版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
2024-2025學(xué)年甘肅省武威一中高中畢業(yè)生(第二次)復(fù)習(xí)統(tǒng)一檢測試題數(shù)學(xué)試題注意事項(xiàng)1.考生要認(rèn)真填寫考場號(hào)和座位序號(hào)。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.中國的國旗和國徽上都有五角星,正五角星與黃金分割有著密切的聯(lián)系,在如圖所示的正五角星中,以、、、、為頂點(diǎn)的多邊形為正五邊形,且,則()A. B. C. D.2.已知數(shù)列是公比為的正項(xiàng)等比數(shù)列,若、滿足,則的最小值為()A. B. C. D.3.已知函數(shù),若對(duì)任意,都有成立,則實(shí)數(shù)的取值范圍是()A. B. C. D.4.已知集合A={x∈N|x2<8x},B={2,3,6},C={2,3,7},則=()A.{2,3,4,5} B.{2,3,4,5,6}C.{1,2,3,4,5,6} D.{1,3,4,5,6,7}5.已知向量,且,則等于()A.4 B.3 C.2 D.16.已知單位向量,的夾角為,若向量,,且,則()A.2 B.2 C.4 D.67.已知拋物線的焦點(diǎn)為,準(zhǔn)線與軸的交點(diǎn)為,點(diǎn)為拋物線上任意一點(diǎn)的平分線與軸交于,則的最大值為A. B. C. D.8.已知a,b∈R,,則()A.b=3a B.b=6a C.b=9a D.b=12a9.設(shè),分別為雙曲線(a>0,b>0)的左、右焦點(diǎn),過點(diǎn)作圓的切線與雙曲線的左支交于點(diǎn)P,若,則雙曲線的離心率為()A. B. C. D.10.有一改形塔幾何體由若千個(gè)正方體構(gòu)成,構(gòu)成方式如圖所示,上層正方體下底面的四個(gè)頂點(diǎn)是下層正方體上底面各邊的中點(diǎn).已知最底層正方體的棱長為8,如果改形塔的最上層正方體的邊長小于1,那么該塔形中正方體的個(gè)數(shù)至少是()A.8 B.7 C.6 D.411.《易·系辭上》有“河出圖,洛出書”之說,河圖、洛書是中華文化,陰陽術(shù)數(shù)之源,其中河圖的排列結(jié)構(gòu)是一、六在后,二、七在前,三、八在左,四、九在右,五、十背中.如圖,白圈為陽數(shù),黑點(diǎn)為陰數(shù).若從這10個(gè)數(shù)中任取3個(gè)數(shù),則這3個(gè)數(shù)中至少有2個(gè)陽數(shù)且能構(gòu)成等差數(shù)列的概率為()A. B. C. D.12.從集合中隨機(jī)選取一個(gè)數(shù)記為,從集合中隨機(jī)選取一個(gè)數(shù)記為,則在方程表示雙曲線的條件下,方程表示焦點(diǎn)在軸上的雙曲線的概率為()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.平面直角坐標(biāo)系中,O為坐標(biāo)原點(diǎn),己知A(3,1),B(-1,3),若點(diǎn)C滿足,其中α,β∈R,且α+β=1,則點(diǎn)C的軌跡方程為14.已知下列命題:①命題“?x0∈R,”的否定是“?x∈R,x2+1<3x”;②已知p,q為兩個(gè)命題,若“p∨q”為假命題,則“”為真命題;③“a>2”是“a>5”的充分不必要條件;④“若xy=0,則x=0且y=0”的逆否命題為真命題.其中所有真命題的序號(hào)是________.15.已知若存在,使得成立的最大正整數(shù)為6,則的取值范圍為________.16.在回歸分析的問題中,我們可以通過對(duì)數(shù)變換把非線性回歸方程,()轉(zhuǎn)化為線性回歸方程,即兩邊取對(duì)數(shù),令,得到.