新高考數(shù)學(xué)二輪復(fù)習(xí)培優(yōu)專題訓(xùn)練專題07 函數(shù)的性質(zhì)及其應(yīng)用(解析版)_第1頁
新高考數(shù)學(xué)二輪復(fù)習(xí)培優(yōu)專題訓(xùn)練專題07 函數(shù)的性質(zhì)及其應(yīng)用(解析版)_第2頁
新高考數(shù)學(xué)二輪復(fù)習(xí)培優(yōu)專題訓(xùn)練專題07 函數(shù)的性質(zhì)及其應(yīng)用(解析版)_第3頁
新高考數(shù)學(xué)二輪復(fù)習(xí)培優(yōu)專題訓(xùn)練專題07 函數(shù)的性質(zhì)及其應(yīng)用(解析版)_第4頁
新高考數(shù)學(xué)二輪復(fù)習(xí)培優(yōu)專題訓(xùn)練專題07 函數(shù)的性質(zhì)及其應(yīng)用(解析版)_第5頁
已閱讀5頁,還剩14頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

專題07函數(shù)的性質(zhì)及其應(yīng)用1、(2023年新課標全國Ⅱ卷)若SKIPIF1<0為偶函數(shù),則SKIPIF1<0(

).A.SKIPIF1<0 B.0 C.SKIPIF1<0 D.1【答案】B【詳解】因為SKIPIF1<0為偶函數(shù),則SKIPIF1<0,解得SKIPIF1<0,當SKIPIF1<0時,SKIPIF1<0,SKIPIF1<0,解得SKIPIF1<0或SKIPIF1<0,則其定義域為SKIPIF1<0或SKIPIF1<0,關(guān)于原點對稱.SKIPIF1<0,故此時SKIPIF1<0為偶函數(shù).故選:B.2、(2023年新課標全國Ⅰ卷)設(shè)函數(shù)SKIPIF1<0在區(qū)間SKIPIF1<0上單調(diào)遞減,則SKIPIF1<0的取值范圍是(

)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【答案】D【詳解】函數(shù)SKIPIF1<0在R上單調(diào)遞增,而函數(shù)SKIPIF1<0在區(qū)間SKIPIF1<0上單調(diào)遞減,則有函數(shù)SKIPIF1<0在區(qū)間SKIPIF1<0上單調(diào)遞減,因此SKIPIF1<0,解得SKIPIF1<0,所以SKIPIF1<0的取值范圍是SKIPIF1<0.故選:D3、(2023年全國乙卷數(shù)學(xué)(文)(理))已知SKIPIF1<0是偶函數(shù),則SKIPIF1<0(

)A.SKIPIF1<0 B.SKIPIF1<0 C.1 D.2【答案】D【詳解】因為SKIPIF1<0為偶函數(shù),則SKIPIF1<0,又因為SKIPIF1<0不恒為0,可得SKIPIF1<0,即SKIPIF1<0,則SKIPIF1<0,即SKIPIF1<0,解得SKIPIF1<0.故選:D.4、(2023年新高考天津卷)函數(shù)SKIPIF1<0的圖象如下圖所示,則SKIPIF1<0的解析式可能為(

