新高考數(shù)學(xué)二輪考點培優(yōu)專題(精講+精練)12 ω的值和取值范圍問題(含解析)_第1頁
新高考數(shù)學(xué)二輪考點培優(yōu)專題(精講+精練)12 ω的值和取值范圍問題(含解析)_第2頁
新高考數(shù)學(xué)二輪考點培優(yōu)專題(精講+精練)12 ω的值和取值范圍問題(含解析)_第3頁
新高考數(shù)學(xué)二輪考點培優(yōu)專題(精講+精練)12 ω的值和取值范圍問題(含解析)_第4頁
新高考數(shù)學(xué)二輪考點培優(yōu)專題(精講+精練)12 ω的值和取值范圍問題(含解析)_第5頁
已閱讀5頁,還剩21頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

培優(yōu)專題12ω的值和取值范圍問題(精講+精練)一、知識點梳理一、知識點梳理一、與對稱性有關(guān)(1)y=Asin(ωx+φ)相鄰兩條對稱軸之間的距離是SKIPIF1<0;(2)y=Asin(ωx+φ)相鄰兩個對稱中心的距離是SKIPIF1<0;(3)y=Asin(ωx+φ)相鄰兩條對稱軸與對稱中心距離SKIPIF1<0;二、與單調(diào)性有關(guān)三、與零點和極值點有關(guān)對于區(qū)間長度為定值的動區(qū)間,若區(qū)間上至少含有k個零點,需要確定含有k個零點的區(qū)間長度,一般和周期相關(guān),若在在區(qū)間至多含有k個零點,需要確定包含k+1個零點的區(qū)間長度的最小值,極值點的處理方法也是類似的.二、題型精講精練二、題型精講精練【典例1】若存在實數(shù)SKIPIF1<0,使得函數(shù)SKIPIF1<0(SKIPIF1<0>0)的圖象的一個對稱中心為(SKIPIF1<0,0),則ω的取值范圍為(

)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【詳解】由于函數(shù)SKIPIF1<0的圖象的一個對稱中心為SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0,由于SKIPIF1<0,則SKIPIF1<0,因為SKIPIF1<0,所以可得:SKIPIF1<0,故選:C【典例2】已知函數(shù)SKIPIF1<0在區(qū)間SKIPIF1<0上單調(diào)遞減,則正實數(shù)SKIPIF1<0的取值范圍是(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【詳解】由題意知,SKIPIF1<0,令SKIPIF1<0,解得SKIPIF1<0,又函數(shù)SKIPIF1<0在區(qū)間SKIPIF1<0上單調(diào)遞減,所以SKIPIF1<0,解得SKIPIF1<0,當(dāng)SKIPIF1<0時,SKIPIF1<0.故選:C.【典例3】已知函數(shù)SKIPIF1<0在SKIPIF1<0上恰有2個不同的零點,則SKIPIF1<0的取值范圍為(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【詳解】由題意可得SKIPIF1<0,由SKIPIF1<0,得SKIPIF1<0,因為函數(shù)SKIPIF1<0在SKIPIF1<0上恰有2個不同的零點,所以SKIPIF1<0,即SKIPIF1<0,故選:A【題型訓(xùn)練1-刷真題】一、填空題2.(2023·全國·統(tǒng)考高考真題)已知函數(shù)SKIPIF1<0在區(qū)間SKIPIF1<0有且僅有3個零點,則SKIPIF1<0的取值范圍是________.【答案】SKIPIF1<0【分析】令SKIPIF1<0,得SKIPIF1<0有3個根,從而結(jié)合余弦函數(shù)的圖像性質(zhì)即可得解.【詳解】因為SKIPIF1<0,所以SKIPIF1<0,令SKIPIF1<0,則SKIPIF1<0有3個根,令SKIPIF1<0,則SKIPIF1<0有3個根,其中SKIPIF1<0,結(jié)合余弦函數(shù)SKIPIF1<0的圖像性質(zhì)可得SKIPIF1<0,故SKIPIF1<0,故答案為:SKIPIF1<0.二、單選題1.(2022·全國·統(tǒng)考高考真題)設(shè)函數(shù)SKIPIF1<0在區(qū)間SKIPIF1<0恰有三個極值點、兩個零點,則SKIPIF1<0的取值范圍是(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】C【分析】由SKIPIF1<0的取值范圍得到SKIPIF1<0的取值范圍,再結(jié)合正弦函數(shù)的性質(zhì)得到不等式組,解得即可.【詳解】解:依題意可得SKIPIF1<0,因為SKIPIF1<0,所以SKIPIF1<0,要使函數(shù)在區(qū)間SKIPIF1<0恰有三個極值點、兩個零點,又SKIPIF1<0,SKIPIF1<0的圖象如下所示:

