版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
2021-2022高考數(shù)學(xué)模擬試卷注意事項(xiàng):1.答題前,考生先將自己的姓名、準(zhǔn)考證號碼填寫清楚,將條形碼準(zhǔn)確粘貼在條形碼區(qū)域內(nèi)。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.若集合,則=()A. B. C. D.2.如圖,設(shè)為內(nèi)一點(diǎn),且,則與的面積之比為A. B.C. D.3.已知是雙曲線的左、右焦點(diǎn),若點(diǎn)關(guān)于雙曲線漸近線的對稱點(diǎn)滿足(為坐標(biāo)原點(diǎn)),則雙曲線的漸近線方程為()A. B. C. D.4.某學(xué)校為了調(diào)查學(xué)生在課外讀物方面的支出情況,抽取了一個容量為的樣本,其頻率分布直方圖如圖所示,其中支出在(單位:元)的同學(xué)有34人,則的值為()A.100 B.1000 C.90 D.905.已知點(diǎn),點(diǎn)在曲線上運(yùn)動,點(diǎn)為拋物線的焦點(diǎn),則的最小值為()A. B. C. D.46.已知實(shí)數(shù),滿足約束條件,則的取值范圍是()A. B. C. D.7.有一圓柱狀有蓋鐵皮桶(鐵皮厚度忽略不計(jì)),底面直徑為cm,高度為cm,現(xiàn)往里面裝直徑為cm的球,在能蓋住蓋子的情況下,最多能裝()(附:)A.個 B.個 C.個 D.個8.已知,是橢圓的左、右焦點(diǎn),過的直線交橢圓于兩點(diǎn).若依次構(gòu)成等差數(shù)列,且,則橢圓的離心率為A. B. C. D.9.在正方體中,,分別為,的中點(diǎn),則異面直線,所成角的余弦值為()A. B. C. D.10.如圖,是圓的一條直徑,為半圓弧的兩個三等分點(diǎn),則()A. B. C. D.11.若復(fù)數(shù)z滿足,則()A. B. C. D.12.記遞增數(shù)列的前項(xiàng)和為.若,,且對中的任意兩項(xiàng)與(),其和,或其積,或其商仍是該數(shù)列中的項(xiàng),則()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知函數(shù),則曲線在點(diǎn)處的切線方程為___________.14.已知函數(shù),則曲線在處的切線斜率為________.15.“石頭、剪子、布”是大家熟悉的二人游戲,其規(guī)則是:在石頭、剪子和布中,二人各隨機(jī)選出一種,若相同則平局;若不同,則石頭克剪子,剪子克布,布克石頭.甲、乙兩人玩一次該游戲,則甲不輸?shù)母怕适莀_____.16.平面區(qū)域的外接圓的方程是____________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知等比數(shù)列中,,是和的等差中項(xiàng).(1)求數(shù)列的通項(xiàng)公式;(2)記,求數(shù)列的前項(xiàng)和.18.(12分)已知分別是的內(nèi)角的對邊,且.(Ⅰ)求.(Ⅱ)若,,求的面積.(Ⅲ)在(Ⅱ)的條件下,求的值.19.(12分)某市環(huán)保部門對該市市民進(jìn)行了一次垃圾分類知識的網(wǎng)絡(luò)問卷調(diào)查,每一位市民僅有一次參加機(jī)會,通過隨機(jī)抽樣,得到參加問卷調(diào)查的人的得分(滿分:分)數(shù)據(jù),統(tǒng)計(jì)結(jié)果如下表所示.