新高考數(shù)學(xué)二輪復(fù)習(xí)培優(yōu)專題訓(xùn)練專題13 運用空間向量研究立體幾何問題(2)(解析版)_第1頁
新高考數(shù)學(xué)二輪復(fù)習(xí)培優(yōu)專題訓(xùn)練專題13 運用空間向量研究立體幾何問題(2)(解析版)_第2頁
新高考數(shù)學(xué)二輪復(fù)習(xí)培優(yōu)專題訓(xùn)練專題13 運用空間向量研究立體幾何問題(2)(解析版)_第3頁
新高考數(shù)學(xué)二輪復(fù)習(xí)培優(yōu)專題訓(xùn)練專題13 運用空間向量研究立體幾何問題(2)(解析版)_第4頁
新高考數(shù)學(xué)二輪復(fù)習(xí)培優(yōu)專題訓(xùn)練專題13 運用空間向量研究立體幾何問題(2)(解析版)_第5頁
已閱讀5頁,還剩24頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

專題13運用空間向量研究立體幾何問題(2)1、(2021年全國高考甲卷數(shù)學(xué)(理)試題)已知直三棱柱SKIPIF1<0中,側(cè)面SKIPIF1<0為正方形,SKIPIF1<0,E,F(xiàn)分別為SKIPIF1<0和SKIPIF1<0的中點,D為棱SKIPIF1<0上的點.SKIPIF1<0(1)證明:SKIPIF1<0;(2)當(dāng)SKIPIF1<0為何值時,面SKIPIF1<0與面SKIPIF1<0所成的二面角的正弦值最小?【解析】因為三棱柱SKIPIF1<0是直三棱柱,所以SKIPIF1<0底面SKIPIF1<0,所以SKIPIF1<0因為SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0,又SKIPIF1<0,所以SKIPIF1<0平面SKIPIF1<0.所以SKIPIF1<0兩兩垂直.以SKIPIF1<0為坐標(biāo)原點,分別以SKIPIF1<0所在直線為SKIPIF1<0軸建立空間直角坐標(biāo)系,如圖.所以SKIPIF1<0,SKIPIF1<0.由題設(shè)SKIPIF1<0(SKIPIF1<0).(1)因為SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0.(2)設(shè)平面SKIPIF1<0的法向量為SKIPIF1<0,因為SKIPIF1<0,所以SKIPIF1<0,即SKIPIF1<0.令SKIPIF1<0,則SKIPIF1<0因為平面SKIPIF1<0的法向量為SKIPIF1<0,設(shè)平面SKIPIF1<0與平面SKIPIF1<0的二面角的平面角為SKIPIF1<0,則SKIPIF1<0.當(dāng)SKIPIF1<0時,SKIPIF1<0取最小值為SKIPIF1<0,此時SKIPIF1<0取最大值為SKIPIF1<0.所以SKIPIF1<0,此時SKIPIF1<0.題組一、運用向量解決幾何體中的距離問題1-1、(2023·黑龍江牡丹江·牡丹江市第三高級中學(xué)校考三模)如圖,在三棱柱SKIPIF1<0中,SKIPIF1<0平面ABC,D,E分別為AC,SKIPIF1<0的中點,SKIPIF1<0,SKIPIF1<0.(1)求證:SKIPIF1<0平面BDE;(2)求直線DE與平面ABE所成角的正弦值;(3)求點D到平面ABE的距離.【答案】(1)證明見解析;(2)SKIPIF1<0;(3)SKIPIF1<0.