則SKIPIF1<0,解得SKIPIF1<0,即SKIPIF1<0.故選:C.【題型訓(xùn)練2-刷模擬】1.與對稱性有關(guān)一、單選題1.(2023春·陜西西安·高三??茧A段練習(xí))將函數(shù)SKIPIF1<0的圖象向右平移SKIPIF1<0個單位長度得到曲線SKIPIF1<0,若SKIPIF1<0關(guān)于點SKIPIF1<0對稱,則SKIPIF1<0的最小值是(

)A.3 B.6 C.9 D.12【答案】B【分析】利用三角函數(shù)圖象變換結(jié)論求出變換后的函數(shù)圖象額解析式,再由余弦函數(shù)的對稱性的性質(zhì)求SKIPIF1<0的最小值.【詳解】函數(shù)SKIPIF1<0的圖象向右平移SKIPIF1<0個單位長度得到的曲線的函數(shù)解析式為SKIPIF1<0,由已知函數(shù)SKIPIF1<0的圖象關(guān)于點SKIPIF1<0對稱,所以SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0,又SKIPIF1<0,所以SKIPIF1<0的最小值是SKIPIF1<0,故選:B.2.(2023·浙江·統(tǒng)考二模)已知函數(shù)SKIPIF1<0,若SKIPIF1<0在區(qū)間SKIPIF1<0是單調(diào)函數(shù),且SKIPIF1<0,則SKIPIF1<0的值為(

).A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0或SKIPIF1<0 D.SKIPIF1<0或2【答案】B【分析】由SKIPIF1<0在區(qū)間SKIPIF1<0是有單調(diào)性,可得SKIPIF1<0范圍,從而得SKIPIF1<0;由SKIPIF1<0,可得函數(shù)SKIPIF1<0關(guān)于SKIPIF1<0對稱,又SKIPIF1<0,SKIPIF1<0有對稱中心為SKIPIF1<0,討論SKIPIF1<0與SKIPIF1<0是否在同一周期里面相鄰的對稱軸與對稱中心即可.【詳解】SKIPIF1<0在區(qū)間SKIPIF1<0是有單調(diào)性,SKIPIF1<0,SKIPIF1<0SKIPIF1<0,SKIPIF1<0;SKIPIF1<0,SKIPIF1<0函數(shù)SKIPIF1<0關(guān)于SKIPIF1<0對稱,SKIPIF1<0離最近對稱軸SKIPIF1<0的距離為SKIPIF1<0;又SKIPIF1<0,SKIPIF1<0有對稱中心為SKIPIF1<0;由題意可知:若SKIPIF1<0與SKIPIF1<0為不是同一周期里面相鄰的對稱軸與對稱中心.則SKIPIF1<0,可得SKIPIF1<0,SKIPIF1<0,不符合舍去,若SKIPIF1<0與SKIPIF1<0為同一周期里面相鄰的對稱軸與對稱中心.那么:SKIPIF1<0,可得SKIPIF1<0,SKIPIF1<0.綜上可知SKIPIF1<0故選:B3.(2023·安徽馬鞍山·統(tǒng)考三模)記函數(shù)SKIPIF1<0SKIPIF1<0的最小正周期為SKIPIF1<0,若SKIPIF1<0,且SKIPIF1<0,則SKIPIF1<0(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】C【分析】由最小正周期SKIPIF1<0可得SKIPIF1<0,再由SKIPIF1<0即可得SKIPIF1<0,即可求得SKIPIF1<0.【詳解】函數(shù)SKIPIF1<0的最小正周期SKIPIF1<0,則SKIPIF1<0,解得SKIPIF1<0;又SKIPIF1<0,即SKIPIF1<0是函數(shù)SKIPIF1<0的一條對稱軸,所以SKIPIF1<0,解得SKIPIF1<0.又SKIPIF1<0,當(dāng)SKIPIF1<0時,SKIPIF1<0.故選:C.4.(2023·重慶·統(tǒng)考模擬預(yù)測)已知函數(shù)SKIPIF1<0,若對于任意實數(shù)x,都有SKIPIF1<0,則SKIPIF1<0的最小值為(

