.(12分)已知數(shù)列{an}的各項(xiàng)均為正,Sn為數(shù)列{an}的前n項(xiàng)和,an2+2an=4Sn+1.(1)求{an}的通項(xiàng)公式;(2)設(shè)bn,求數(shù)列{bn}的前n項(xiàng)和.19.(12分)已知都是各項(xiàng)不為零的數(shù)列,且滿足其中是數(shù)列的前項(xiàng)和,是公差為的等差數(shù)列.(1)若數(shù)列是常數(shù)列,,,求數(shù)列的通項(xiàng)公式;(2)若是不為零的常數(shù)),求證:數(shù)列是等差數(shù)列;(3)若(為常數(shù),),.求證:對任意的恒成立.20.(12分)已知在四棱錐中,平面,,在四邊形中,,,,為的中點(diǎn),連接,為的中點(diǎn),連接.(1)求證:.(2)求二面角的余弦值.21.(12分)如圖,三棱柱中,側(cè)面為菱形,.(1)求證:平面;(2)若,求二面角的余弦值.22.(10分)為了解廣大學(xué)生家長對校園食品安全的認(rèn)識,某市食品安全檢測部門對該市家長進(jìn)行了一次校園食品安全網(wǎng)絡(luò)知識問卷調(diào)查,每一位學(xué)生家長僅有一次參加機(jī)會,現(xiàn)對有效問卷進(jìn)行整理,并隨機(jī)抽取出了200份答卷,統(tǒng)計(jì)這些答卷的得分(滿分:100分)制出的頻率分布直方圖如圖所示,由頻率分布直方圖可以認(rèn)為,此次問卷調(diào)查的得分服從正態(tài)分布,其中近似為這200人得分的平均值(同一組數(shù)據(jù)用該組區(qū)間的中點(diǎn)值作為代表).(1)請利用正態(tài)分布的知識求;(2)該市食品安全檢測部門為此次參加問卷調(diào)查的學(xué)生家長制定如下獎勵方案:①得分不低于的可以獲贈2次隨機(jī)話費(fèi),得分低于的可以獲贈1次隨機(jī)話費(fèi):②每次獲贈的隨機(jī)話費(fèi)和對應(yīng)的概率為:獲贈的隨機(jī)話費(fèi)(單位:元)概率市食品安全檢測部門預(yù)計(jì)參加此次活動的家長約5000人,請依據(jù)以上數(shù)據(jù)估計(jì)此次活動可能贈送出多少話費(fèi)?附:①;②若;則,,.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.B【解析】
設(shè),則,,因?yàn)?,所以.若,則,所以,所以,不符合題意,所以,則,所以,所以,,設(shè),則,在中,易得,所以,解得(負(fù)值舍去),所以橢圓的離心率.故選B.2.C【解析】
由幾何概型的概率計(jì)算,知每次生成一個實(shí)數(shù)小于1的概率為,結(jié)合獨(dú)立事件發(fā)生的概率計(jì)算即可.【詳解】∵每次生成一個實(shí)數(shù)小于1的概率為.∴這3個實(shí)數(shù)都小于1的概率為.故選:C.【點(diǎn)睛】本題考查獨(dú)立事件同時發(fā)生的概率,考查學(xué)生基本的計(jì)算能力,是一道容易題.3.B【解析】
直接代入檢驗(yàn),排除其中三個即可.【詳解】由題意,排除D,,排除A,C.同時B也滿足,,,故選:B.【點(diǎn)睛】本題考查由數(shù)列的項(xiàng)選擇通項(xiàng)公式,解題時可代入檢驗(yàn),利用排除法求解.4.C【解析】
由等差數(shù)列通項(xiàng)公式得,求出,再利用等差數(shù)列前項(xiàng)和公式能求出.【詳解】正項(xiàng)等差數(shù)列的前項(xiàng)和,,,解得或(舍),,故選C.【點(diǎn)睛】本題主要考查等差數(shù)列的性質(zhì)與求和公式,屬于中檔題.解等差數(shù)列問題要注意應(yīng)用等差數(shù)列的性質(zhì)()與前項(xiàng)和的關(guān)系.5.A【解析】
作出可行域,由,可得.當(dāng)直線過可行域內(nèi)的點(diǎn)時,最大,可得.再由基本不等式可求的最小值.【詳解】作出可行域,如圖所示由,可得.平移直線,當(dāng)直線過可行域內(nèi)的點(diǎn)時,最大,即最大,最大值為2.解方程組,得..,當(dāng)且僅當(dāng),即時,等號成立.的最小值為8.故選:.【點(diǎn)睛】本題考查簡單的線性規(guī)劃,考查基本不等式,屬于中檔題.6.A【解析】