【詳解】(1)在三棱柱中,SKIPIF1<0,SKIPIF1<0為SKIPIF1<0,SKIPIF1<0的中點,∴SKIPIF1<0,∵SKIPIF1<0平面SKIPIF1<0,∴SKIPIF1<0平面SKIPIF1<0,∵SKIPIF1<0平面SKIPIF1<0,∴SKIPIF1<0,在三角形SKIPIF1<0中,SKIPIF1<0,SKIPIF1<0為SKIPIF1<0中點,∴SKIPIF1<0,∵SKIPIF1<0,SKIPIF1<0平面SKIPIF1<0,∴SKIPIF1<0平面SKIPIF1<0.(2)如圖,以SKIPIF1<0為原點,分別以SKIPIF1<0為SKIPIF1<0軸建立空間直角坐標(biāo)系,在直角三角形SKIPIF1<0中,SKIPIF1<0,SKIPIF1<0,∴SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,設(shè)平面SKIPIF1<0的法向量為SKIPIF1<0,SKIPIF1<0,令SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0,設(shè)直線SKIPIF1<0與平面SKIPIF1<0所成角為SKIPIF1<0,所以SKIPIF1<0.(3)設(shè)點SKIPIF1<0到平面SKIPIF1<0的距離為SKIPIF1<0,所以SKIPIF1<0.1-2、(2023·安徽黃山·統(tǒng)考三模)如圖,在直角梯形SKIPIF1<0中,SKIPIF1<0,SKIPIF1<0,四邊形SKIPIF1<0為平行四邊形,對角線SKIPIF1<0和SKIPIF1<0相交于點SKIPIF1<0,平面SKIPIF1<0SKIPIF1<0平面SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0是線段SKIPIF1<0上一動點(不含端點)(1)當(dāng)點SKIPIF1<0為線段SKIPIF1<0的中點時,證明:SKIPIF1<0//平面SKIPIF1<0;(2)若SKIPIF1<0,SKIPIF1<0,且直線SKIPIF1<0與平面SKIPIF1<0成SKIPIF1<0角,求二面角SKIPIF1<0的正弦值.【答案】(1)證明見解析(2)SKIPIF1<0【詳解】(1)證明:因為四邊形SKIPIF1<0為平行四邊形,所以SKIPIF1<0是SKIPIF1<0中點,連接SKIPIF1<0,又SKIPIF1<0點為線段SKIPIF1<0的中點,則SKIPIF1<0,且SKIPIF1<0

又SKIPIF1<0且SKIPIF1<0,所以SKIPIF1<0SKIPIF1<0,所以四邊形SKIPIF1<0是平行四邊形,

所以SKIPIF1<0,又SKIPIF1<0平面SKIPIF1<0,SKIPIF1<0平面SKIPIF1<0,所以SKIPIF1<0平面SKIPIF1<0.(2)以SKIPIF1<0為原點,SKIPIF1<0為SKIPIF1<0軸建立空間直角坐標(biāo)系(如圖).則有SKIPIF1<0,

設(shè)SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0為平面SKIPIF1<0的法向量,所以SKIPIF1<0,解得SKIPIF1<0(其中SKIPIF1<0舍去).所以SKIPIF1<0

設(shè)平面SKIPIF1<0的法向量為SKIPIF1<0,則有SKIPIF1<0,SKIPIF1<0,故可取SKIPIF1<0.設(shè)平面SKIPIF1<0的法向量為SKIPIF1<0,則有SKIPIF1<0,SKIPIF1<0,故可取SKIPIF1<0

所以SKIPIF1<0.所以二面角SKIPIF1<0的正弦值為SKIPIF1<01-3、(2023·四川成都·四川省成都列五中學(xué)??既#┤鐖D,四棱柱SKIPIF1<0的側(cè)棱SKIPIF1<0⊥底面ABCD,四邊形ABCD為菱形,E,F(xiàn)分別為SKIPIF1<0,SKIPIF1<0的中點.

