2022屆貴州省黎平縣第三中學(xué)高三第三次測評數(shù)學(xué)試卷含解析_第1頁
2022屆貴州省黎平縣第三中學(xué)高三第三次測評數(shù)學(xué)試卷含解析_第2頁
2022屆貴州省黎平縣第三中學(xué)高三第三次測評數(shù)學(xué)試卷含解析_第3頁
2022屆貴州省黎平縣第三中學(xué)高三第三次測評數(shù)學(xué)試卷含解析_第4頁
2022屆貴州省黎平縣第三中學(xué)高三第三次測評數(shù)學(xué)試卷含解析_第5頁
已閱讀5頁,還剩13頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)

文檔簡介

2021-2022高考數(shù)學(xué)模擬試卷注意事項:1.答題前,考生先將自己的姓名、準(zhǔn)考證號填寫清楚,將條形碼準(zhǔn)確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.設(shè)正項等差數(shù)列的前項和為,且滿足,則的最小值為A.8 B.16 C.24 D.362.關(guān)于函數(shù)有下述四個結(jié)論:()①是偶函數(shù);②在區(qū)間上是單調(diào)遞增函數(shù);③在上的最大值為2;④在區(qū)間上有4個零點.其中所有正確結(jié)論的編號是()A.①②④ B.①③ C.①④ D.②④3.已知雙曲線的兩條漸近線與拋物線的準(zhǔn)線分別交于點、,O為坐標(biāo)原點.若雙曲線的離心率為2,三角形AOB的面積為,則p=().A.1 B. C.2 D.34.函數(shù)與在上最多有n個交點,交點分別為(,……,n),則()A.7 B.8 C.9 D.105.曲線上任意一點處的切線斜率的最小值為()A.3 B.2 C. D.16.已知,,則等于().A. B. C. D.7.已知隨機變量的分布列是則()A. B. C. D.8.《易·系辭上》有“河出圖,洛出書”之說,河圖、洛書是中華文化,陰陽術(shù)數(shù)之源,其中河圖的排列結(jié)構(gòu)是一、六在后,二、七在前,三、八在左,四、九在右,五、十背中,如圖,白圈為陽數(shù),黑點為陰數(shù),若從陰數(shù)和陽數(shù)中各取一數(shù),則其差的絕對值為5的概率為A. B. C. D.9.要得到函數(shù)的圖象,只需將函數(shù)的圖象A.向左平移個單位長度B.向右平移個單位長度C.向左平移個單位長度D.向右平移個單位長度10.若,滿足約束條件,則的取值范圍為()A. B. C. D.11.已知向量,,且與的夾角為,則()A. B.1 C.或1 D.或912.過橢圓的左焦點的直線過的上頂點,且與橢圓相交于另一點,點在軸上的射影為,若,是坐標(biāo)原點,則橢圓的離心率為()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.設(shè)滿足約束條件,則目標(biāo)函數(shù)的最小值為_.14.若,則__________.15.已知函數(shù)為奇函數(shù),,且與圖象的交點為,,…,,則______.16.用數(shù)字、、、、、組成無重復(fù)數(shù)字的位自然數(shù),其中相鄰兩個數(shù)字奇偶性不同的有_____個.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)設(shè)函數(shù)f(x)=|x﹣a|+|x|(a>0).(1)若不等式f(x)﹣|x|≥4x的解集為{x|x≤1},求實數(shù)a的值;(2)證明:f(x).18.(12分)已知函數(shù),.(1)若曲線在點處的切線方程為,求,;(2)當(dāng)時,,求實數(shù)的取值范圍.19.(12分)在直角坐標(biāo)系xOy中,以坐標(biāo)原點為極點,x軸的非負半軸為極軸建立極坐標(biāo)系;曲線C1的普通方程為(x-1)2+y2=1,曲線C2的參數(shù)方程為(θ為參數(shù)).(Ⅰ)求曲線C1和C2的極坐標(biāo)方程:(Ⅱ)設(shè)射線θ=(ρ>0)分別與曲線C1和C2相交于A,B兩點,求|AB|的值.20.(12分)如圖,為等腰直角三角形,,D為AC上一點,將沿BD折起,得到三棱錐,且使得在底面BCD的投影E在線段BC上,連接AE.(1)證明:;(2)若,求二面角的余弦值.21.(12分)已知函數(shù).(1)若,求不等式的解集;(2)若“,”為假命題,求的取值范圍.22.(10分)如圖,D是在△ABC邊AC上的一點,△BCD面積是△ABD面積的2倍,∠CBD=2∠ABD=2θ.(Ⅰ)若θ=,求的值;(Ⅱ)若BC=4,AB=2,求邊AC的長.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.B【解析】