受其啟發(fā),可求得函數(shù)()的值域是_________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知函數(shù)的定義域?yàn)?,且滿足,當(dāng)時(shí),有,且.(1)求不等式的解集;(2)對(duì)任意,恒成立,求實(shí)數(shù)的取值范圍.18.(12分)已知矩陣,,若矩陣,求矩陣的逆矩陣.19.(12分)高鐵和航空的飛速發(fā)展不僅方便了人們的出行,更帶動(dòng)了我國經(jīng)濟(jì)的巨大發(fā)展.據(jù)統(tǒng)計(jì),在2018年這一年內(nèi)從市到市乘坐高鐵或飛機(jī)出行的成年人約為萬人次.為了解乘客出行的滿意度,現(xiàn)從中隨機(jī)抽取人次作為樣本,得到下表(單位:人次):滿意度老年人中年人青年人乘坐高鐵乘坐飛機(jī)乘坐高鐵乘坐飛機(jī)乘坐高鐵乘坐飛機(jī)10分(滿意)1212022015分(一般)2362490分(不滿意)106344(1)在樣本中任取個(gè),求這個(gè)出行人恰好不是青年人的概率;(2)在2018年從市到市乘坐高鐵的所有成年人中,隨機(jī)選取人次,記其中老年人出行的人次為.以頻率作為概率,求的分布列和數(shù)學(xué)期望;(3)如果甲將要從市出發(fā)到市,那么根據(jù)表格中的數(shù)據(jù),你建議甲是乘坐高鐵還是飛機(jī)?并說明理由.20.(12分)在直角坐標(biāo)系中,直線的參數(shù)方程為(為參數(shù)),直線的參數(shù)方程為,(為參數(shù)).以坐標(biāo)原點(diǎn)為極點(diǎn),軸正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.(Ⅰ)求的極坐標(biāo)方程和的直角坐標(biāo)方程;(Ⅱ)設(shè)分別交于兩點(diǎn)(與原點(diǎn)不重合),求的最小值.21.(12分)已知a>0,b>0,a+b=2.(Ⅰ)求的最小值;(Ⅱ)證明:22.(10分)已知橢圓與x軸負(fù)半軸交于,離心率.(1)求橢圓C的方程;(2)設(shè)直線與橢圓C交于兩點(diǎn),連接AM,AN并延長交直線x=4于兩點(diǎn),若,直線MN是否恒過定點(diǎn),如果是,請(qǐng)求出定點(diǎn)坐標(biāo),如果不是,請(qǐng)說明理由.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.A【解析】
利用平面向量的概念、平面向量的加法、減法、數(shù)乘運(yùn)算的幾何意義,便可解決問題.【詳解】解:.故選:A本題以正五角星為載體,考查平面向量的概念及運(yùn)算法則等基礎(chǔ)知識(shí),考查運(yùn)算求解能力,考查化歸與轉(zhuǎn)化思想,屬于基礎(chǔ)題.2.B【解析】
利用等比數(shù)列的通項(xiàng)公式和指數(shù)冪的運(yùn)算法則、指數(shù)函數(shù)的單調(diào)性求得再根據(jù)此范圍求的最小值.【詳解】數(shù)列是公比為的正項(xiàng)等比數(shù)列,、滿足,由等比數(shù)列的通項(xiàng)公式得,即,,可得,且、都是正整數(shù),求的最小值即求在,且、都是正整數(shù)范圍下求最小值和的最小值,討論、取值.當(dāng)且時(shí),的最小值為.故選:B.本題考查等比數(shù)列的通項(xiàng)公式和指數(shù)冪的運(yùn)算法則、指數(shù)函數(shù)性質(zhì)等基礎(chǔ)知識(shí),考查數(shù)學(xué)運(yùn)算求解能力和分類討論思想,是中等題.3.D【解析】