A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【答案】D【詳解】由圖知:函數(shù)圖象關(guān)于y軸對稱,其為偶函數(shù),且SKIPIF1<0,由SKIPIF1<0且定義域為R,即B中函數(shù)為奇函數(shù),排除;當SKIPIF1<0時SKIPIF1<0、SKIPIF1<0,即A、C中SKIPIF1<0上函數(shù)值為正,排除;故選:D5、【2022年全國甲卷】函數(shù)y=3x?A. B.C. D.【答案】A【解析】令f(x)=(3則f(?x)=(3所以f(x)為奇函數(shù),排除BD;又當x∈(0,π2)時,3故選:A.6、【2022年全國乙卷】已知函數(shù)f(x),g(x)的定義域均為R,且f(x)+g(2?x)=5,g(x)?f(x?4)=7.若y=g(x)的圖像關(guān)于直線x=2對稱,g(2)=4,則k=122A.?21 B.?22 C.?23 D.?24【答案】D【解析】因為y=g(x)的圖像關(guān)于直線x=2對稱,所以g2?x因為g(x)?f(x?4)=7,所以g(x+2)?f(x?2)=7,即g(x+2)=7+f(x?2),因為f(x)+g(2?x)=5,所以f(x)+g(x+2)=5,代入得f(x)+7+f(x?2)=5,即所以f3f4因為f(x)+g(2?x)=5,所以f(0)+g(2)=5,即f0=1,所以因為g(x)?f(x?4)=7,所以g(x+4)?f(x)=7,又因為f(x)+g(2?x)=5,聯(lián)立得,g2?x所以y=g(x)的圖像關(guān)于點3,6中心對稱,因為函數(shù)g(x)的定義域為R,所以g因為f(x)+g(x+2)=5,所以f1所以k=122故選:D7、【2022年新高考2卷】已知函數(shù)f(x)的定義域為R,且f(x+y)+f(x?y)=f(x)f(y),f(1)=1,則k=122A.?3 B.?2 C.0 D.1【答案】A【解析】因為fx+y+fx?y=fxfy,令x=1,y=0可得,2f1=f1f0,所以f0=2,令x=0可得,fy+f?y=2fy,即fy=f因為f2=f1?f0=1?2=?1,f3一個周期內(nèi)的f1所以k=122故選:A.8、(2020年全國統(tǒng)一高考數(shù)學(xué)試卷(理科)(新課標Ⅱ))設(shè)函數(shù)SKIPIF1<0,則f(x)()A.是偶函數(shù),且在SKIPIF1<0單調(diào)遞增 B.是奇函數(shù),且在SKIPIF1<0單調(diào)遞減C.是偶函數(shù),且在SKIPIF1<0單調(diào)遞增 D.是奇函數(shù),且在SKIPIF1<0單調(diào)遞減【答案】D【解析】由SKIPIF1<0得SKIPIF1<0定義域為SKIPIF1<0,關(guān)于坐標原點對稱,又SKIPIF1<0,SKIPIF1<0為定義域上的奇函數(shù),可排除AC;當SKIPIF1<0時,SKIPIF1<0,SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,SKIPIF1<0在SKIPIF1<0上單調(diào)遞減,SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,排除B;當SKIPIF1<0時,SKIPIF1<0,SKIPIF1<0在SKIPIF1<0上單調(diào)遞減,SKIPIF1<0在定義域內(nèi)單調(diào)遞增,根據(jù)復(fù)合函數(shù)單調(diào)性可知:SKIPIF1<0在SKIPIF1<0上單調(diào)遞減,D正確.故選:D.9、(2019年全國統(tǒng)一高考數(shù)學(xué)試卷(文科)(新課標Ⅲ))設(shè)SKIPIF1<0是定義域為SKIPIF1<0的偶函數(shù),且在SKIPIF1<0單調(diào)遞減,則A.SKIPIF1<0B.SKIPIF1<0C.SKIPIF1<0D.SKIPIF1<0【答案】C【解析】SKIPIF1<0是R的偶函數(shù),SKIPIF1<0.SKIPIF1<0,又SKIPIF1<0在(0,+∞)單調(diào)遞減,∴SKIPIF1<0,SKIPIF1<0,故選C.題組一運用函數(shù)的性質(zhì)進行圖像的辨析1-1、(2023·安徽蚌埠·統(tǒng)考三模)函數(shù)SKIPIF1<0的圖象大致為(