方法一:由題意得,根據(jù)等差數(shù)列的性質(zhì),得成等差數(shù)列,設(shè),則,,則,當(dāng)且僅當(dāng)時等號成立,從而的最小值為16,故選B.方法二:設(shè)正項等差數(shù)列的公差為d,由等差數(shù)列的前項和公式及,化簡可得,即,則,當(dāng)且僅當(dāng),即時等號成立,從而的最小值為16,故選B.2.C【解析】

根據(jù)函數(shù)的奇偶性、單調(diào)性、最值和零點對四個結(jié)論逐一分析,由此得出正確結(jié)論的編號.【詳解】的定義域為.由于,所以為偶函數(shù),故①正確.由于,,所以在區(qū)間上不是單調(diào)遞增函數(shù),所以②錯誤.當(dāng)時,,且存在,使.所以當(dāng)時,;由于為偶函數(shù),所以時,所以的最大值為,所以③錯誤.依題意,,當(dāng)時,,所以令,解得,令,解得.所以在區(qū)間,有兩個零點.由于為偶函數(shù),所以在區(qū)間有兩個零點.故在區(qū)間上有4個零點.所以④正確.綜上所述,正確的結(jié)論序號為①④.故選:C【點睛】本小題主要考查三角函數(shù)的奇偶性、單調(diào)性、最值和零點,考查化歸與轉(zhuǎn)化的數(shù)學(xué)思想方法,屬于中檔題.3.C【解析】試題分析:拋物線的準(zhǔn)線為,雙曲線的離心率為2,則,,漸近線方程為,求出交點,,,則;選C考點:1.雙曲線的漸近線和離心率;2.拋物線的準(zhǔn)線方程;4.C【解析】

根據(jù)直線過定點,采用數(shù)形結(jié)合,可得最多交點個數(shù),然后利用對稱性,可得結(jié)果.【詳解】由題可知:直線過定點且在是關(guān)于對稱如圖通過圖像可知:直線與最多有9個交點同時點左、右邊各四個交點關(guān)于對稱所以故選:C【點睛】本題考查函數(shù)對稱性的應(yīng)用,數(shù)形結(jié)合,難點在于正確畫出圖像,同時掌握基礎(chǔ)函數(shù)的性質(zhì),屬難題.5.A【解析】

根據(jù)題意,求導(dǎo)后結(jié)合基本不等式,即可求出切線斜率,即可得出答案.【詳解】解:由于,根據(jù)導(dǎo)數(shù)的幾何意義得:,即切線斜率,當(dāng)且僅當(dāng)?shù)忍柍闪?,所以上任意一點處的切線斜率的最小值為3.故選:A.【點睛】本題考查導(dǎo)數(shù)的幾何意義的應(yīng)用以及運用基本不等式求最值,考查計算能力.6.B【解析】

由已知條件利用誘導(dǎo)公式得,再利用三角函數(shù)的平方關(guān)系和象限角的符號,即可得到答案.【詳解】由題意得,又,所以,結(jié)合解得,所以,故選B.【點睛】本題考查三角函數(shù)的誘導(dǎo)公式、同角三角函數(shù)的平方關(guān)系以及三角函數(shù)的符號與位置關(guān)系,屬于基礎(chǔ)題.7.C【解析】

利用分布列求出,求出期望,再利用期望的性質(zhì)可求得結(jié)果.【詳解】由分布列的性質(zhì)可得,得,所以,,因此,.故選:C.【點睛】本題考查離散型隨機變量的分布列以及期望的求法,是基本知識的考查.8.A【解析】

陽數(shù):,陰數(shù):,然后分析陰數(shù)和陽數(shù)差的絕對值為5的情況數(shù),最后計算相應(yīng)概率.【詳解】因為陽數(shù):,陰數(shù):,所以從陰數(shù)和陽數(shù)中各取一數(shù)差的絕對值有:個,滿足差的絕對值為5的有:共個,則.故選:A.【點睛】本題考查實際背景下古典概型的計算,難度一般.古典概型的概率計算公式:.9.D【解析】