(1)證明:SKIPIF1<0四點共面;(2)若SKIPIF1<0,求點A到平面SKIPIF1<0的距離.【答案】(1)證明見解析(2)SKIPIF1<0【詳解】(1)取SKIPIF1<0的中點為G,連接AG,GE,由E,G分別為SKIPIF1<0,SKIPIF1<0的中點,

所以EG∥DC∥AB,且SKIPIF1<0,所以四邊形ABEG為平行四邊形,故SKIPIF1<0,又因為F是SKIPIF1<0的中點,所以SKIPIF1<0,所以SKIPIF1<0,故B,F(xiàn),SKIPIF1<0,E四點共面.(2)易知四邊形SKIPIF1<0為菱形,且SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,所以菱形SKIPIF1<0的面積為SKIPIF1<0,設(shè)點SKIPIF1<0到平面BEF的距離為SKIPIF1<0,點B到平面SKIPIF1<0距離為SKIPIF1<0,且SKIPIF1<0,由SKIPIF1<0,得:SKIPIF1<0,因為SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0,又因為SKIPIF1<0,SKIPIF1<0,SKIPIF1<0、SKIPIF1<0SKIPIF1<0面SKIPIF1<0,所以SKIPIF1<0面SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0.故點A到平面SKIPIF1<0的距離為SKIPIF1<0題組二、最值問題2-1、(2022·江蘇揚州·高三期末)如圖,在三棱臺ABC-A1B1C1中,底面△ABC是等腰三角形,且BC=8,AB=AC=5,O為BC的中點.側(cè)面BCC1B1為等腰梯形,且B1C1=CC1=4,M為B1C1中點.(1)證明:平面ABC⊥平面AOM;(2)記二面角A-BC-B1的大小為θ,當(dāng)θ∈[SKIPIF1<0,SKIPIF1<0]時,求直線BB1平面AA1C1C所成角的正弦的最大值.【答案】(1)證明見解析;(2)SKIPIF1<0.【分析】(1)利用線面垂直的判定定理及面面垂直的判定定理即證;(2)設(shè)直線BB1與平面AA1C1C所成的角為α,利用坐標(biāo)法可求SKIPIF1<0,然后利用導(dǎo)函數(shù)求最值即得.(1)∵△ABC是等腰三角形,O為BC的中點,∴BC⊥AO,∵側(cè)面BCC1B1為等腰梯形,M為SKIPIF1<0的中點,∴BC⊥MO.∵MO∩AO=O,MO,AO平面AOM,∴BC⊥平面AOM,∵BC平面ABC,∴平面ABC⊥平面AOM.(2)在平面AOM內(nèi),作ON⊥OA,∵平面ABC⊥平面AOM,平面ABC∩平面AOM=OA,ON平面AOM,∴ON⊥平面ABC,以O(shè)B,OA,ON分別為x軸、y軸,z軸,建立如圖所示的空間直角坐標(biāo)系.∵MO⊥BC,AO⊥BC,∴∠AOM為二面角SKIPIF1<0的平面角,即∠AOM=θ,∴A(0,3,0),B(4,0,0),C(-4,0,0),M(0,2SKIPIF1<0cosθ,2SKIPIF1<0sinθ),C1(-2,2SKIPIF1<0cosθ,2SKIPIF1<0sinθ),B1(2,2SKIPIF1<0cosθ,2SKIPIF1<0sinθ),∴SKIPIF1<0=(-2,2SKIPIF1<0cosθ,2SKIPIF1<0sinθ),設(shè)平面AA1C1C的法向量為SKIPIF1<0=(x,y,z),其中SKIPIF1<0=(4,3,0),SKIPIF1<0=(2,2SKIPIF1<0cosθ,2SKIPIF1<0sinθ),所以SKIPIF1<0,即SKIPIF1<0,則可取SKIPIF1<0,設(shè)直線BB1與平面AA1C1C所成的角為α,則sinα=|cos<SKIPIF1<0,SKIPIF1<0>|=SKIPIF1<0,設(shè)f(θ)=SKIPIF1<0,θ∈[SKIPIF1<0,SKIPIF1<0],則SKIPIF1<0,∴f(θ)在[SKIPIF1<0,SKIPIF1<0]上單調(diào)遞增,∴f(θ)∈[-2SKIPIF1<0,SKIPIF1<0],即SKIPIF1<0∴SKIPIF1<0,∴SKIPIF1<0.