)A. B.C. D.【答案】A【詳解】依題意,因為SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0為奇函數(shù),所以D選項錯誤;因為SKIPIF1<0,所以C選項錯誤;因為SKIPIF1<0,所以B選項錯誤;因此排除了BCD選項,而A選項圖象符合函數(shù)SKIPIF1<0的性質(zhì).故選:A.1-2、(2022·江蘇無錫·高三期末)已知函數(shù)SKIPIF1<0,則函數(shù)SKIPIF1<0的圖象可能是()A. B.C. D.【答案】A【解析】函數(shù)的定義域為:SKIPIF1<0,SKIPIF1<0,SKIPIF1<0為奇函數(shù),圖象關(guān)于原點對稱,排除D.SKIPIF1<0時,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0時,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0時,SKIPIF1<0.故選:A.1-3、(2022·廣東汕尾·高三期末)我國著名數(shù)學(xué)家華羅庚先生曾說:數(shù)缺形時少直觀,形缺數(shù)時難入微,數(shù)形結(jié)合百般好,隔裂分家萬事休,在數(shù)學(xué)的學(xué)習(xí)和研究中,函數(shù)的解析式常用來研究函數(shù)圖象的特征,函數(shù)SKIPIF1<0的圖象大致為()A. B.C. D.【答案】A【解析】SKIPIF1<0所以函數(shù)SKIPIF1<0為奇函數(shù),圖象關(guān)于原點對稱,排除B,D;又SKIPIF1<0,排除C,故選:A.1-4、(2023·四川成都·石室中學(xué)??寄M預(yù)測)函數(shù)SKIPIF1<0的部分圖象大致形狀是(

)A.

B.

C.

D.

【答案】C【詳解】由SKIPIF1<0,SKIPIF1<0,定義域關(guān)于原點對稱,得SKIPIF1<0,則函數(shù)SKIPIF1<0是偶函數(shù),圖象關(guān)于SKIPIF1<0軸對稱,排除BD;當SKIPIF1<0時,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0,排除A.故選:C.題組二函數(shù)的性質(zhì)2-1、(2023·黑龍江大慶·統(tǒng)考一模)已知函數(shù)SKIPIF1<0,SKIPIF1<0的定義域均為SKIPIF1<0,且SKIPIF1<0,SKIPIF1<0,若SKIPIF1<0的圖象關(guān)于直線SKIPIF1<0對稱,SKIPIF1<0,則SKIPIF1<0(

)A.SKIPIF1<0 B.SKIPIF1<0 C.0 D.2【答案】A【分析】依題意可得SKIPIF1<0,再由SKIPIF1<0可得SKIPIF1<0,即可得到SKIPIF1<0為偶函數(shù),再由SKIPIF1<0得到SKIPIF1<0,即可得到SKIPIF1<0的周期為SKIPIF1<0,再根據(jù)所給條件計算可得.【詳解】因為SKIPIF1<0的圖象關(guān)于直線SKIPIF1<0對稱,所以SKIPIF1<0,所以SKIPIF1<0,因為SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0為偶函數(shù).因為SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0的周期為SKIPIF1<0,所以SKIPIF1<0.因為SKIPIF1<0,所以SKIPIF1<0,故SKIPIF1<0.故選:A.2-2、(2023·云南·統(tǒng)考一模)(多選題)已知SKIPIF1<0是定義在SKIPIF1<0上的偶函數(shù),SKIPIF1<0是定義在SKIPIF1<0上的奇函數(shù),且SKIPIF1<0,SKIPIF1<0在SKIPIF1<0單調(diào)遞減,則(