)A.2 B.SKIPIF1<0 C.4 D.8【答案】C【分析】根據(jù)給定條件,可得函數(shù)SKIPIF1<0圖象的對稱中心,再利用正弦函數(shù)的性質(zhì)列式求解作答.【詳解】因為對于任意實數(shù)x,都有SKIPIF1<0,則有函數(shù)SKIPIF1<0圖象關(guān)于點SKIPIF1<0對稱,因此SKIPIF1<0,解得SKIPIF1<0,而SKIPIF1<0,所以當(dāng)SKIPIF1<0時,SKIPIF1<0取得最小值4.故選:C5.(2023·全國·高三專題練習(xí))設(shè)函數(shù)SKIPIF1<0,其圖象的一條對稱軸在區(qū)間SKIPIF1<0內(nèi),且SKIPIF1<0的最小正周期大于SKIPIF1<0,則SKIPIF1<0的取值范圍為(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】C【解析】先利用輔助角公式化簡,再求出函數(shù)的對稱軸方程,由圖像的一條對稱軸在區(qū)間SKIPIF1<0內(nèi),求出SKIPIF1<0的取值范圍,驗證周期得答案【詳解】解:SKIPIF1<0,由SKIPIF1<0,得SKIPIF1<0,取SKIPIF1<0,得SKIPIF1<0,取SKIPIF1<0,得SKIPIF1<0,由SKIPIF1<0,得SKIPIF1<0,此時SKIPIF1<0,由SKIPIF1<0,得SKIPIF1<0,此時SKIPIF1<0,不合題意,依次當(dāng)SKIPIF1<0取其它整數(shù)時,不合題意,所以SKIPIF1<0的取值范圍為SKIPIF1<0,故選:C6.(2023·全國·高三專題練習(xí))若存在唯一的實數(shù)SKIPIF1<0,使得曲線SKIPIF1<0關(guān)于直線SKIPIF1<0對稱,則SKIPIF1<0的取值范圍是(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】C【分析】由題意得SKIPIF1<0,SKIPIF1<0,SKIPIF1<0只有唯一的值落在SKIPIF1<0中,從而列不等式組可求出答案.【詳解】由SKIPIF1<0,SKIPIF1<0,得SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,因為存在唯一的實數(shù)SKIPIF1<0,使得曲線SKIPIF1<0關(guān)于直線SKIPIF1<0對稱,所以SKIPIF1<0只有唯一的值落在SKIPIF1<0(SKIPIF1<0)中,所以SKIPIF1<0,解得SKIPIF1<0,故選:C.7.(2023·湖北黃岡·黃岡中學(xué)??既#┮阎瘮?shù)SKIPIF1<0,(SKIPIF1<0)的圖象在區(qū)間SKIPIF1<0內(nèi)至多存在3條對稱軸,則SKIPIF1<0的取值范圍是(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】A【分析】根據(jù)SKIPIF1<0,SKIPIF1<0,得到SKIPIF1<0,數(shù)形結(jié)合得到SKIPIF1<0,求出答案.【詳解】因為SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0,畫出SKIPIF1<0的圖象,要想圖象在區(qū)間SKIPIF1<0內(nèi)至多存在3條對稱軸,則SKIPIF1<0,解得SKIPIF1<0.故選:A8.(2023·全國·高三專題練習(xí))已知函數(shù)SKIPIF1<0在區(qū)間[0,SKIPIF1<0]上有且僅有3條對稱軸,則SKIPIF1<0的取值范圍是(

)A.(SKIPIF1<0,SKIPIF1<0] B.(SKIPIF1<0,SKIPIF1<0] C.[SKIPIF1<0,SKIPIF1<0) D.[SKIPIF1<0,SKIPIF1<0)【答案】C【分析】求出函數(shù)的對稱軸方程為SKIPIF1<0,SKIPIF1<0,原題等價于SKIPIF1<0有3個整數(shù)k符合,解不等式SKIPIF1<0即得解.【詳解】解:SKIPIF1<0,令SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0,函數(shù)f(x)在區(qū)間[0,SKIPIF1<0]上有且僅有3條對稱軸,即SKIPIF1<0有3個整數(shù)k符合,SKIPIF1<0,得SKIPIF1<0,則SKIPIF1<0,即SKIPIF1<0,∴SKIPIF1<0.故選:C.9.(2023春·廣東揭陽·高三校聯(lián)考階段練習(xí))已知函數(shù)SKIPIF1<0的最小正周期為T,若SKIPIF1<0,且函數(shù)SKIPIF1<0的圖象關(guān)于直線SKIPIF1<0對稱,則SKIPIF1<0的最小值為(

)A.3 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】C【分析】先根據(jù)SKIPIF1<0,求得SKIPIF1<0,再根據(jù)余弦函數(shù)的對稱性即可得出答案.【詳解】SKIPIF1<0,SKIPIF1<0,因為SKIPIF1<0,所以SKIPIF1<0,則SKIPIF1<0,又因函數(shù)SKIPIF1<0的圖象關(guān)于直線SKIPIF1<0對稱,所以SKIPIF1<0,所以SKIPIF1<0,又因為SKIPIF1<0,所以當(dāng)SKIPIF1<0時,SKIPIF1<0.故選:C.10.(2023·遼寧錦州·統(tǒng)考二模)已知函數(shù)SKIPIF1<0,若SKIPIF1<0使得SKIPIF1<0的圖象在點SKIPIF1<0處的切線與SKIPIF1<0軸平行,則SKIPIF1<0的最小值是(