組別頻數(shù)(1)已知此次問卷調(diào)查的得分服從正態(tài)分布,近似為這人得分的平均值(同一組中的數(shù)據(jù)用該組區(qū)間的中點(diǎn)值為代表),請利用正態(tài)分布的知識求;(2)在(1)的條件下,環(huán)保部門為此次參加問卷調(diào)查的市民制定如下獎勵方案.(ⅰ)得分不低于的可以獲贈次隨機(jī)話費(fèi),得分低于的可以獲贈次隨機(jī)話費(fèi);(ⅱ)每次贈送的隨機(jī)話費(fèi)和相應(yīng)的概率如下表.贈送的隨機(jī)話費(fèi)/元概率現(xiàn)市民甲要參加此次問卷調(diào)查,記為該市民參加問卷調(diào)查獲贈的話費(fèi),求的分布列及數(shù)學(xué)期望.附:,若,則,,.20.(12分)已知函數(shù).(1)求不等式的解集;(2)若函數(shù)的最大值為,且,求的最小值.21.(12分)已知橢圓C:()的左、右焦點(diǎn)分別為,,離心率為,且過點(diǎn).(1)求橢圓C的方程;(2)過左焦點(diǎn)的直線l與橢圓C交于不同的A,B兩點(diǎn),若,求直線l的斜率k.22.(10分)已知數(shù)列的前n項(xiàng)和為,且n、、成等差數(shù)列,.(1)證明數(shù)列是等比數(shù)列,并求數(shù)列的通項(xiàng)公式;(2)若數(shù)列中去掉數(shù)列的項(xiàng)后余下的項(xiàng)按原順序組成數(shù)列,求的值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.C【解析】
求出集合,然后與集合取交集即可.【詳解】由題意,,,則,故答案為C.【點(diǎn)睛】本題考查了分式不等式的解法,考查了集合的交集,考查了計(jì)算能力,屬于基礎(chǔ)題.2.A【解析】
作交于點(diǎn),根據(jù)向量比例,利用三角形面積公式,得出與的比例,再由與的比例,可得到結(jié)果.【詳解】如圖,作交于點(diǎn),則,由題意,,,且,所以又,所以,,即,所以本題答案為A.【點(diǎn)睛】本題考查三角函數(shù)與向量的結(jié)合,三角形面積公式,屬基礎(chǔ)題,作出合適的輔助線是本題的關(guān)鍵.3.B【解析】
先利用對稱得,根據(jù)可得,由幾何性質(zhì)可得,即,從而解得漸近線方程.【詳解】如圖所示:由對稱性可得:為的中點(diǎn),且,所以,因?yàn)椋?,故而由幾何性質(zhì)可得,即,故漸近線方程為,故選B.【點(diǎn)睛】本題考查了點(diǎn)關(guān)于直線對稱點(diǎn)的知識,考查了雙曲線漸近線方程,由題意得出是解題的關(guān)鍵,屬于中檔題.4.A【解析】
利用頻率分布直方圖得到支出在的同學(xué)的頻率,再結(jié)合支出在(單位:元)的同學(xué)有34人,即得解【詳解】由題意,支出在(單位:元)的同學(xué)有34人由頻率分布直方圖可知,支出在的同學(xué)的頻率為.故選:A【點(diǎn)睛】本題考查了頻率分布直方圖的應(yīng)用,考查了學(xué)生概念理解,數(shù)據(jù)處理,數(shù)學(xué)運(yùn)算的能力,屬于基礎(chǔ)題.5.D【解析】
如圖所示:過點(diǎn)作垂直準(zhǔn)線于,交軸于,則,設(shè),,則,利用均值不等式得到答案.【詳解】如圖所示:過點(diǎn)作垂直準(zhǔn)線于,交軸于,則,設(shè),,則,當(dāng),即時等號成立.故選:.【點(diǎn)睛】本題考查了拋物線中距離的最值問題,意在考查學(xué)生的計(jì)算能力和轉(zhuǎn)化能力.6.B【解析】