)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【答案】BD【分析】由奇偶函數(shù)的單調(diào)性的關(guān)系確定兩函數(shù)的單調(diào)性,再結(jié)合SKIPIF1<0,SKIPIF1<0逐項判斷即可.【詳解】因為SKIPIF1<0是定義在R上的偶函數(shù),SKIPIF1<0是定義在R上的奇函數(shù),且兩函數(shù)在SKIPIF1<0上單調(diào)遞減,所以SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,SKIPIF1<0在SKIPIF1<0上單調(diào)遞減,SKIPIF1<0在SKIPIF1<0上單調(diào)遞減,所以SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,所以BD正確,C錯誤;若SKIPIF1<0,則SKIPIF1<0,A錯誤.故選:BD.2-3、(2022·山東煙臺·高三期末)若定義在R上的奇函數(shù)SKIPIF1<0在SKIPIF1<0上單調(diào)遞減,且SKIPIF1<0,則滿足SKIPIF1<0的x的取值范圍是()A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【答案】C【解析】由題意,定義在R上的奇函數(shù)SKIPIF1<0在SKIPIF1<0上單調(diào)遞減,且SKIPIF1<0,則SKIPIF1<0在SKIPIF1<0上單調(diào)遞減,且SKIPIF1<0,SKIPIF1<0,因為SKIPIF1<0,當SKIPIF1<0時,即SKIPIF1<0,此時滿足不等式SKIPIF1<0;當SKIPIF1<0時,即SKIPIF1<0,可得SKIPIF1<0,且滿足SKIPIF1<0,則SKIPIF1<0,解得SKIPIF1<0;當SKIPIF1<0時,即SKIPIF1<0,可得SKIPIF1<0,且滿足SKIPIF1<0,則SKIPIF1<0,解得SKIPIF1<0,綜上可得,不等式的解集為SKIPIF1<0.故選:C.2-4、(2022·江蘇如皋·高三期末)“函數(shù)f(x)=sinx+(a-1)cosx為奇函數(shù)”是“a=1”的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件【答案】C【解析】【分析】函數(shù)f(x)=sinx+(a-1)cosx為奇函數(shù),則SKIPIF1<0,化簡得:SKIPIF1<0,故SKIPIF1<0,當SKIPIF1<0時,f(x)=sinx是奇函數(shù),因此“函數(shù)f(x)=sinx+(a-1)cosx為奇函數(shù)”是“a=1”充要條件,故選:C.2-5、(2022·江蘇海門·高三期末)寫出一個同時具有下列性質(zhì)①②③的函數(shù)fx①為偶函數(shù);②fx1x2=fx1+f【答案】?ln【解析】由題意可知函數(shù)為偶函數(shù)且在上為減函數(shù),可取fx=?ln對于①,函數(shù)fx=?lnx的定義域為xx≠0對于②,對任意的非零實數(shù)、,fx1x對于③,當x∈0,+∞時,fx=?ln綜上所述,函數(shù)fx故答案為:?ln題組三、函數(shù)性質(zhì)的綜合運用3-1、(2023·浙江·統(tǒng)考模擬預(yù)測)(多選題)已知定義在R上的函數(shù)SKIPIF1<0滿足SKIPIF1<0,且SKIPIF1<0為奇函數(shù),SKIPIF1<0,SKIPIF1<0.下列說法正確的是(

)A.3是函數(shù)SKIPIF1<0的一個周期B.函數(shù)SKIPIF1<0的圖象關(guān)于直線SKIPIF1<0對稱C.函數(shù)SKIPIF1<0是偶函數(shù)D.SKIPIF1<0【答案】AC【詳解】對于A項,因為SKIPIF1<0,所以SKIPIF1<0,所以3是函數(shù)SKIPIF1<0的一個周期,故A正確;對于B項,因為,SKIPIF1<0為奇函數(shù),所以SKIPIF1<0,所以,點SKIPIF1<0是函數(shù)SKIPIF1<0圖象的對稱中心,故B錯誤;對于C項,因為,SKIPIF1<0為奇函數(shù),所以SKIPIF1<0,所以SKIPIF1<0.又因為SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0,所以,函數(shù)SKIPIF1<0是偶函數(shù),故C項正確;對于D項,由C知,函數(shù)SKIPIF1<0是偶函數(shù),所以SKIPIF1<0.又3是函數(shù)SKIPIF1<0的一個周期,所以SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,所以,SKIPIF1<0,所以,SKIPIF1<0,故D錯誤.故選:AC.3-2、(2023·黑龍江·黑龍江實驗中學(xué)??家荒#ǘ噙x題)已知函數(shù)SKIPIF1<0的定義域為R,且SKIPIF1<0為奇函數(shù),SKIPIF1<0為偶函數(shù),且對任意的SKIPIF1<0,且SKIPIF1<0,都有SKIPIF1<0,則下列結(jié)論正確的為(