先將化為,根據(jù)函數(shù)圖像的平移原則,即可得出結(jié)果.【詳解】因為,所以只需將的圖象向右平移個單位.【點睛】本題主要考查三角函數(shù)的平移,熟記函數(shù)平移原則即可,屬于基礎(chǔ)題型.10.B【解析】

根據(jù)約束條件作出可行域,找到使直線的截距取最值得點,相應(yīng)坐標(biāo)代入即可求得取值范圍.【詳解】畫出可行域,如圖所示:由圖可知,當(dāng)直線經(jīng)過點時,取得最小值-5;經(jīng)過點時,取得最大值5,故.故選:B【點睛】本題考查根據(jù)線性規(guī)劃求范圍,屬于基礎(chǔ)題.11.C【解析】

由題意利用兩個向量的數(shù)量積的定義和公式,求的值.【詳解】解:由題意可得,求得,或,故選:C.【點睛】本題主要考查兩個向量的數(shù)量積的定義和公式,屬于基礎(chǔ)題.12.D【解析】

求得點的坐標(biāo),由,得出,利用向量的坐標(biāo)運算得出點的坐標(biāo),代入橢圓的方程,可得出關(guān)于、、的齊次等式,進而可求得橢圓的離心率.【詳解】由題意可得、.由,得,則,即.而,所以,所以點.因為點在橢圓上,則,整理可得,所以,所以.即橢圓的離心率為故選:D.【點睛】本題考查橢圓離心率的求解,解答的關(guān)鍵就是要得出、、的齊次等式,充分利用點在橢圓上這一條件,圍繞求點的坐標(biāo)來求解,考查計算能力,屬于中等題.二、填空題:本題共4小題,每小題5分,共20分。13.【解析】

根據(jù)滿足約束條件,畫出可行域,將目標(biāo)函數(shù),轉(zhuǎn)化為,平移直線,找到直線在軸上截距最小時的點,此時,目標(biāo)函數(shù)取得最小值.【詳解】由滿足約束條件,畫出可行域如圖所示陰影部分:將目標(biāo)函數(shù),轉(zhuǎn)化為,平移直線,找到直線在軸上截距最小時的點此時,目標(biāo)函數(shù)取得最小值,最小值為故答案為:-1【點睛】本題主要考查線性規(guī)劃求最值,還考查了數(shù)形結(jié)合的思想方法,屬于基礎(chǔ)題.14.【解析】

因為,由二倍角公式得到,故得到.故答案為.15.18【解析】

由題意得函數(shù)f(x)與g(x)的圖像都關(guān)于點對稱,結(jié)合函數(shù)的對稱性進行求解即可.【詳解】函數(shù)為奇函數(shù),函數(shù)關(guān)于點對稱,,函數(shù)關(guān)于點對稱,所以兩個函數(shù)圖象的交點也關(guān)于點(1,2)對稱,與圖像的交點為,,…,,兩兩關(guān)于點對稱,.故答案為:18【點睛】本題考查了函數(shù)對稱性的應(yīng)用,結(jié)合函數(shù)奇偶性以及分式函數(shù)的性質(zhì)求出函數(shù)的對稱性是解決本題的關(guān)鍵,屬于中檔題.16.【解析】

對首位數(shù)的奇偶進行分類討論,利用分步乘法計數(shù)原理和分類加法計數(shù)原理可得出結(jié)果.【詳解】①若首位為奇數(shù),則第一、三、五個數(shù)位上的數(shù)都是奇數(shù),其余三個數(shù)位上的數(shù)為偶數(shù),此時,符號條件的位自然數(shù)個數(shù)為個;②若首位數(shù)為偶數(shù),則首位數(shù)不能為,可排在第三或第五個數(shù)位上,第二、四、六個數(shù)位上的數(shù)為奇數(shù),此時,符合條件的位自然數(shù)個數(shù)為個.綜上所述,符合條件的位自然數(shù)個數(shù)為個.故答案為:.【點睛】本題考查數(shù)的排列問題,要注意首位數(shù)字的分類討論,考查分步乘法計數(shù)和分類加法計數(shù)原理的應(yīng)用,考查計算能力,屬于中等題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(1)a=1;(2)見解析【解析】