畫出可行域,根據(jù)可行域上的點(diǎn)到原點(diǎn)距離,求得的取值范圍.【詳解】由約束條件作出可行域是由,,三點(diǎn)所圍成的三角形及其內(nèi)部,如圖中陰影部分,而可理解為可行域內(nèi)的點(diǎn)到原點(diǎn)距離的平方,顯然原點(diǎn)到所在的直線的距離是可行域內(nèi)的點(diǎn)到原點(diǎn)距離的最小值,此時,點(diǎn)到原點(diǎn)的距離是可行域內(nèi)的點(diǎn)到原點(diǎn)距離的最大值,此時.所以的取值范圍是.故選:B【點(diǎn)睛】本小題考查線性規(guī)劃,兩點(diǎn)間距離公式等基礎(chǔ)知識;考查運(yùn)算求解能力,數(shù)形結(jié)合思想,應(yīng)用意識.7.C【解析】
計(jì)算球心連線形成的正四面體相對棱的距離為cm,得到最上層球面上的點(diǎn)距離桶底最遠(yuǎn)為cm,得到不等式,計(jì)算得到答案.【詳解】由題意,若要裝更多的球,需要讓球和鐵皮桶側(cè)面相切,且相鄰四個球兩兩相切,這樣,相鄰的四個球的球心連線構(gòu)成棱長為cm的正面體,易求正四面體相對棱的距離為cm,每裝兩個球稱為“一層”,這樣裝層球,則最上層球面上的點(diǎn)距離桶底最遠(yuǎn)為cm,若想要蓋上蓋子,則需要滿足,解得,所以最多可以裝層球,即最多可以裝個球.故選:【點(diǎn)睛】本題考查了圓柱和球的綜合問題,意在考查學(xué)生的空間想象能力和計(jì)算能力.8.D【解析】
如圖所示,設(shè)依次構(gòu)成等差數(shù)列,其公差為.根據(jù)橢圓定義得,又,則,解得,.所以,,,.在和中,由余弦定理得,整理解得.故選D.9.D【解析】
連接,,因?yàn)?,所以為異面直線與所成的角(或補(bǔ)角),不妨設(shè)正方體的棱長為2,取的中點(diǎn)為,連接,在等腰中,求出,在利用二倍角公式,求出,即可得出答案.【詳解】連接,,因?yàn)?,所以為異面直線與所成的角(或補(bǔ)角),不妨設(shè)正方體的棱長為2,則,,在等腰中,取的中點(diǎn)為,連接,則,,所以,即:,所以異面直線,所成角的余弦值為.故選:D.【點(diǎn)睛】本題考查空間異面直線的夾角余弦值,利用了正方體的性質(zhì)和二倍角公式,還考查空間思維和計(jì)算能力.10.B【解析】
連接、,即可得到,,再根據(jù)平面向量的數(shù)量積及運(yùn)算律計(jì)算可得;【詳解】解:連接、,,是半圓弧的兩個三等分點(diǎn),,且,所以四邊形為棱形,.故選:B【點(diǎn)睛】本題考查平面向量的數(shù)量積及其運(yùn)算律的應(yīng)用,屬于基礎(chǔ)題.11.D【解析】
先化簡得再求得解.【詳解】所以.故選:D【點(diǎn)睛】本題主要考查復(fù)數(shù)的運(yùn)算和模的計(jì)算,意在考查學(xué)生對這些知識的理解掌握水平.12.D【解析】
由題意可得,從而得到,再由就可以得出其它各項(xiàng)的值,進(jìn)而判斷出的范圍.【詳解】解:,或其積,或其商仍是該數(shù)列中的項(xiàng),或者或者是該數(shù)列中的項(xiàng),又?jǐn)?shù)列是遞增數(shù)列,,,,只有是該數(shù)列中的項(xiàng),同理可以得到,,,也是該數(shù)列中的項(xiàng),且有,,或(舍,,根據(jù),,,同理易得,,,,,,,故選:D.【點(diǎn)睛】本題考查數(shù)列的新定義的理解和運(yùn)用,以及運(yùn)算能力和推理能力,屬于中檔題.二、填空題:本題共4小題,每小題5分,共20分。13.【解析】