)A.SKIPIF1<0 B.1 C.SKIPIF1<0 D.2【答案】A【分析】先利用輔助角公式化簡函數(shù),根據(jù)題意得函數(shù)SKIPIF1<0在SKIPIF1<0上存在對稱軸,利用整體代換列不等式,解不等式即可求出最值.【詳解】SKIPIF1<0,因為SKIPIF1<0使得SKIPIF1<0的圖象在點SKIPIF1<0處的切線與SKIPIF1<0軸平行,所以函數(shù)SKIPIF1<0在SKIPIF1<0上存在最值,即函數(shù)SKIPIF1<0在SKIPIF1<0上存在對稱軸,令SKIPIF1<0,得SKIPIF1<0,因為SKIPIF1<0,所以SKIPIF1<0,即SKIPIF1<0,則SKIPIF1<0,又SKIPIF1<0,故SKIPIF1<0時,SKIPIF1<0取最小值為SKIPIF1<0,故選:A11.(2023·全國·高三專題練習(xí))已知函數(shù)SKIPIF1<0是偶函數(shù),且SKIPIF1<0在SKIPIF1<0上單調(diào),則SKIPIF1<0的最大值為(

)A.1 B.3 C.5 D.SKIPIF1<0【答案】C【分析】由SKIPIF1<0、SKIPIF1<0是偶函數(shù)得到SKIPIF1<0,再由SKIPIF1<0在SKIPIF1<0上單調(diào)可得SKIPIF1<0可得答案.【詳解】因為SKIPIF1<0,所以SKIPIF1<0,則SKIPIF1<0①.,因為SKIPIF1<0是偶函數(shù),所以直線SKIPIF1<0是SKIPIF1<0圖象的對稱軸,所以SKIPIF1<0②.由①②可得,SKIPIF1<0,又SKIPIF1<0,所以SKIPIF1<0,則SKIPIF1<0,因為SKIPIF1<0在SKIPIF1<0上單調(diào),SKIPIF1<0的最小正周期為SKIPIF1<0,所以SKIPIF1<0,解得SKIPIF1<0,故SKIPIF1<0的最大值為5,經(jīng)檢驗,SKIPIF1<0在SKIPIF1<0上單調(diào).故選:C.2.與單調(diào)性有關(guān)一、單選題1.(2023·四川成都·石室中學(xué)??既#⒑瘮?shù)SKIPIF1<0的圖象向右平移SKIPIF1<0個單位長度后得到函數(shù)SKIPIF1<0的圖象,若SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,則SKIPIF1<0的最大值為(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.1【答案】A【分析】求出SKIPIF1<0的解析式,根據(jù)SKIPIF1<0在SKIPIF1<0上單調(diào)遞增得SKIPIF1<0可得答案.【詳解】將SKIPIF1<0的圖象向右平移SKIPIF1<0個單位長度后得到SKIPIF1<0的圖象,因為SKIPIF1<0,所以SKIPIF1<0,因為SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,所以SKIPIF1<0,即SKIPIF1<0,所以SKIPIF1<0的最大值為SKIPIF1<0.故選:A.2.(2023·山東青島·統(tǒng)考三模)將函數(shù)SKIPIF1<0圖象向左平移SKIPIF1<0后,得到SKIPIF1<0的圖象,若函數(shù)SKIPIF1<0在SKIPIF1<0上單調(diào)遞減,則SKIPIF1<0的取值范圍為(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】C【分析】根據(jù)三角函數(shù)的圖像變換及單調(diào)性計算即可.【詳解】SKIPIF1<0向左平移SKIPIF1<0,得SKIPIF1<0,SKIPIF1<0時,SKIPIF1<0,SKIPIF1<0在SKIPIF1<0上單調(diào)遞減,即SKIPIF1<0,故SKIPIF1<0.故選:C3.(2023·全國·高三專題練習(xí))已知函數(shù)SKIPIF1<0的最小正周期為SKIPIF1<0,且當(dāng)SKIPIF1<0時,函數(shù)SKIPIF1<0取最小值,若函數(shù)SKIPIF1<0在SKIPIF1<0上單調(diào)遞減,則a的最小值是(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】A【分析】根據(jù)最小正周期求出SKIPIF1<0,根據(jù)當(dāng)SKIPIF1<0時,函數(shù)取最小值,求出SKIPIF1<0,從而SKIPIF1<0,由SKIPIF1<0得到SKIPIF1<0,由單調(diào)性列出不等式,求出SKIPIF1<0,得到答案.【詳解】因為SKIPIF1<0,所以SKIPIF1<0,故SKIPIF1<0,所以SKIPIF1<0,解得:SKIPIF1<0,因為SKIPIF1<0,所以只有當(dāng)SKIPIF1<0時,SKIPIF1<0滿足要求,故SKIPIF1<0,因為SKIPIF1<0,所以SKIPIF1<0,故SKIPIF1<0,解得:SKIPIF1<0,故a的最小值為SKIPIF1<0.故選:A4.