根據(jù)復(fù)數(shù)除法運(yùn)算化簡,結(jié)合純虛數(shù)定義即可求得m的值.【詳解】由復(fù)數(shù)的除法運(yùn)算化簡可得,因?yàn)槭羌兲摂?shù),所以,∴,故選:A.【點(diǎn)睛】本題考查了復(fù)數(shù)的概念和除法運(yùn)算,屬于基礎(chǔ)題.7.C【解析】
根據(jù)線面的位置關(guān)系,結(jié)合線面平行的判定定理、平行線的性質(zhì)進(jìn)行判斷即可.【詳解】A:當(dāng)時,也可以滿足∥,b∥,故本命題不正確;B:當(dāng)時,也可以滿足,,故本命題不正確;C:根據(jù)平行線的性質(zhì)可知:當(dāng)∥,,時,能得到,故本命題是正確的;D:當(dāng)時,也可以滿足,b∥,故本命題不正確.故選:C【點(diǎn)睛】本題考查了線面的位置關(guān)系,考查了平行線的性質(zhì),考查了推理論證能力.8.C【解析】
由正項(xiàng)等比數(shù)列滿足,即,又,即,運(yùn)算即可得解.【詳解】解:因?yàn)椋?,又,所以,又,解?故選:C.【點(diǎn)睛】本題考查了等比數(shù)列基本量的求法,屬基礎(chǔ)題.9.D【解析】
根據(jù)二項(xiàng)式定理通項(xiàng)公式可得常數(shù)項(xiàng),然后二項(xiàng)式系數(shù)和,可得,最后依據(jù),可得結(jié)果.【詳解】由題可知:當(dāng)時,常數(shù)項(xiàng)為又展開式的二項(xiàng)式系數(shù)和為由所以當(dāng)時,所以項(xiàng)系數(shù)為故選:D【點(diǎn)睛】本題考查二項(xiàng)式定理通項(xiàng)公式,熟悉公式,細(xì)心計(jì)算,屬基礎(chǔ)題.10.D【解析】
由題可知,可轉(zhuǎn)化為曲線與有兩個公共點(diǎn),可轉(zhuǎn)化為方程有兩解,構(gòu)造函數(shù),利用導(dǎo)數(shù)研究函數(shù)單調(diào)性,分析即得解【詳解】函數(shù)的圖象上兩點(diǎn),關(guān)于直線的對稱點(diǎn)在上,即曲線與有兩個公共點(diǎn),即方程有兩解,即有兩解,令,則,則當(dāng)時,;當(dāng)時,,故時取得極大值,也即為最大值,當(dāng)時,;當(dāng)時,,所以滿足條件.故選:D【點(diǎn)睛】本題考查了利用導(dǎo)數(shù)研究函數(shù)的零點(diǎn),考查了學(xué)生綜合分析,轉(zhuǎn)化劃歸,數(shù)形結(jié)合,數(shù)學(xué)運(yùn)算的能力,屬于較難題.11.A【解析】
求出函數(shù)在處的導(dǎo)數(shù)后可得曲線在處的切線方程,從而可求切線的縱截距.【詳解】,故,所以曲線在處的切線方程為:.令,則,故切線的縱截距為.故選:A.【點(diǎn)睛】本題考查導(dǎo)數(shù)的幾何意義以及直線的截距,注意直線的縱截距指直線與軸交點(diǎn)的縱坐標(biāo),因此截距有正有負(fù),本題屬于基礎(chǔ)題.12.C【解析】
由條件可看出,則為異面直線與所成的角,可證得三角形中,,解得從而得出異面直線與所成的角.【詳解】連接,,如圖:又,則為異面直線與所成的角.因?yàn)榍胰庵鶠橹比庵?,∴∴面,∴,又,,∴,∴,解?故選C【點(diǎn)睛】考查直三棱柱的定義,線面垂直的性質(zhì),考查了異面直線所成角的概念及求法,考查了邏輯推理能力,屬于基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13.【解析】
由題意得,分類討論作出函數(shù)圖象,求得最值解不等式組即可.【詳解】原問題等價于,當(dāng)時,函數(shù)圖象如圖此時,則,解得:;當(dāng)時,函數(shù)圖象如圖此時,則,解得:;當(dāng)時,函數(shù)圖象如圖此時,則,解得:;當(dāng)時,函數(shù)圖象如圖此時,則,解得:;綜上,滿足條件的取值范圍為.故答案為:【點(diǎn)睛】本題主要考查了對勾函數(shù)的圖象與性質(zhì),函數(shù)的最值求解,存在性問題的求解等,考查了分類討論,轉(zhuǎn)化與化歸的思想.14.27【解析】
利用等比數(shù)列的性質(zhì)求得,結(jié)合其下標(biāo)和性質(zhì)和均值不等式即可容易求得.【詳解】由等比數(shù)列的性質(zhì)可知,則,.當(dāng)且僅當(dāng)時取得最小值.故答案為:.【點(diǎn)睛】本題考查等比數(shù)列的下標(biāo)和性質(zhì),涉及均值不等式求和的最小值,屬綜合基礎(chǔ)題.15.【解析】