根據(jù)導(dǎo)數(shù)的幾何意義求出切線的斜率,利用點(diǎn)斜式求切線方程.【詳解】因?yàn)椋?,又故切線方程為,整理為,故答案為:【點(diǎn)睛】本題主要考查了導(dǎo)數(shù)的幾何意義,切線方程,屬于容易題.14.【解析】
求導(dǎo)后代入可構(gòu)造方程求得,即為所求斜率.【詳解】,,解得:,即在處的切線斜率為.故答案為:.【點(diǎn)睛】本題考查切線斜率的求解問題,考查導(dǎo)數(shù)的幾何意義,屬于基礎(chǔ)題.15.【解析】
用樹狀圖法列舉出所有情況,得出甲不輸?shù)慕Y(jié)果數(shù),再計(jì)算即得.【詳解】由題得,甲、乙兩人玩一次該游戲,共有9種情況,其中甲不輸有6種可能,故概率為.故答案為:【點(diǎn)睛】本題考查隨機(jī)事件的概率,是基礎(chǔ)題.16.【解析】
作出平面區(qū)域,可知平面區(qū)域?yàn)槿切?,求出三角形的三個頂點(diǎn)坐標(biāo),設(shè)三角形的外接圓方程為,將三角形三個頂點(diǎn)坐標(biāo)代入圓的一般方程,求出、、的值,即可得出所求圓的方程.【詳解】作出不等式組所表示的平面區(qū)域如下圖所示:由圖可知,平面區(qū)域?yàn)?,?lián)立,解得,則點(diǎn),同理可得點(diǎn)、,設(shè)的外接圓方程為,由題意可得,解得,,,因此,所求圓的方程為.故答案為:.【點(diǎn)睛】本題考查三角形外接圓方程的求解,同時也考查了一元二次不等式組所表示的平面區(qū)域的求作,考查數(shù)形結(jié)合思想以及運(yùn)算求解能力,屬于中等題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(1)(2)【解析】
(1)用等比數(shù)列的首項(xiàng)和公比分別表示出已知條件,解方程組即可求得公比,代入等比數(shù)列的通項(xiàng)公式即可求得結(jié)果;(2)把(1)中求得的結(jié)果代入bn=an?log2an,求出bn,利用錯位相減法求出Tn.【詳解】(1)設(shè)數(shù)列的公比為,由題意知:,∴,即.∴,即.(2),∴.①.②①-②得∴.【點(diǎn)睛】本題考查等比數(shù)列的通項(xiàng)公式和等差中項(xiàng)的概念以及錯位相減法求和,考查運(yùn)算能力,屬中檔題.18.(Ⅰ);(Ⅱ);(Ⅲ).【解析】
(Ⅰ)由已知結(jié)合正弦定理先進(jìn)行代換,然后結(jié)合和差角公式及正弦定理可求;(Ⅱ)由余弦定理可求,然后結(jié)合三角形的面積公式可求;(Ⅲ)結(jié)合二倍角公式及和角余弦公式即可求解.【詳解】(Ⅰ)因?yàn)?,所以,所以,由正弦定理可得,;(Ⅱ)由余弦定理可得,,整理可得,,解可得,,因?yàn)?,所以;(Ⅲ)由于,.所以.【點(diǎn)睛】本題主要考查了正弦定理、余弦定理、和角余弦公式,二倍角公式及三角形的面積公式的綜合應(yīng)用,意在考查學(xué)生對這些知識的理解掌握水平.19.(1);(2)見解析.【解析】