∴直線BB1平面AA1C1C所成角的正弦的最大值為SKIPIF1<0.2-2、(南京師大附中2022—2023學(xué)年度高三第一學(xué)期10月檢測)(本小題滿分12分)如圖,四棱錐P-ABCD的底面為矩形,平面PCD⊥平面ABCD,△PCD是邊長為2等邊三角形,SKIPIF1<0,點E為CD的中點,點M為PE上一點(與點P,E不重合).(1)證明:AM⊥BD;(2)當(dāng)AM為何值時,直線AM與平面BDM所成的角最大?【解析】(1)因為三角形SKIPIF1<0是等邊三角形,且E是SKIPIF1<0中點,所以SKIPIF1<0,又因為SKIPIF1<0面SKIPIF1<0,面SKIPIF1<0面SKIPIF1<0,面SKIPIF1<0面SKIPIF1<0,所以SKIPIF1<0面SKIPIF1<0,又因為SKIPIF1<0面SKIPIF1<0,所以SKIPIF1<0,因為SKIPIF1<0是矩形,所以SKIPIF1<0,設(shè)SKIPIF1<0,所以SKIPIF1<0,即SKIPIF1<0,所以SKIPIF1<0,因為SKIPIF1<0面SKIPIF1<0面SKIPIF1<0所以SKIPIF1<0面SKIPIF1<0,又因為SKIPIF1<0面SKIPIF1<0,所以SKIPIF1<0;(2)設(shè)F是SKIPIF1<0中點,以E為原點,SKIPIF1<0所在直線為x軸,SKIPIF1<0所在直線為y軸,SKIPIF1<0所在直線為z軸建立空間直角坐標(biāo)系由已知得SKIPIF1<0設(shè)SKIPIF1<0,則SKIPIF1<0、設(shè)面SKIPIF1<0的法向量為SKIPIF1<0,則SKIPIF1<0,令SKIPIF1<0,有SKIPIF1<0,所以SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0時取等號,答:當(dāng)SKIPIF1<0時,直線SKIPIF1<0與面SKIPIF1<0所成角最大2-3、(南京市2023屆高三年級學(xué)情調(diào)研)(本小題滿分12分)如圖,P為圓錐的頂點,O為圓錐底面的圓心,圓錐的底面直徑,母線,M是PB的中點,四邊形OBCH為正方形.(1)設(shè)平面平面,證明:;(2)設(shè)D為OH的中點,N是線段CD上的一個點,當(dāng)MN與平面PAB所成角最大時,求MN的長.(1)因為四邊形為正方形,,平面平面,平面.平面,平面平面.(2)圓錐的母線長為,以為原點,所在的直線為軸,建立如圖所示的空間直角坐標(biāo)系,則,設(shè),,為平面的一個法向量,設(shè)與平面所成的角為,則,令,則所以當(dāng)時,即時,最大,亦最大,此時,所以.題組三、探索性問題3-1、(2023·云南玉溪·統(tǒng)考一模)如圖,在四棱錐P-ABCD中,PA⊥平面ABCD,底面ABCD是矩形,SKIPIF1<0,SKIPIF1<0,M,N分別是線段AB,PC的中點.(1)求證:MNSKIPIF1<0平面PAD;(2)在線段CD上是否存在一點Q,使得直線NQ與平面DMN所成角的正弦值為SKIPIF1<0?若存在,求出SKIPIF1<0的值;若不存在,請說明理由.【答案】(1)見解析;(2)存在,SKIPIF1<0【分析】(1)取PB中點E,連接ME,NE.由線面平行的判定定理可證得MESKIPIF1<0平面PAD,NESKIPIF1<0平面PAD,再由面面平行的判定定理即可證明;(2)以AB、AD、AP為x、y、z軸建立如圖的空間直角坐標(biāo)系,由線面角的向量公式可求出Q點的位置,即可得出SKIPIF1<0的值.