根據(jù)題意,由函數(shù)的解析式求出的值,進(jìn)而計(jì)算可得答案.【詳解】根據(jù)題意,函數(shù),則,則;故答案為:.【點(diǎn)睛】本題考查分段函數(shù)的性質(zhì)、對數(shù)運(yùn)算法則的應(yīng)用,考查函數(shù)與方程思想、轉(zhuǎn)化與化歸思想,考查運(yùn)算求解能力.16.【解析】
將三棱錐補(bǔ)成長方體,設(shè),,,設(shè)三棱錐的外接球半徑為,求得的值,然后利用球體表面積公式可求得結(jié)果.【詳解】將三棱錐補(bǔ)成長方體,設(shè),,,設(shè)三棱錐的外接球半徑為,則,由勾股定理可得,上述三個等式全部相加得,,因此,三棱錐的外接球面積為.故答案為:.【點(diǎn)睛】本題考查三棱錐外接球表面積的計(jì)算,根據(jù)三棱錐對棱長相等將三棱錐補(bǔ)成長方體是解答的關(guān)鍵,考查推理能力,屬于中等題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(1)(2)【解析】
(1)先證得,設(shè)與交于點(diǎn),在中解直角三角形求得,由此求得的值.(2)建立空間直角坐標(biāo)系,利用平面和平面的法向量,計(jì)算出二面角的余弦值.【詳解】(1)由題意,,設(shè)與交于點(diǎn),在中,可求得,則,可求得,則(2)以為原點(diǎn),方向?yàn)檩S,方向?yàn)檩S,方向?yàn)檩S,建立空間直角坐標(biāo)系.,,,,,易得平面的法向量為.,,易得平面的法向量為.設(shè)二面角為,由圖可知為銳角,所以.即二面角的余弦值為.【點(diǎn)睛】本小題主要考查根據(jù)線面垂直求邊長,考查二面角的求法,考查空間想象能力和邏輯推理能力,屬于中檔題.18.(1)an=2n+1;(2)2.【解析】
(1)根據(jù)題意求出首項(xiàng),再由(an+12+2an+1)﹣(an2+2an)=4an+1,求得該數(shù)列為等差數(shù)列即可求得通項(xiàng)公式;(2)利用錯位相減法進(jìn)行數(shù)列求和.【詳解】(1)∵an2+2an=4Sn+1,∴a12+2a1=4S1+1,即,解得:a1=1或a1=﹣1(舍),又∵an+12+2an+1=4Sn+1+1,∴(an+12+2an+1)﹣(an2+2an)=4an+1,整理得:(an+1﹣an)(an+1+an)=2(an+1+an),又∵數(shù)列{an}的各項(xiàng)均為正,∴an+1﹣an=2,∴數(shù)列{an}是首項(xiàng)為1、公差為2的等差數(shù)列,∴數(shù)列{an}的通項(xiàng)公式an=1+2(n﹣1)=2n+1;(2)由(1)可知bn,記數(shù)列{bn}的前n項(xiàng)和為Tn,則Tn=1?5?(2n+1)?,Tn=1?5??…+(2n﹣1)?(2n+1)?,錯位相減得:Tn=1+2(?)﹣(2n+1)?=1+2,∴Tn()=2.【點(diǎn)睛】此題考查求等差數(shù)列的基本量,根據(jù)遞推關(guān)系判定等差數(shù)列,根據(jù)錯位相減進(jìn)行數(shù)列求和,關(guān)鍵在于熟記方法準(zhǔn)確計(jì)算.19.(1);(2)詳見解析;(3)詳見解析.【解析】
(1)根據(jù),可求得,再根據(jù)是常數(shù)列代入根據(jù)通項(xiàng)與前項(xiàng)和的關(guān)系求解即可.(2)取,并結(jié)合通項(xiàng)與前項(xiàng)和的關(guān)系可求得再根據(jù)化簡可得,代入化簡即可知,再證明也成立即可.(3)由(2)當(dāng)時,,代入所給的條件化簡可得,進(jìn)而證明可得,即數(shù)列是等比數(shù)列.繼而求得,再根據(jù)作商法證明即可.【詳解】解:.是各項(xiàng)不為零的常數(shù)列,則,則由,及得,當(dāng)時,,兩式作差,可得.當(dāng)時,滿足上式,則;證明:,當(dāng)時,,兩式相減得:即.即.又,,即.當(dāng)時,,兩式相減得:.?dāng)?shù)列從第二項(xiàng)起是公差為的等差數(shù)列.又當(dāng)時,由得,當(dāng)時,由,得.故數(shù)列是公差為的等差數(shù)列;證明:由,當(dāng)時,,即,,,即,即,當(dāng)時,即.