)A.SKIPIF1<0是偶函數(shù) B.SKIPIF1<0C.SKIPIF1<0的圖象關(guān)于SKIPIF1<0對稱 D.SKIPIF1<0【答案】ABC【分析】由已知奇偶性得出函數(shù)SKIPIF1<0的圖象關(guān)于點SKIPIF1<0對稱且關(guān)于直線SKIPIF1<0對稱,再得出函數(shù)的單調(diào)性,然后由對稱性變形判斷ABC,結(jié)合單調(diào)性判斷D.【詳解】SKIPIF1<0為奇函數(shù),SKIPIF1<0為偶函數(shù),所以SKIPIF1<0的圖象關(guān)于點SKIPIF1<0對稱且關(guān)于直線SKIPIF1<0對稱,所以SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0SKIPIF1<0,所以SKIPIF1<0是周期函數(shù),4是它的一個周期.SKIPIF1<0,SKIPIF1<0,B正確;SKIPIF1<0,SKIPIF1<0是偶函數(shù),A正確;因此SKIPIF1<0的圖象也關(guān)于點SKIPIF1<0對稱,C正確;對任意的SKIPIF1<0,且SKIPIF1<0,都有SKIPIF1<0,即SKIPIF1<0時,SKIPIF1<0,所以SKIPIF1<0在SKIPIF1<0是單調(diào)遞增,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,∴SKIPIF1<0,故D錯.故選:ABC.3-3、(2021·山東青島市·高三二模)已知定義在上的函數(shù)的圖象連續(xù)不斷,有下列四個命題:甲:是奇函數(shù);乙:的圖象關(guān)于直線對稱;丙:在區(qū)間上單調(diào)遞減;?。汉瘮?shù)的周期為2.如果只有一個假命題,則該命題是()A.甲 B.乙 C.丙 D.丁【答案】D【解析】由連續(xù)函數(shù)的特征知:由于區(qū)間的寬度為2,所以在區(qū)間上單調(diào)遞減與函數(shù)的周期為2相互矛盾,即丙、丁中有一個為假命題;若甲、乙成立,即,,則,所以,即函數(shù)的周期為4,即丁為假命題.由于只有一個假命題,則可得該命題是丁,故選:D.3-4、(2022·江蘇無錫·高三期末)(多選題)高斯被人認為是歷史上最重要的數(shù)學(xué)家之一,并享有“數(shù)學(xué)王子”之稱.有這樣一個函數(shù)就是以他名字命名的:設(shè)SKIPIF1<0,用SKIPIF1<0表示不超過SKIPIF1<0的最大整數(shù),則SKIPIF1<0稱為高斯函數(shù),又稱為取整函數(shù).如:SKIPIF1<0,SKIPIF1<0.則下列結(jié)論正確的是()A.函數(shù)SKIPIF1<0是SKIPIF1<0上的單調(diào)遞增函數(shù)B.函數(shù)SKIPIF1<0有SKIPIF1<0個零點C.SKIPIF1<0是SKIPIF1<0上的奇函數(shù)D.對于任意實數(shù)SKIPIF1<0,都有SKIPIF1<0【答案】BD【解析】對于A,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0在SKIPIF1<0上不是單調(diào)增函數(shù),所以A錯.對于B,由SKIPIF1<0,可得SKIPIF1<0,所以SKIPIF1<0,若函數(shù)SKIPIF1<0要有零點,則SKIPIF1<0,得SKIPIF1<0,因為SKIPIF1<0要想為SKIPIF1<0,必須SKIPIF1<0也為整數(shù),在這個范圍內(nèi),只有SKIPIF1<0兩個點,所以B正確,對于C,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0不是奇函數(shù),所以C錯,對于D,如果我們定義SKIPIF1<0這樣一個函數(shù),就會有SKIPIF1<0,同時有SKIPIF1<0,當SKIPIF1<0時,會有SKIPIF1<0,當SKIPIF1<0時,SKIPIF1<0,所以D正確,故選:BD.1、(2022·山東濟南·高三期末)已知函數(shù)SKIPIF1<0的定義域為SKIPIF1<0,則“SKIPIF1<0是偶函數(shù)”是“SKIPIF1<0是偶函數(shù)”的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分又不必要條件【答案】A【解析】偶函數(shù)的圖像關(guān)于SKIPIF1<0軸對稱,奇函數(shù)圖像關(guān)于原點對稱,根據(jù)這一特征,若SKIPIF1<0是偶函數(shù),則SKIPIF1<0是偶函數(shù),若SKIPIF1<0是奇函數(shù),SKIPIF1<0也是偶函數(shù),所以“SKIPIF1<0是偶函數(shù)”是“SKIPIF1<0是偶函數(shù)”的充分不必要條件故選:A2、(2022·山東德州·高三期末)已知函數(shù)SKIPIF1<0,則函數(shù)SKIPIF1<0的大致圖象為()A. B.C. D.【答案】D【解析】由題可知:函數(shù)定義域為SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0,故該函數(shù)為奇函數(shù),排除A,C又SKIPIF1<0,所以排除B,故選:D3.(2023·安徽安慶·校考一模)函數(shù)SKIPIF1<0與SKIPIF1<0在同一直角坐標系下的圖象大致是(