(1)根據(jù)題中所給的統(tǒng)計(jì)表,利用公式計(jì)算出平均數(shù)的值,再利用數(shù)據(jù)之間的關(guān)系將、表示為,,利用題中所給數(shù)據(jù),以及正態(tài)分布的概率密度曲線的對稱性,求出對應(yīng)的概率;(2)根據(jù)題意,高于平均數(shù)和低于平均數(shù)的概率各為,再結(jié)合得元、元的概率,分析得出話費(fèi)的可能數(shù)據(jù)都有哪些,再利用公式求得對應(yīng)的概率,進(jìn)而得出分布列,之后利用離散型隨機(jī)變量的分布列求出其數(shù)學(xué)期望.【詳解】(1)由題意可得,易知,,,;(2)根據(jù)題意,可得出隨機(jī)變量的可能取值有、、、元,,,,.所以,隨機(jī)變量的分布列如下表所示:所以,隨機(jī)變量的數(shù)學(xué)期望為.【點(diǎn)睛】本題考查概率的計(jì)算,涉及到平均數(shù)的求法、正態(tài)分布概率的計(jì)算以及離散型隨機(jī)變量分布列及其數(shù)學(xué)期望,在解題時要弄清楚隨機(jī)變量所滿足的分布列類型,結(jié)合相應(yīng)公式計(jì)算對應(yīng)事件的概率,考查計(jì)算能力,屬于中等題.20.(1)(2)【解析】
(1)化簡得到,分類解不等式得到答案.(2)的最大值,,利用均值不等式計(jì)算得到答案.【詳解】(1)因?yàn)椋驶蚧蚪獾没?,故不等式的解集?(2)畫出函數(shù)圖像,根據(jù)圖像可知的最大值.因?yàn)?,所以,?dāng)且僅當(dāng)時,等號成立,故的最小值是3.【點(diǎn)睛】本題考查了解不等式,均值不等式求最值,意在考查學(xué)生的計(jì)算能力和轉(zhuǎn)化能力.21.(1)(2)直線l的斜率為或【解析】
(1)根據(jù)已知列出方程組即可解得橢圓方程;(2)設(shè)直線方程,與橢圓方程聯(lián)立,轉(zhuǎn)化為,借助向量的數(shù)量積的坐標(biāo)表示,及韋達(dá)定理即可求得結(jié)果.【詳解】(1)由題意得解得故橢圓C的方程為.(2)直線l的方程為,設(shè),,則由方程組消去y得,,所以,,由,得,所以,又所以,即所以,因此,直線l的斜率為或.【點(diǎn)睛】本題考查橢圓的標(biāo)準(zhǔn)方程,考查直線和橢圓的位置關(guān)系,考查學(xué)生的計(jì)算求解能力,難度一般.22.(
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024年土地使用權(quán)轉(zhuǎn)讓合同(含開發(fā)權(quán))
- 2024年廣西路分公司一級干線租用合同
- 2024年安全監(jiān)控外包服務(wù)合同
- 2024年工程設(shè)計(jì)變更合同補(bǔ)充
- 2024年度石油化工設(shè)備安裝調(diào)試合同
- 2024年工廠租賃合同書
- 2024年度塔吊設(shè)計(jì)研發(fā)合同
- 2024購房合同應(yīng)注意事項(xiàng)
- 2024征地補(bǔ)償安置合同范本
- 2024年學(xué)校治安門衛(wèi)合同
- 母版_安徽省中小學(xué)生轉(zhuǎn)學(xué)申請表
- YY∕T 0106-2021 醫(yī)用診斷X射線機(jī)通用技術(shù)條件
- 小組合作學(xué)習(xí)方法指導(dǎo)(課堂PPT)
- 工程造價咨詢費(fèi)黑價聯(lián)[2013]39號
- 聚氨酯車輪容許載荷的計(jì)算方法
- 五年級地方教學(xué)計(jì)劃
- 河北省廊坊市房屋租賃合同自行成交版
- 電商銷售獎勵制度
- 關(guān)于設(shè)置治安保衛(wèi)管理機(jī)構(gòu)的通知(附安全保衛(wèi)科職責(zé))
- 淺論國省道干線公路養(yǎng)護(hù)管理存在問題與應(yīng)對措施
- 淺談激光標(biāo)簽打印機(jī)在電磁兼容測試標(biāo)準(zhǔn)及在產(chǎn)品設(shè)計(jì)中應(yīng)關(guān)注的焦點(diǎn)
評論
0/150
提交評論