故從第二項(xiàng)起數(shù)列是等比數(shù)列,當(dāng)時,..另外,由已知條件可得,又,,因而.令,則.故對任意的恒成立.【點(diǎn)睛】本題主要考查了等差等比數(shù)列的綜合運(yùn)用,需要熟練運(yùn)用通項(xiàng)與前項(xiàng)和的關(guān)系分析數(shù)列的遞推公式繼而求解通項(xiàng)公式或證明等差數(shù)列等.同時也考查了數(shù)列中的不等式證明等,需要根據(jù)題意分析數(shù)列為等比數(shù)列并求出通項(xiàng),再利用作商法證明.屬于難題.20.(1)見解析;(2)【解析】
(1)連接,證明,得到面,得到證明.(2)以,,所在直線分別為,,軸建立空間直角坐標(biāo)系,為平面的法向量,平面的一個法向量為,計(jì)算夾角得到答案.【詳解】(1)連接,在四邊形中,,平面,面,,,面,又面,,又在直角三角形中,,為的中點(diǎn),,,面,面,.(2)以,,所在直線分別為,,軸建立空間直角坐標(biāo)系,,,,,,,設(shè)為平面的法向量,,,,,令,則,,,同理可得平面的一個法向量為.設(shè)向量與的所成的角為,,由圖形知,二面角為銳二面角,所以余弦值為.【點(diǎn)睛】本題考查了線線垂直,二面角,意在考查學(xué)生的計(jì)算能力和空間想象能力.21.(1)見解析(2)【解析】
(1)根據(jù)菱形性質(zhì)可知,結(jié)合可得,進(jìn)而可證明,即,即可由線面垂直的判定定理證明平面;(2)結(jié)合(1)可證明兩兩互相垂直.即以為坐標(biāo)原點(diǎn),的方向?yàn)檩S正方向,為單位長度,建立空間直角坐標(biāo)系,寫出各個點(diǎn)的坐標(biāo),并求得平面和平面的法向量,即可求得二面角的余弦值.【詳解】(1)證明:設(shè),連接,如下圖所示:∵側(cè)面為菱形,∴,且為及的中點(diǎn),又,則為直角三角形,,又,,即,而為平面內(nèi)的兩條相交直線
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024新疆二手房買賣合同模板:包含房屋質(zhì)量及安全隱患排查3篇
- 2024影樓與攝影師違約責(zé)任及賠償合同范本3篇
- 2024智能化設(shè)計(jì)合同范本
- 23《童年的發(fā)現(xiàn)》說課稿2023-2024學(xué)年統(tǒng)編版語文五年級下冊
- 2 丁香結(jié) 說課稿-2024-2025學(xué)年統(tǒng)編版語文六年級上冊
- 專業(yè)餐飲顧問服務(wù)合同(2024年修訂)版
- 2024跨境電子商務(wù)平臺搭建與運(yùn)營服務(wù)合同
- 職業(yè)學(xué)生退宿申請表
- 2024年簡化版勞務(wù)協(xié)議格式
- 福建省南平市吳屯中學(xué)2021年高二化學(xué)上學(xué)期期末試卷含解析
- 2024年中國社會科學(xué)院外國文學(xué)研究所專業(yè)技術(shù)人員招聘3人歷年高頻難、易錯點(diǎn)500題模擬試題附帶答案詳解
- DFMEA-第五版標(biāo)準(zhǔn)表格
- 2024年軟件資格考試信息系統(tǒng)運(yùn)行管理員(初級)(基礎(chǔ)知識、應(yīng)用技術(shù))合卷試卷及解答參考
- 第8課《列夫-托爾斯泰》公開課一等獎創(chuàng)新教學(xué)設(shè)計(jì)
- 職業(yè)咖啡比賽方案策劃書
- 人教版2024-2025學(xué)年七年級數(shù)學(xué)上冊計(jì)算題專項(xiàng)訓(xùn)專題09運(yùn)用運(yùn)算律簡便運(yùn)算(計(jì)算題專項(xiàng)訓(xùn)練)(學(xué)生版+解析)
- 2023年二輪復(fù)習(xí)解答題專題十七:二次函數(shù)的應(yīng)用(銷售利潤問題)(原卷版+解析)
- 《ISO56001-2024創(chuàng)新管理體系 - 要求》之26:“9績效評價-9.3管理評審”解讀和應(yīng)用指導(dǎo)材料(雷澤佳編制-2024)
- GB 26134-2024乘用車頂部抗壓強(qiáng)度
- 2024年高中生物新教材同步必修第二冊學(xué)習(xí)筆記第3章 本章知識網(wǎng)絡(luò)
- 三年級上冊乘法豎式計(jì)算練習(xí)200道及答案
評論
0/150
提交評論