【詳解】(1)如圖,取PB中點E,連接ME,NE.∵M,N分別是線段AB,PC的中點,∴MESKIPIF1<0PA.又∵SKIPIF1<0平面PAD,SKIPIF1<0平面PAD,∴MESKIPIF1<0平面PAD,同理得NESKIPIF1<0平面PAD.又∵SKIPIF1<0,∴平面PADSKIPIF1<0平面MNE.∵SKIPIF1<0平面MNE,∴MNSKIPIF1<0平面PAD.(2)∵ABCD為矩形,∴AB⊥AD.PA⊥平面ABCD,∴AP、AB、AD兩兩垂直.依次以AB、AD、AP為x、y、z軸建立如圖的空間直角坐標(biāo)系,則SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,PC中點SKIPIF1<0,∴SKIPIF1<0,SKIPIF1<0.設(shè)平面DMN的法向量SKIPIF1<0,則SKIPIF1<0,即SKIPIF1<0,取x=1,得y=1,z=-1,SKIPIF1<0.若滿足條件的CD上的點Q存在,設(shè)SKIPIF1<0,SKIPIF1<0,又SKIPIF1<0,則SKIPIF1<0.設(shè)直線NQ與平面DMN所成的角為SKIPIF1<0,則SKIPIF1<0,解得t=1或t=-3.已知0≤t≤4,則t=1,∴SKIPIF1<0.DQ=1,CD=4,CQ=CD-DQ=4-1=3,SKIPIF1<0.故CD上存在點Q,使直線NQ與平面DMN所成角的正弦值為SKIPIF1<0,且SKIPIF1<03-2、(2023·山西·統(tǒng)考一模)如圖所示,在四棱錐SKIPIF1<0中,側(cè)面SKIPIF1<0平面SKIPIF1<0,SKIPIF1<0是邊長為SKIPIF1<0的等邊三角形,底面SKIPIF1<0為直角梯形,其中SKIPIF1<0,SKIPIF1<0,SKIPIF1<0.(1)求SKIPIF1<0到平面SKIPIF1<0的距離;(2)線段SKIPIF1<0上是否存在一點SKIPIF1<0,使得平面SKIPIF1<0與平面SKIPIF1<0夾角的余弦值為SKIPIF1<0?若存在,求出SKIPIF1<0的值;若不存在,請說明理由.【答案】(1)SKIPIF1<0;(2)存在,SKIPIF1<0【分析】(1)建立空間直角坐標(biāo)系利用坐標(biāo)法求得點到平面的距離;(2)設(shè)SKIPIF1<0,利用坐標(biāo)法結(jié)合兩平面夾角余弦值列方程,解得SKIPIF1<0即可.【詳解】(1)取SKIPIF1<0的中點SKIPIF1<0,連接SKIPIF1<0,SKIPIF1<0,SKIPIF1<0為等邊三角形,SKIPIF1<0,又SKIPIF1<0平面SKIPIF1<0平面SKIPIF1<0,平面SKIPIF1<0平面SKIPIF1<0,SKIPIF1<0平面SKIPIF1<0,如圖所示,以SKIPIF1<0為坐標(biāo)原點,直線SKIPIF1<0,SKIPIF1<0,SKIPIF1<0分別為SKIPIF1<0,SKIPIF1<0,SKIPIF1<0軸建立空間直角坐標(biāo)系,則SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,設(shè)平面SKIPIF1<0的法向量為SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,即SKIPIF1<0,令SKIPIF1<0,則SKIPIF1<0,又SKIPIF1<0,故SKIPIF1<0到平面SKIPIF1<0的距離SKIPIF1<0;(2)設(shè)SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0,設(shè)平面SKIPIF1<0的法向量為SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0,令SKIPIF1<0,則SKIPIF1<0,又平面SKIPIF1<0的法向量為SKIPIF1<0,于是SKIPIF1<0,化簡得SKIPIF1<0,又SKIPIF1<0,得SKIPIF1<0,即SKIPIF1<0,故存在點SKIPIF1<0,此時SKIPIF1<0.3-3、(2023·江蘇南京·南京市秦淮中學(xué)??