(2023春·湖南·高三校聯(lián)考階段練習(xí))已知函數(shù)SKIPIF1<0在SKIPIF1<0上單調(diào)遞減,則實數(shù)SKIPIF1<0的取值范圍是(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】A【分析】根據(jù)余弦函數(shù)圖像性質(zhì)可得單調(diào)區(qū)間長度小于等于半周期,即SKIPIF1<0可得SKIPIF1<0,再利用整體代換法即可求得SKIPIF1<0,取SKIPIF1<0即可得出結(jié)果.【詳解】函數(shù)SKIPIF1<0的最小正周期SKIPIF1<0,所以SKIPIF1<0,即SKIPIF1<0.當(dāng)SKIPIF1<0時,SKIPIF1<0,依題意知SKIPIF1<0,SKIPIF1<0,解得SKIPIF1<0,又SKIPIF1<0∴當(dāng)SKIPIF1<0時成立,SKIPIF1<0.故選:A.5.(2023·四川綿陽·統(tǒng)考三模)已知函數(shù)SKIPIF1<0是區(qū)間SKIPIF1<0上的增函數(shù),則正實數(shù)SKIPIF1<0的取值范圍是(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】C【分析】根據(jù)SKIPIF1<0求得SKIPIF1<0,再利用余弦函數(shù)的單調(diào)區(qū)間建立SKIPIF1<0即可求解.【詳解】SKIPIF1<0,SKIPIF1<0,又因為函數(shù)SKIPIF1<0是區(qū)間SKIPIF1<0上的增函數(shù),SKIPIF1<0解得SKIPIF1<0因為SKIPIF1<0為正實數(shù),所以SKIPIF1<0,從而SKIPIF1<0,又SKIPIF1<0,SKIPIF1<0所以正實數(shù)SKIPIF1<0的取值范圍是為SKIPIF1<0.故選:C6.(2023·廣東·校聯(lián)考模擬預(yù)測)若函數(shù)SKIPIF1<0是區(qū)間SKIPIF1<0上的減函數(shù),則SKIPIF1<0的取值范圍是(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】B【分析】根據(jù)函數(shù)SKIPIF1<0在區(qū)間SKIPIF1<0上是減函數(shù),對SKIPIF1<0進(jìn)行分類討論,再分別解之即可.【詳解】SKIPIF1<0函數(shù)SKIPIF1<0是區(qū)間SKIPIF1<0上的減函數(shù),則SKIPIF1<0①當(dāng)SKIPIF1<0時,則SKIPIF1<0,則由SKIPIF1<0得SKIPIF1<0,故SKIPIF1<0,則SKIPIF1<0無解.②當(dāng)SKIPIF1<0時,則SKIPIF1<0,則由SKIPIF1<0得SKIPIF1<0,故SKIPIF1<0,則有SKIPIF1<0.綜上①②知:SKIPIF1<0.故選:B7.(2023·上海奉賢·校考模擬預(yù)測)已知SKIPIF1<0,函數(shù)SKIPIF1<0在區(qū)間SKIPIF1<0上單調(diào)遞減,則SKIPIF1<0的取值范圍是(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】D【分析】根據(jù)正弦函數(shù)的單調(diào)性求出函數(shù)SKIPIF1<0的單調(diào)遞減區(qū)間,然后根據(jù)條件給出的區(qū)間建立不等式關(guān)系進(jìn)行求解即可.【詳解】由SKIPIF1<0,得SKIPIF1<0,SKIPIF1<0即函數(shù)的單調(diào)遞減區(qū)間為SKIPIF1<0,令SKIPIF1<0,則函數(shù)SKIPIF1<0其中一個的單調(diào)遞減區(qū)間為:SKIPIF1<0函數(shù)SKIPIF1<0在區(qū)間SKIPIF1<0內(nèi)單調(diào)遞減,則滿足SKIPIF1<0,得SKIPIF1<0,所以SKIPIF1<0的取值范圍是SKIPIF1<0.故選:D.8.(2023·全國·高三專題練習(xí))已知函數(shù)SKIPIF1<0在區(qū)間SKIPIF1<0上單調(diào)遞增,且在區(qū)間SKIPIF1<0上只取得一次最大值,則SKIPIF1<0的取值范圍是(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】B【分析】利用輔助角公式變形函數(shù)SKIPIF1<0,結(jié)合函數(shù)單調(diào)區(qū)間和取得最值的情況,利用整體法即可求得參數(shù)的范圍.【詳解】依題意,函數(shù)SKIPIF1<0,SKIPIF1<0,因為SKIPIF1<0在區(qū)間SKIPIF1<0上單調(diào)遞增,由SKIPIF1<0SKIPIF1<0,則SKIPIF1<0,于是SKIPIF1<0且SKIPIF1<0,解得SKIPIF1<0且SKIPIF1<0,即SKIPIF1<0,當(dāng)SKIPIF1<0時,SKIPIF1<0,因為SKIPIF1<0在區(qū)間SKIPIF1<0上只取得一次最大值,因此SKIPIF1<0,解得SKIPIF1<0,所以SKIPIF1<0的取值范圍是SKIPIF1<0.故選:B9.(2023·河北·統(tǒng)考模擬預(yù)測)已知函數(shù)SKIPIF1<0在區(qū)間SKIPIF1<0上不單調(diào),則SKIPIF1<0的最小正整數(shù)值為(