先將所求問題轉(zhuǎn)化為對(duì)任意恒成立,即得圖象恒在函數(shù)圖象的上方,再利用數(shù)形結(jié)合即可解決.【詳解】由得,由題意函數(shù)得圖象恒在函數(shù)圖象的上方,作出函數(shù)的圖象如圖所示過原點(diǎn)作函數(shù)的切線,設(shè)切點(diǎn)為,則,解得,所以切線斜率為,所以,解得.故選:D.本題考查導(dǎo)數(shù)在不等式恒成立中的應(yīng)用,考查了學(xué)生轉(zhuǎn)化與化歸思想以及數(shù)形結(jié)合的思想,是一道中檔題.4.C【解析】
根據(jù)集合的并集、補(bǔ)集的概念,可得結(jié)果.【詳解】集合A={x∈N|x2<8x}={x∈N|0<x<8},所以集合A={1,2,3,4,5,6,7}B={2,3,6},C={2,3,7},故={1,4,5,6},所以={1,2,3,4,5,6}.故選:C.本題考查的是集合并集,補(bǔ)集的概念,屬基礎(chǔ)題.5.D【解析】
由已知結(jié)合向量垂直的坐標(biāo)表示即可求解.【詳解】因?yàn)?,且,,則.故選:.本題主要考查了向量垂直的坐標(biāo)表示,意在考查學(xué)生對(duì)這些知識(shí)的理解掌握水平,屬于基礎(chǔ)題.6.C【解析】
根據(jù)列方程,由此求得的值,進(jìn)而求得.【詳解】由于,所以,即,解得.所以所以.故選:C本小題主要考查向量垂直的表示,考查向量數(shù)量積的運(yùn)算,考查向量模的求法,屬于基礎(chǔ)題.7.A【解析】
求出拋物線的焦點(diǎn)坐標(biāo),利用拋物線的定義,轉(zhuǎn)化求出比值,,求出等式左邊式子的范圍,將等式右邊代入,從而求解.【詳解】解:由題意可得,焦點(diǎn)F(1,0),準(zhǔn)線方程為x=?1,
過點(diǎn)P作PM垂直于準(zhǔn)線,M為垂足,
由拋物線的定義可得|PF|=|PM|=x+1,
記∠KPF的平分線與軸交于
根據(jù)角平分線定理可得,,當(dāng)時(shí),,當(dāng)時(shí),,,綜上:.故選:A.本題主要考查拋物線的定義、性質(zhì)的簡單應(yīng)用,直線的斜率公式、利用數(shù)形結(jié)合進(jìn)行轉(zhuǎn)化是解決本題的關(guān)鍵.考查學(xué)生的計(jì)算能力,屬于中檔題.8.C【解析】
兩復(fù)數(shù)相等,實(shí)部與虛部對(duì)應(yīng)相等.【詳解】由,得,即a,b=1.∴b=9a.故選:C.本題考查復(fù)數(shù)的概念,屬于基礎(chǔ)題.9.C【解析】
設(shè)過點(diǎn)作圓的切線的切點(diǎn)為,根據(jù)切線的性質(zhì)可得,且,再由和雙曲線的定義可得,得出為中點(diǎn),則有,得到,即可求解.【詳解】設(shè)過點(diǎn)作圓的切線的切點(diǎn)為,,所以是中點(diǎn),,,.故選:C.本題考查雙曲線的性質(zhì)、雙曲線定義、圓的切線性質(zhì),意在考查直觀想象、邏輯推理和數(shù)學(xué)計(jì)算能力,屬于中檔題.10.A【解析】
則從下往上第二層正方體的棱長為:,從下往上第三層正方體的棱長為:,從下往上第四層正方體的棱長為:,以此類推,能求出改形塔的最上層正方體的邊長小于1時(shí)該塔形中正方體的個(gè)數(shù)的最小值的求法.【詳解】最底層正方體的棱長為8,則從下往上第二層正方體的棱長為:,從下往上第三層正方體的棱長為:,從下往上第四層正方體的棱長為:,從下往上第五層正方體的棱長為:,從下往上第六層正方體的棱長為:,從下往上第七層正方體的棱長為:,從下往上第八層正方體的棱長為:,∴改形塔的最上層正方體的邊長小于1,那么該塔形中正方體的個(gè)數(shù)至少是8.故選:A.本小題主要考查正方體有關(guān)計(jì)算,屬于基礎(chǔ)題.11.C【解析】