(1)由題意可得|x﹣a|≥4x,分類討論去掉絕對值,分別求得x的范圍即可求出a的值.(2)由條件利用絕對值三角不等式,基本不等式證得f(x)≥2..【詳解】(1)由f(x)﹣|x|≥4x,可得|x﹣a|≥4x,(a>0),當(dāng)x≥a時,x﹣a≥4x,解得x,這與x≥a>0矛盾,故不成立,當(dāng)x<a時,a﹣x≥4x,解得x,又不等式的解集是{x|x≤1},故1,解得a=1.(2)證明:f(x)=|x﹣a|+|x||x﹣a﹣(x)|=|a|,∵a>0,∴|a|=a22,當(dāng)且僅當(dāng)a時取等號,故f(x).【點睛】本題主要考查絕對值三角不等式,基本不等式,絕對值不等式的解法,體現(xiàn)了轉(zhuǎn)化、分類討論的數(shù)學(xué)思想,屬于基礎(chǔ)題.18.(1);(2)【解析】

(1)對函數(shù)求導(dǎo),運用可求得的值,再由在直線上,可求得的值;(2)由已知可得恒成立,構(gòu)造函數(shù),對函數(shù)求導(dǎo),討論和0的大小關(guān)系,結(jié)合單調(diào)性求出最大值即可求得的范圍.【詳解】(1)由題得,因為在點與相切所以,∴(2)由得,令,只需,設(shè)(),當(dāng)時,,在時為增函數(shù),所以,舍;當(dāng)時,開口向上,對稱軸為,,所以在時為增函數(shù),所以,舍;當(dāng)時,二次函數(shù)開口向下,且,所以在時有一個零點,在時,在時,①當(dāng)即時,在小于零,所以在時為減函數(shù),所以,符合題意;②當(dāng)即時,在大于零,所以在時為增函數(shù),所以,舍.綜上所述:實數(shù)的取值范圍為【點睛】本題考查函數(shù)的導(dǎo)數(shù),利用導(dǎo)數(shù)求函數(shù)的單調(diào)區(qū)間及函數(shù)的最小值,屬于中檔題.處理函數(shù)單調(diào)性問題時,注意利用導(dǎo)函數(shù)的正負,特別是已知單調(diào)性問題,轉(zhuǎn)化為函數(shù)導(dǎo)數(shù)恒不小于零,或恒小于零,再分離參數(shù)求解,求函數(shù)最值時分析好單調(diào)性再求極值,從而求出函數(shù)最值.19.(Ⅰ),;(Ⅱ)【解析】

(Ⅰ)根據(jù),可得曲線C1的極坐標(biāo)方程,然后先計算曲線C2的普通方程,最后根據(jù)極坐標(biāo)與直角坐標(biāo)的轉(zhuǎn)化公式,可得結(jié)果.(Ⅱ)將射線θ=分別與曲線C1和C2極坐標(biāo)方程聯(lián)立,可得A,B的極坐標(biāo),然后簡單計算,可得結(jié)果.【詳解】(Ⅰ)由所以曲線的極坐標(biāo)方程為,曲線的普通方程為則曲線的極坐標(biāo)方程為(Ⅱ)令,則,,則,即,所以,,故.【點睛】本題考查極坐標(biāo)方程和參數(shù)方程與直角坐標(biāo)方程的轉(zhuǎn)化,以及極坐標(biāo)方程中的幾何意義,屬基礎(chǔ)題.20.(1)見解析;(2)【解析】

(1)由折疊過程知與平面垂直,得,再取中點,可證與平面垂直,得,從而可得線面垂直,再得線線垂直;(2)由已知得為中點,以為原點,所在直線為軸,在平面內(nèi)過作的垂線為軸建立空間直角坐標(biāo)系,由已知求出線段長,得出各點坐標(biāo),用平面的法向量計算二面角的余弦.【詳解】(1)易知與平面垂直,∴,連接,取中點,連接,由得,,∴平面,平面,∴,又,∴平面,∴;(2)由,知是中點,令,則,由,,∴,解得,故.以為原點,所在直線為軸,在平面內(nèi)過作的垂線為軸建立空間直角坐標(biāo)系,如圖,則,,,設(shè)平面的法向量為,則,取,則.又易知平面的一個法向量為,.∴二面角的余弦值為.【點睛】本題考查證明線線垂直,考查用空間向量法求二面角.證線線垂直,一般先證線面垂直,而證線面垂直又要證線線垂直,注意線線垂直、線面垂直及面面垂直的轉(zhuǎn)化.求空間角,常用方法就是建立空間直角坐標(biāo)系,用空間向量法求空間角.21.(1)(2)【解析】

(1))當(dāng)時,將函數(shù)寫成分段函數(shù),即可求得不等式的解集.(2

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論