)A.1 B.2 C.3 D.4【答案】B【分析】由二倍角公式以及輔助角公式化簡SKIPIF1<0,進(jìn)而根據(jù)SKIPIF1<0為正整數(shù),由SKIPIF1<0的范圍,即可結(jié)合正弦函數(shù)的單調(diào)區(qū)間進(jìn)行求解.【詳解】SKIPIF1<0,由于SKIPIF1<0為正整數(shù),當(dāng)SKIPIF1<0時,SKIPIF1<0,此時SKIPIF1<0故此時SKIPIF1<0在SKIPIF1<0上單調(diào),SKIPIF1<0時不符合,當(dāng)SKIPIF1<0時,SKIPIF1<0,此時SKIPIF1<0且SKIPIF1<0故此時SKIPIF1<0在SKIPIF1<0先增后減,因此不單調(diào),SKIPIF1<0符合,當(dāng)SKIPIF1<0時,SKIPIF1<0,此時SKIPIF1<0,而SKIPIF1<0的周期為SKIPIF1<0,此時SKIPIF1<0在SKIPIF1<0上不單調(diào),SKIPIF1<0符合,但不是最小的正整數(shù),同理SKIPIF1<0要求符合,但不是最小的正整數(shù),故選:B10.(2023春·浙江杭州·高三浙江省杭州第二中學(xué)校聯(lián)考階段練習(xí))已知函數(shù)SKIPIF1<0在區(qū)間SKIPIF1<0上單調(diào)遞增,若存在唯一的實數(shù)SKIPIF1<0,使得SKIPIF1<0,則SKIPIF1<0的取值范圍是(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】B【分析】整理可得SKIPIF1<0,結(jié)合題意結(jié)合正弦函數(shù)性質(zhì)分析運(yùn)算.【詳解】由題意可得:SKIPIF1<0,且SKIPIF1<0,①因為SKIPIF1<0,可得SKIPIF1<0,若存在唯一的實數(shù)SKIPIF1<0,使得SKIPIF1<0,則SKIPIF1<0,解得SKIPIF1<0;②又因為SKIPIF1<0,且SKIPIF1<0,可得SKIPIF1<0,若函數(shù)SKIPIF1<0在區(qū)間SKIPIF1<0上單調(diào)遞增,注意到SKIPIF1<0,則SKIPIF1<0,解得SKIPIF1<0;綜上所述:SKIPIF1<0的取值范圍是SKIPIF1<0.故答案為:B.11.(2023·湖南長沙·長郡中學(xué)??级#┖瘮?shù)SKIPIF1<0恒有SKIPIF1<0,且SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,則SKIPIF1<0的值為(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0或SKIPIF1<0【答案】B【分析】由題意可得SKIPIF1<0時SKIPIF1<0取得最大值,可得SKIPIF1<0.根據(jù)單調(diào)性可得SKIPIF1<0,即SKIPIF1<0,根據(jù)SKIPIF1<0可求SKIPIF1<0的值.【詳解】因為恒有SKIPIF1<0,所以當(dāng)SKIPIF1<0時SKIPIF1<0取得最大值,所以SKIPIF1<0,得SKIPIF1<0.因為SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,所以SKIPIF1<0,即SKIPIF1<0,得SKIPIF1<0.因為SKIPIF1<0,所以SKIPIF1<0.因為SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,所以SKIPIF1<0,得SKIPIF1<0.所以SKIPIF1<0,且SKIPIF1<0,SKIPIF1<0,解得SKIPIF1<0,SKIPIF1<0.故SKIPIF1<0.故選:B.12.(2023·全國·高三專題練習(xí))已知函數(shù)SKIPIF1<0是偶函數(shù),且SKIPIF1<0在SKIPIF1<0上單調(diào),則SKIPIF1<0的最大值為(