先根據(jù)組合數(shù)計(jì)算出所有的情況數(shù),再根據(jù)“3個(gè)數(shù)中至少有2個(gè)陽數(shù)且能構(gòu)成等差數(shù)列”列舉得到滿足條件的情況,由此可求解出對(duì)應(yīng)的概率.【詳解】所有的情況數(shù)有:種,3個(gè)數(shù)中至少有2個(gè)陽數(shù)且能構(gòu)成等差數(shù)列的情況有:,共種,所以目標(biāo)事件的概率.故選:C.本題考查概率與等差數(shù)列的綜合,涉及到背景文化知識(shí),難度一般.求解該類問題可通過古典概型的概率求解方法進(jìn)行分析;當(dāng)情況數(shù)較多時(shí),可考慮用排列數(shù)、組合數(shù)去計(jì)算.12.A【解析】
設(shè)事件A為“方程表示雙曲線”,事件B為“方程表示焦點(diǎn)在軸上的雙曲線”,分別計(jì)算出,再利用公式計(jì)算即可.【詳解】設(shè)事件A為“方程表示雙曲線”,事件B為“方程表示焦點(diǎn)在軸上的雙曲線”,由題意,,,則所求的概率為.故選:A.本題考查利用定義計(jì)算條件概率的問題,涉及到雙曲線的定義,是一道容易題.二、填空題:本題共4小題,每小題5分,共20分。13.【解析】
根據(jù)向量共線定理得A,B,C三點(diǎn)共線,再根據(jù)點(diǎn)斜式得結(jié)果【詳解】因?yàn)?且α+β=1,所以A,B,C三點(diǎn)共線,因此點(diǎn)C的軌跡為直線AB:本題考查向量共線定理以及直線點(diǎn)斜式方程,考查基本分析求解能力,屬中檔題.14.②【解析】命題“?x∈R,x2+1>3x”的否定是“?x∈R,x2+1≤3x”,故①錯(cuò)誤;“p∨q”為假命題說明p假q假,則(p)∧(q)為真命題,故②正確;a>5?a>2,但a>2?/a>5,故“a>2”是“a>5”的必要不充分條件,故③錯(cuò)誤;因?yàn)椤叭魓y=0,則x=0或y=0”,所以原命題為假命題,故其逆否命題也為假命題,故④錯(cuò)誤.15.【解析】
由題意得,分類討論作出函數(shù)圖象,求得最值解不等式組即可.【詳解】原問題等價(jià)于,當(dāng)時(shí),函數(shù)圖象如圖此時(shí),則,解得:;當(dāng)時(shí),函數(shù)圖象如圖此時(shí),則,解得:;當(dāng)時(shí),函數(shù)圖象如圖此時(shí),則,解得:;當(dāng)時(shí),函數(shù)圖象如圖此時(shí),則,解得:;綜上,滿足條件的取值范圍為.故答案為:本題主要考查了對(duì)勾函數(shù)的圖象與性質(zhì),函數(shù)的最值求解,存在性問題的求解等,考查了分類討論,轉(zhuǎn)化與化歸的思想.16.【解析】
轉(zhuǎn)化()為,即得解.【詳解】由題意:().故答案為:本題考查類比法求函數(shù)的值域,考查了學(xué)生邏輯推理,轉(zhuǎn)化劃歸,數(shù)學(xué)運(yùn)算的能力,屬于中檔題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(1);(2).【解析】
(1)利用定義法求出函數(shù)在上單調(diào)遞增,由和,求出,求出,運(yùn)用單調(diào)性求出不等式的解集;(2)由于恒成立,由(1)得出在上單調(diào)遞增,恒成立,設(shè),利用三角恒等變換化簡,結(jié)合恒成立的條件,構(gòu)造新函數(shù),利用單調(diào)性和最值,求出實(shí)數(shù)的取值范圍.【詳解】(1)設(shè),,所以函數(shù)在上單調(diào)遞增,又因?yàn)楹停瑒t,所以得解得,即,故的取值范圍為;(2)由于恒成立,恒成立,設(shè),則,令,則,所以在區(qū)間上單調(diào)遞增,所以,根據(jù)條件,只要,所以.本題考查利用定義法求函數(shù)的單調(diào)性和利用單調(diào)性求不等式的解集,考查不等式恒成立問題,還運(yùn)用降冪公式、兩角和與差的余弦公式、輔助角公式,考查轉(zhuǎn)化思想和解題能力.18..【解析】試題分析:,所以.試題解析:B.因?yàn)?,所以?9.(1)(2)分布列見解析,數(shù)學(xué)期望(3)建議甲乘坐高鐵從市到市.見解析【解析】