寄M預(yù)測)如圖,三棱柱SKIPIF1<0的側(cè)棱SKIPIF1<0底面SKIPIF1<0,SKIPIF1<0,E是棱SKIPIF1<0上的動點,F(xiàn)是SKIPIF1<0的中點,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0.(1)當(dāng)SKIPIF1<0是棱SKIPIF1<0的中點時,求證:SKIPIF1<0平面SKIPIF1<0;(2)在棱SKIPIF1<0上是否存在點SKIPIF1<0,使得二面角SKIPIF1<0的余弦值是SKIPIF1<0?若存在,求出SKIPIF1<0的長;若不存在,請說明理由.【答案】(1)見解析;(2)存在,SKIPIF1<0.【分析】(1)取SKIPIF1<0的中點SKIPIF1<0,連接SKIPIF1<0、SKIPIF1<0,證明出四邊形SKIPIF1<0為平行四邊形,可得出SKIPIF1<0,再利用線面平行的判定定理可證得SKIPIF1<0平面SKIPIF1<0;(2)以SKIPIF1<0為坐標(biāo)原點,射線SKIPIF1<0、SKIPIF1<0、SKIPIF1<0分別為SKIPIF1<0軸、SKIPIF1<0軸、SKIPIF1<0軸正半軸建立空間直角坐標(biāo)系SKIPIF1<0,設(shè)點SKIPIF1<0,利用空間向量法可得出關(guān)于SKIPIF1<0的方程,結(jié)合SKIPIF1<0的取值范圍可求得SKIPIF1<0的值,由此可得出結(jié)論.【詳解】(1)證明:取SKIPIF1<0的中點SKIPIF1<0,連接SKIPIF1<0、SKIPIF1<0.SKIPIF1<0、SKIPIF1<0分別是SKIPIF1<0、SKIPIF1<0的中點,SKIPIF1<0且SKIPIF1<0,在三棱柱SKIPIF1<0中,SKIPIF1<0且SKIPIF1<0,SKIPIF1<0為SKIPIF1<0的中點,則SKIPIF1<0且SKIPIF1<0,SKIPIF1<0且SKIPIF1<0,所以,四邊形SKIPIF1<0為平行四邊形,則SKIPIF1<0,SKIPIF1<0平面SKIPIF1<0,SKIPIF1<0平面SKIPIF1<0,SKIPIF1<0平面SKIPIF1<0;(2)以SKIPIF1<0為坐標(biāo)原點,射線SKIPIF1<0、SKIPIF1<0、SKIPIF1<0分別為SKIPIF1<0軸、SKIPIF1<0軸、SKIPIF1<0軸正半軸,建立如圖所示的空間直角坐標(biāo)系SKIPIF1<0,則SKIPIF1<0、SKIPIF1<0、SKIPIF1<0,SKIPIF1<0,設(shè)SKIPIF1<0,平面SKIPIF1<0的一個法向量為SKIPIF1<0,則SKIPIF1<0,由SKIPIF1<0,得SKIPIF1<0,令SKIPIF1<0,可得SKIPIF1<0,易得平面SKIPIF1<0的一個法向量為SKIPIF1<0,SKIPIF1<0二面角SKIPIF1<0的余弦值為SKIPIF1<0,即SKIPIF1<0整理得SKIPIF1<0,SKIPIF1<0,解得SKIPIF1<0.因此,在棱SKIPIF1<0上存在點SKIPIF1<0,使得二面角SKIPIF1<0的余弦值是SKIPIF1<0,此時SKIPIF1<0.3-4、(2023·廣東佛山·統(tǒng)考模擬預(yù)測)如圖SKIPIF1<0,菱形SKIPIF1<0的邊長為SKIPIF1<0,SKIPIF1<0,將SKIPIF1<0沿SKIPIF1<0向上翻折,得到如圖SKIPIF1<0所示得三棱錐SKIPIF1<0.