)A.1 B.3 C.5 D.SKIPIF1<0【答案】C【分析】由SKIPIF1<0、SKIPIF1<0是偶函數(shù)得到SKIPIF1<0,再由SKIPIF1<0在SKIPIF1<0上單調(diào)可得SKIPIF1<0可得答案.【詳解】因為SKIPIF1<0,所以SKIPIF1<0,則SKIPIF1<0①.,因為SKIPIF1<0是偶函數(shù),所以直線SKIPIF1<0是SKIPIF1<0圖象的對稱軸,所以SKIPIF1<0②.由①②可得,SKIPIF1<0,又SKIPIF1<0,所以SKIPIF1<0,則SKIPIF1<0,因為SKIPIF1<0在SKIPIF1<0上單調(diào),SKIPIF1<0的最小正周期為SKIPIF1<0,所以SKIPIF1<0,解得SKIPIF1<0,故SKIPIF1<0的最大值為5,經(jīng)檢驗,SKIPIF1<0在SKIPIF1<0上單調(diào).故選:C.13.(2023春·安徽阜陽·高三??茧A段練習(xí))已知函數(shù)SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,且當(dāng)SKIPIF1<0時,SKIPIF1<0恒成立,則SKIPIF1<0的取值范圍為(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】B【分析】由已知,分別根據(jù)函數(shù)SKIPIF1<0在區(qū)間SKIPIF1<0上單調(diào)遞增,在SKIPIF1<0時,SKIPIF1<0恒成立,列出不等關(guān)系,通過賦值,并結(jié)合SKIPIF1<0的本身范圍進(jìn)行求解.【詳解】由已知,函數(shù)SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,所以SKIPIF1<0,解得:SKIPIF1<0,由于SKIPIF1<0,所以SKIPIF1<0,解得:SKIPIF1<0①又因為函數(shù)SKIPIF1<0在SKIPIF1<0上SKIPIF1<0恒成立,所以SKIPIF1<0,解得:SKIPIF1<0,由于SKIPIF1<0,所以SKIPIF1<0,解得:SKIPIF1<0②又因為SKIPIF1<0,當(dāng)SKIPIF1<0時,由①②可知:SKIPIF1<0,解得SKIPIF1<0;當(dāng)SKIPIF1<0時,由①②可知:SKIPIF1<0,解得SKIPIF1<0.所以SKIPIF1<0的取值范圍為SKIPIF1<0.故選:B.【點睛】在處理正弦型、余弦型三角函數(shù)性質(zhì)綜合問題時,通常使用整體代換的方法,將整體范圍滿足組對應(yīng)的單調(diào)性或者對應(yīng)的條件關(guān)系,羅列出等式或不等式關(guān)系,幫助我們進(jìn)行求解.3.與零點、極值點有關(guān)一、單選題1.(2023·貴州畢節(jié)·統(tǒng)考模擬預(yù)測)已知函數(shù)SKIPIF1<0,SKIPIF1<0是SKIPIF1<0的一個極值點,則SKIPIF1<0的最小值為(

)A.SKIPIF1<0 B.1 C.2 D.SKIPIF1<0【答案】A【分析】根據(jù)極值點的定義結(jié)合正弦函數(shù)圖像的性質(zhì),SKIPIF1<0是SKIPIF1<0的一條對稱軸,可求得SKIPIF1<0表達(dá)式,即可求出答案.【詳解】由SKIPIF1<0是SKIPIF1<0的一個極值點,結(jié)合正弦函數(shù)圖像的性質(zhì)可知,SKIPIF1<0是SKIPIF1<0的一條對稱軸,即SKIPIF1<0,SKIPIF1<0,求得SKIPIF1<0,SKIPIF1<0,SKIPIF1<0當(dāng)SKIPIF1<0時,SKIPIF1<0的最小值為SKIPIF1<0.故選:A.2.(2023·貴州畢節(jié)·統(tǒng)考模擬預(yù)測)已知函數(shù)SKIPIF1<0的最小正周期為T,若SKIPIF1<0,且SKIPIF1<0是SKIPIF1<0的一個極值點,則SKIPIF1<0(

)A.SKIPIF1<0 B.2 C.SKIPIF1<0 D.SKIPIF1<0【答案】D【分析】根據(jù)給定條件,利用正弦函數(shù)的周期確定SKIPIF1<0的范圍,再由極值點求出SKIPIF1<0的值作答.【詳解】函數(shù)SKIPIF1<0的最小正周期為SKIPIF1<0,于是SKIPIF1<0,解得SKIPIF1<0,因為SKIPIF1<0是SKIPIF1<0的一個極值點,則SKIPIF1<0,解得SKIPIF1<0,所以SKIPIF1<0.故選:D3.(2023·河南開封·開封高中??寄M預(yù)測)已知函數(shù)SKIPIF1<0SKIPIF1<0在SKIPIF1<0上有3個極值點,則SKIPIF1<0的取值范圍為(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】C【分析】由題意求出SKIPIF1<0的范圍,然后根據(jù)正弦函數(shù)的性質(zhì)及題意建立不等關(guān)系,求得參數(shù)的取值范圍即可.【詳解】因為SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0,因為函數(shù)SKIPIF1<0SKIPIF1<0在SKIPIF1<0上有3個極值點,所以SKIPIF1<0,解得SKIPIF1<0,所以SKIPIF1<0的取值范圍為SKIPIF1<0,故選:C.4.(2023·江蘇鎮(zhèn)江·江蘇省鎮(zhèn)江中學(xué)校考二模)已知函數(shù)SKIPIF1<0在SKIPIF1<0上存在零點,且在SKIPIF1<0上單調(diào),則SKIPIF1<0的取值范圍為(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】C【分析】由三角函數(shù)的圖象與性質(zhì)可得SKIPIF1<0及SKIPIF1<0,繼而可得SKIPIF1<0,計算可得結(jié)果.【詳解】化簡SKIPIF1<0,在SKIPIF1<0時,SKIPIF1<0,該區(qū)間上有零點,故SKIPIF1<0,又SKIPIF1<0時SKIPIF1<0單調(diào),則SKIPIF1<0,即SKIPIF1<0,故SKIPIF1<0故選:C5.(2023·江西上饒·校聯(lián)考模擬預(yù)測)若函數(shù)SKIPIF1<0在區(qū)間SKIPIF1<0上恰有唯一極值點,則SKIPIF1<0的取值范圍為(