(1)根據(jù)分層抽樣的特征可以得知,樣本中出行的老年人、中年人、青年人人次分別為,,,即可按照古典概型的概率計(jì)算公式計(jì)算得出;(2)依題意可知服從二項(xiàng)分布,先計(jì)算出隨機(jī)選取人次,此人為老年人概率是,所以,即,即可求出的分布列和數(shù)學(xué)期望;(3)可以計(jì)算滿意度均值來比較乘坐高鐵還是飛機(jī).【詳解】(1)設(shè)事件:“在樣本中任取個(gè),這個(gè)出行人恰好不是青年人”為,由表可得:樣本中出行的老年人、中年人、青年人人次分別為,,,所以在樣本中任取個(gè),這個(gè)出行人恰好不是青年人的概率.(2)由題意,的所有可能取值為:因?yàn)樵?018年從市到市乘坐高鐵的所有成年人中,隨機(jī)選取人次,此人為老年人概率是,所以,,,所以隨機(jī)變量的分布列為:故.(3)答案不唯一,言之有理即可.如可以從滿意度的均值來分析問題,參考答案如下:由表可知,乘坐高鐵的人滿意度均值為:乘坐飛機(jī)的人滿意度均值為:因?yàn)椋越ㄗh甲乘坐高鐵從市到市.本題主要考查了分層抽樣的應(yīng)用、古典概型的概率計(jì)算、以及離散型隨機(jī)變量的分布列和期望的計(jì)算,解題關(guān)鍵是對(duì)題意的理解,概率類型的判斷,屬于中檔題.20.(Ⅰ)直線的極坐標(biāo)方程為,直線的極坐標(biāo)方程為,的直角坐標(biāo)方程為;(Ⅱ)2.【解析】
(Ⅰ)由定義可直接寫出直線的極坐標(biāo)方程,對(duì)曲線同乘可得:,轉(zhuǎn)化成直角坐標(biāo)為;(Ⅱ)分別聯(lián)立兩直線和曲線的方程,由得,由得,則
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 二零二五年通信設(shè)備采購與維護(hù)合同2篇
- 電梯安裝工程2025年度技術(shù)咨詢合同6篇
- 二零二五年度論壇活動(dòng)策劃服務(wù)合同模板6篇
- 二零二五版搬家服務(wù)及家居清潔維護(hù)合同3篇
- 二零二五年度廢鋼市場供應(yīng)與環(huán)保處理服務(wù)合同3篇
- 二零二五版房屋買賣及鄰里關(guān)系協(xié)調(diào)服務(wù)合同3篇
- 二零二五年度股東干股合作企業(yè)社會(huì)責(zé)任履行合同3篇
- 幼兒園2025年度食品供應(yīng)合同2篇
- 二零二五版租賃房屋改造裝修合同3篇
- 二零二五年酒店股權(quán)分割與資產(chǎn)重組咨詢合同3篇
- 2023社會(huì)責(zé)任報(bào)告培訓(xùn)講稿
- 2023核電廠常規(guī)島及輔助配套設(shè)施建設(shè)施工技術(shù)規(guī)范 第8部分 保溫及油漆
- 2025年蛇年春聯(lián)帶橫批-蛇年對(duì)聯(lián)大全新春對(duì)聯(lián)集錦
- 表B. 0 .11工程款支付報(bào)審表
- 警務(wù)航空無人機(jī)考試題庫及答案
- 空氣自動(dòng)站儀器運(yùn)營維護(hù)項(xiàng)目操作說明以及簡單故障處理
- 新生兒窒息復(fù)蘇正壓通氣課件
- 法律顧問投標(biāo)書
- 班主任培訓(xùn)簡報(bào)4篇(一)
- 成都市數(shù)學(xué)八年級(jí)上冊(cè)期末試卷含答案
- T-CHSA 020-2023 上頜骨缺損手術(shù)功能修復(fù)重建的專家共識(shí)
評(píng)論
0/150
提交評(píng)論