(1)證明:SKIPIF1<0;(2)若SKIPIF1<0,在線段SKIPIF1<0上是否存在點SKIPIF1<0,使得平面SKIPIF1<0與平面SKIPIF1<0所成角的余弦值為SKIPIF1<0?若存在,求出SKIPIF1<0;若不存在,請說明理由.【答案】(1)證明見解析(2)存在,SKIPIF1<0或SKIPIF1<0【詳解】(1)取SKIPIF1<0中點SKIPIF1<0,連接SKIPIF1<0,

SKIPIF1<0四邊形SKIPIF1<0為菱形,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0平面SKIPIF1<0,SKIPIF1<0平面SKIPIF1<0,SKIPIF1<0平面SKIPIF1<0,SKIPIF1<0.(2)SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,解得:SKIPIF1<0;SKIPIF1<0,SKIPIF1<0,SKIPIF1<0;在平面SKIPIF1<0中,作SKIPIF1<0,交SKIPIF1<0于點SKIPIF1<0,則以SKIPIF1<0為坐標(biāo)原點,SKIPIF1<0正方向為SKIPIF1<0軸,可建立如圖所示空間直角坐標(biāo)系,

假設(shè)在線段SKIPIF1<0上存在點SKIPIF1<0,使得平面SKIPIF1<0與平面SKIPIF1<0所成角的余弦值為SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,又SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,設(shè)平面SKIPIF1<0的法向量SKIPIF1<0,則SKIPIF1<0,令SKIPIF1<0,解得:SKIPIF1<0,SKIPIF1<0,SKIPIF1<0;SKIPIF1<0軸SKIPIF1<0平面SKIPIF1<0,SKIPIF1<0平面SKIPIF1<0的一個法向量SKIPIF1<0,SKIPIF1<0,解得:SKIPIF1<0,當(dāng)SKIPIF1<0時,SKIPIF1<0;當(dāng)SKIPIF1<0時,SKIPIF1<0;SKIPIF1<0當(dāng)SKIPIF1<0或SKIPIF1<0時,平面SKIPIF1<0與平面SKIPIF1<0所成角的余弦值為SKIPIF1<0.1、(2021·山東濟寧市·高三二模)(多選題)如圖,直四棱柱中,底面為平行四邊形,,,點是半圓弧上的動點(不包括端點),點是半圓弧上的動點(不包括端點),則下列說法止確的是()A.四面體的體積是定值B.的取值范圍是C.若與平面所成的角為,則D.若三棱錐的外接球表面積為,則【答案】BCD【解析】利用錐體的體積公式可判斷A選項的正誤;利用空間向量數(shù)量積的定義可判斷B選項的正誤;利用線面角的定義可判斷C選項的正誤;利用建系的方法計算出的外接球的半徑的取值范圍,結(jié)合球體的表面積公式可判斷D選項的正誤.【詳解】因為直四棱柱,所以點到面的距離為1,所以,由于不為定值,得不為定值,故A錯誤;在中,,所以,因為,所以,所以的取值范圍是,故B正確;由于面,所以與面所成的角為,所以,因為,所以,故C正確;以點為坐標(biāo)原點,、、所在直線分別為、、軸建立如下圖所示的空間直角坐標(biāo)系,

則、、、,線段的中點為,線段的中點為,設(shè)球心為,點,則,由可得,化簡可得,則,易知,則,,因此,,D選項正確.故選:BCD.2、(2021·山東濱州市·高三二模)在正方體中,M是棱的中點,P是底面ABCD內(nèi)(包括邊界)的一個動點,若平面,則異面直線MP與所成角的取值范圍是()A. B. C. D.【答案】C【解析】以不軸建立空間直角坐標(biāo)系,設(shè),得出各點坐標(biāo),取中點,中點,利用向量共線得出直線平行,同理,得線面平行后再得面面平行,從而得在線段上,由異面直線所成角的定義得與所成的銳角或直角即為異面直線所成的角,易得其范圍.【詳解】如圖,以不軸建立空間直角坐標(biāo)系,設(shè),則,,取中點,中點,連接,則,,,,所以,同理,又平面,平面,所以平面,同理平面,而,平面,所以平面平面,P是底面ABCD內(nèi)(包括邊界)的一個動點,若平面,則在線段上.