)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【答案】B【分析】根據(jù)余弦函數(shù)的圖象特征,根據(jù)整體法即可列出不等式滿足的關(guān)系進(jìn)行求解.【詳解】當(dāng)SKIPIF1<0,SKIPIF1<0,由于SKIPIF1<0在區(qū)間SKIPIF1<0上恰有唯一極值點,故滿足SKIPIF1<0,解得SKIPIF1<0,故選:B.6.(2023·全國·高三專題練習(xí))已知函數(shù)SKIPIF1<0在SKIPIF1<0內(nèi)恰有4個極值點和3個零點,則實數(shù)SKIPIF1<0的取值范圍是(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】C【分析】輔助角化簡SKIPIF1<0,由已知SKIPIF1<0上SKIPIF1<0恰有4個極值點和3個零點,數(shù)形結(jié)合列不等式求參數(shù)SKIPIF1<0的范圍.【詳解】由SKIPIF1<0且SKIPIF1<0,因為SKIPIF1<0,所以SKIPIF1<0,又SKIPIF1<0在SKIPIF1<0內(nèi)恰有4個極值點和3個零點,由正弦函數(shù)的圖象知:SKIPIF1<0,解得:SKIPIF1<0,所以實數(shù)SKIPIF1<0的取值范圍是SKIPIF1<0.故選:C7.(2023·河南鄭州·三模)設(shè)函數(shù)SKIPIF1<0在區(qū)間SKIPIF1<0內(nèi)恰有三個極值點、兩個零點,則SKIPIF1<0的取值范圍是(

)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【答案】A【分析】根據(jù)正弦函數(shù)的性質(zhì)列不等式求解.【詳解】SKIPIF1<0時,SKIPIF1<0,SKIPIF1<0,因此由題意SKIPIF1<0,解得SKIPIF1<0.故選:A.8.(2023·貴州黔東南·凱里一中??既#┮阎瘮?shù)SKIPIF1<0在SKIPIF1<0有且僅有兩個零點,則SKIPIF1<0的取值范圍是(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】C【分析】化簡得到SKIPIF1<0,結(jié)合SKIPIF1<0和三角函數(shù)的性質(zhì),列出不等式,即可求解.【詳解】由函數(shù)SKIPIF1<0,因為SKIPIF1<0,可得SKIPIF1<0,則SKIPIF1<0,又由函數(shù)SKIPIF1<0在SKIPIF1<0僅有兩個零點,且SKIPIF1<0,則滿足SKIPIF1<0,解得SKIPIF1<0.故選:C.9.(2023·陜西商洛·統(tǒng)考三模)記函數(shù)SKIPIF1<0的最小正周期為SKIPIF1<0,且SKIPIF1<0,若SKIPIF1<0在SKIPIF1<0上恰有3個零點,則SKIPIF1<0的取值范圍為(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】A【分析】由SKIPIF1<0求得SKIPIF1<0,使用整體換元法求得SKIPIF1<0的范圍,根據(jù)SKIPIF1<0在SKIPIF1<0上恰有3個零點列出滿足的不等式關(guān)系求解即可.【詳解】因為SKIPIF1<0的最小正周期為T,所以SKIPIF1<0.又SKIPIF1<0,所以SKIPIF1<0,當(dāng)SKIPIF1<0時,SKIPIF1<0,由SKIPIF1<0在SKIPIF1<0上恰有3個零點,得SKIPIF1<0,解得SKIPIF1<0.故選:A10.(2023·內(nèi)蒙古赤峰·??寄M預(yù)測)已知函數(shù)SKIPIF1<0,若SKIPIF1<0在區(qū)間SKIPIF1<0上有且僅有SKIPIF1<0個零點和SKIPIF1<0條對稱軸,則SKIPIF1<0的取值范圍是(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論