)A. B.C. D.【答案】B【分析】根據(jù)SKIPIF1<0,SKIPIF1<0,結(jié)合對數(shù)函數(shù)與指數(shù)函數(shù)的單調(diào)性判斷即可.【詳解】SKIPIF1<0,為定義域上的單調(diào)遞增函數(shù)SKIPIF1<0,故SKIPIF1<0不成立;SKIPIF1<0,為定義域上的單調(diào)遞增函數(shù),SKIPIF1<0,故C和D不成立.故選:B.4、(2023·江蘇南通·統(tǒng)考一模)已知函數(shù)SKIPIF1<0的定義域為SKIPIF1<0,且SKIPIF1<0為偶函數(shù),SKIPIF1<0,若SKIPIF1<0,則SKIPIF1<0(

)A.1 B.2 C.SKIPIF1<0 D.SKIPIF1<0【答案】A【分析】設(shè)SKIPIF1<0,滿足題意,即可求解.【詳解】因為SKIPIF1<0為偶函數(shù),所以SKIPIF1<0,則SKIPIF1<0關(guān)于SKIPIF1<0對稱,設(shè)SKIPIF1<0,SKIPIF1<0,關(guān)于SKIPIF1<0對稱,SKIPIF1<0SKIPIF1<0SKIPIF1<0.SKIPIF1<0,即SKIPIF1<0滿足條件,SKIPIF1<0.故選:A.5、(2023·江蘇南京·??家荒#ǘ噙x題)已知函數(shù)SKIPIF1<0則下列結(jié)論正確的是(

)A.SKIPIF1<0是偶函數(shù) B.SKIPIF1<0C.SKIPIF1<0是增函數(shù) D.SKIPIF1<0的值域為SKIPIF1<0【答案】BD【分析】利用反例可判斷AC錯誤,結(jié)合函數(shù)的解析式可判斷BD為正確,從而可得正確的選項.【詳解】SKIPIF1<0,而SKIPIF1<0,故SKIPIF1<0不是偶函數(shù),故A錯誤.因為SKIPIF1<0,故SKIPIF1<0不是增函數(shù),故C錯誤.SKIPIF1<0,故B正確.當SKIPIF1<0時,SKIPIF1<0,當SKIPIF1<0時,SKIPIF1<0,故SKIPIF1<0的值域為SKIPIF1<0,故D正確.故選:BD.6、(2023·江蘇南通·統(tǒng)考模擬預(yù)測)(多選題)已知偶函數(shù)SKIPIF1<0與奇函數(shù)SKIPIF1<0的定義域均為R,且滿足SKIPIF1<0,SKIPIF1<0,則下列關(guān)系式一定成立的是(

)A.SKIPIF1<0 B.f(1)=3C.g(x)=-g(x+3) D.SKIPIF1<0【答案】AD【分析】根據(jù)函數(shù)的奇偶性及所給抽象函數(shù)的性質(zhì),利用SKIPIF1<0換為SKIPIF1<0可判斷A,利用賦值可判斷B,推理得出SKIPIF1<0后賦值可判斷C,由條件推理可得SKIPIF1<0,即可判斷D.【詳解】由SKIPIF1<0,將SKIPIF1<0換為SKIPIF1<0知SKIPIF1<0,故A對;SKIPIF1<0,奇函數(shù)SKIPIF1<0中SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0,由SKIPIF1<0為偶函數(shù),SKIPIF1<0,故B錯;SKIPIF1<0,SKIPIF1<0,又SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,故C錯,SKIPIF1<0,則SKIPIF1<0,即SKIPIF1<0.SKIPI

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論