因為,所以與所成的角,就是與所成的銳角或直角.是等邊三角形,與所平角最大為(為中點時),最小為(與或重合時),所以所求角的范圍是.故選:C.3、(2022·山東青島·高三期末)如圖,在四棱錐SKIPIF1<0中,底面SKIPIF1<0是邊長為2的菱形,SKIPIF1<0,SKIPIF1<0為SKIPIF1<0的中點,SKIPIF1<0.(1)求證:平面SKIPIF1<0平面SKIPIF1<0;(2)求點A到平面SKIPIF1<0的距離.【答案】(1)證明見詳解(2)SKIPIF1<0【分析】(1)由面面垂直判定定理出發(fā),進行逆向分析,通過線面垂直、線線垂直之間的關(guān)系,結(jié)合已知條件進行不斷轉(zhuǎn)化可證;(2)借助第一問尋找兩兩垂直的直線為坐標(biāo)軸建立空間直角坐標(biāo)系,利用向量求解即可.(1)連接BD,記AD中點為O,連接OF,SKIPIF1<0為菱形SKIPIF1<0SKIPIF1<0O、F分別為AD、AB的中點SKIPIF1<0SKIPIF1<0又SKIPIF1<0平面POF,OFSKIPIF1<0平面POFSKIPIF1<0平面POFSKIPIF1<0平面POFSKIPIF1<0SKIPIF1<0SKIPIF1<0又SKIPIF1<0平面ABCD,ACSKIPIF1<0平面ABCDSKIPIF1<0平面ABCDSKIPIF1<0平面PADSKIPIF1<0平面PADSKIPIF1<0平面ABCD(2)因為AB=AD,SKIPIF1<0所以SKIPIF1<0為正三角形SKIPIF1<0由(1)可知AD、OB、PO兩兩垂直,于是如圖建立空間直角坐標(biāo)系,則SKIPIF1<0所以SKIPIF1<0設(shè)向量SKIPIF1<0為平面PDF的法向量,則SKIPIF1<0,取SKIPIF1<0,得SKIPIF1<0所以點A到平面PDF的距離SKIPIF1<0.4、(2023·遼寧沈陽·統(tǒng)考三模)如圖,在三棱錐SKIPIF1<0中,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,點D為BC中點.(1)求二面角SKIPIF1<0的余弦值;(2)在直線AB上是否存在點M,使得PM與平面PAD所成角的正弦值為SKIPIF1<0,若存在,求出點M的位置;若不存在,說明理由.【答案】(1)SKIPIF1<0(2)存在,M是AB的中點或A是MB的中點.【詳解】(1)∵PC⊥AC,∴∠PCA=90°,∵AC=BC,PA=PB,PC=PC,∴SKIPIF1<0,∴∠PCA=∠PCB=90°,即SKIPIF1<0,又SKIPIF1<0,AC、SKIPIF1<0平面ACB,∴SKIPIF1<0平面ACB,∴PC,CA,CB兩兩垂直,故以C點為坐標(biāo)原點,分別以CB,CA,CP所在直線為x軸,y軸,z軸,建立空間直角坐標(biāo)系,如圖,則SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,設(shè)平面PAD的一個法向量SKIPIF1<0,則SKIPIF1<0,取SKIPIF1<0,得SKIPIF1<0,易知平面PDB的一個法向量為SKIPIF1<0,∴SKIPIF1<0,設(shè)二面角SKIPIF1<0的平面角為SKIPIF1<0,∵SKIPIF1<0是鈍角,∴SKIPIF1<0.(2)存在,M是AB的中點或A是MB的中點.由(1)知,設(shè)SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,∵SKIPIF1<0,解得SKIPIF1<0或SKIPIF1<0,∴M是AB的中點或A是MB的中點.5、(2023·吉林·統(tǒng)考三模)如圖,在多面體SKIPIF1<0中,四邊形SKIPIF1<0和四邊形SKIPIF1<0均是等腰梯形,底面SKIPIF1<0為矩形,SKIPIF1<0與SKIPIF1<0的交點為SKIPIF1<0,SKIPIF1<0平面SKIPIF1<0,且SKIPIF1<0與底面SKIPIF1<0的距離為SKIPIF1<0,SKIPIF1<0(1)求證:SKIPIF1<0平面SKIPIF1<0;(2)在線段SKIPIF1<0

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論