2022年江西省宜春九中高三下學期一??荚嚁?shù)學試題含解析_第1頁
2022年江西省宜春九中高三下學期一??荚嚁?shù)學試題含解析_第2頁
2022年江西省宜春九中高三下學期一??荚嚁?shù)學試題含解析_第3頁
2022年江西省宜春九中高三下學期一??荚嚁?shù)學試題含解析_第4頁
2022年江西省宜春九中高三下學期一??荚嚁?shù)學試題含解析_第5頁
已閱讀5頁,還剩14頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

2021-2022高考數(shù)學模擬試卷注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區(qū)域內(nèi)。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.關于圓周率,數(shù)學發(fā)展史上出現(xiàn)過許多很有創(chuàng)意的求法,如著名的蒲豐實驗和查理斯實驗.受其啟發(fā),某同學通過下面的隨機模擬方法來估計的值:先用計算機產(chǎn)生個數(shù)對,其中,都是區(qū)間上的均勻隨機數(shù),再統(tǒng)計,能與構成銳角三角形三邊長的數(shù)對的個數(shù)﹔最后根據(jù)統(tǒng)計數(shù)來估計的值.若,則的估計值為()A. B. C. D.2.已知,則下列不等式正確的是()A. B.C. D.3.已知雙曲線的左、右焦點分別為,圓與雙曲線在第一象限內(nèi)的交點為M,若.則該雙曲線的離心率為A.2 B.3 C. D.4.如圖所示,矩形的對角線相交于點,為的中點,若,則等于().A. B. C. D.5.已知函數(shù)fx=sinωx+π6+A.16,13 B.16.函數(shù)在上的圖象大致為()A. B.C. D.7.已知函數(shù),則下列判斷錯誤的是()A.的最小正周期為 B.的值域為C.的圖象關于直線對稱 D.的圖象關于點對稱8.已知,則的取值范圍是()A.[0,1] B. C.[1,2] D.[0,2]9.盒中裝有形狀、大小完全相同的5張“刮刮卡”,其中只有2張“刮刮卡”有獎,現(xiàn)甲從盒中隨機取出2張,則至少有一張有獎的概率為()A. B. C. D.10.數(shù)列滿足:,則數(shù)列前項的和為A. B. C. D.11.設x、y、z是空間中不同的直線或平面,對下列四種情形:①x、y、z均為直線;②x、y是直線,z是平面;③z是直線,x、y是平面;④x、y、z均為平面.其中使“且”為真命題的是()A.③④ B.①③ C.②③ D.①②12.已知的展開式中第項與第項的二項式系數(shù)相等,則奇數(shù)項的二項式系數(shù)和為().A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知向量滿足,且,則_________.14.若,i為虛數(shù)單位,則正實數(shù)的值為______.15.的展開式中常數(shù)項是___________.16.若函數(shù)在和上均單調(diào)遞增,則實數(shù)的取值范圍為________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)手工藝是一種生活態(tài)度和對傳統(tǒng)的堅持,在我國有很多手工藝品制作村落,村民的手工技藝世代相傳,有些村落制造出的手工藝品不僅全國聞名,還大量遠銷海外.近年來某手工藝品村制作的手工藝品在國外備受歡迎,該村村民成立了手工藝品外銷合作社,為嚴把質(zhì)量關,合作社對村民制作的每件手工藝品都請3位行家進行質(zhì)量把關,質(zhì)量把關程序如下:(i)若一件手工藝品3位行家都認為質(zhì)量過關,則該手工藝品質(zhì)量為A級;(ii)若僅有1位行家認為質(zhì)量不過關,再由另外2位行家進行第二次質(zhì)量把關,若第二次質(zhì)量把關這2位行家都認為質(zhì)量過關,則該手工藝品質(zhì)量為B級,若第二次質(zhì)量把關這2位行家中有1位或2位認為質(zhì)量不過關,則該手工藝品質(zhì)量為C級;(iii)若有2位或3位行家認為質(zhì)量不過關,則該手工藝品質(zhì)量為D級.已知每一次質(zhì)量把關中一件手工藝品被1位行家認為質(zhì)量不過關的概率為,且各手工藝品質(zhì)量是否過關相互獨立.(1)求一件手工藝品質(zhì)量為B級的概率;(2)若一件手工藝品質(zhì)量為A,B,C級均可外銷,且利潤分別為900元,600元,300元,質(zhì)量為D級不能外銷,利潤記為100元.①求10件手工藝品中不能外銷的手工藝品最有可能是多少件;②記1件手工藝品的利潤為X元,求X的分布列與期望.18.(12分)在底面為菱形的四棱柱中,平面.(1)證明:平面;(2)求二面角的正弦值.19.(12分)設函數(shù),,.(1)求函數(shù)的單調(diào)區(qū)間;(2)若函數(shù)有兩個零點,().(i)求的取值范圍;(ii)求證:隨著的增大而增大.20.(12分)已知數(shù)列滿足:對任意,都有.(1)若,求的值;(2)若是等比數(shù)列,求的通項公式;(3)設,,求證:若成等差數(shù)列,則也成等差數(shù)列.21.(12分)已知數(shù)列的前n項和為,且n、、成等差數(shù)列,.(1)證明數(shù)列是等比數(shù)列,并求數(shù)列的通項公式;(2)若數(shù)列中去掉數(shù)列的項后余下的項按原順序組成數(shù)列,求的值.22.(10分)設函數(shù).(1)若,時,在上單調(diào)遞減,求的取值范圍;(2)若,,,求證:當時,.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.B【解析】

先利用幾何概型的概率計算公式算出,能與構成銳角三角形三邊長的概率,然后再利用隨機模擬方法得到,能與構成銳角三角形三邊長的概率,二者概率相等即可估計出.【詳解】因為,都是區(qū)間上的均勻隨機數(shù),所以有,,若,能與構成銳角三角形三邊長,則,由幾何概型的概率計算公式知,所以.故選:B.【點睛】本題考查幾何概型的概率計算公式及運用隨機數(shù)模擬法估計概率,考查學生的基本計算能力,是一個中檔題.2.D【解析】

利用特殊值代入法,作差法,排除不符合條件的選項,得到符合條件的選項.【詳解】已知,賦值法討論的情況:(1)當時,令,,則,,排除B、C選項;(2)當時,令,,則,排除A選項.故選:D.【點睛】比較大小通常采用作差法,本題主要考查不等式與不等關系,不等式的基本性質(zhì),利用特殊值代入法,排除不符合條件的選項,得到符合條件的選項,是一種簡單有效的方法,屬于中等題.3.D【解析】

本題首先可以通過題意畫出圖像并過點作垂線交于點,然后通過圓與雙曲線的相關性質(zhì)判斷出三角形的形狀并求出高的長度,的長度即點縱坐標,然后將點縱坐標帶入圓的方程即可得出點坐標,最后將點坐標帶入雙曲線方程即可得出結(jié)果?!驹斀狻扛鶕?jù)題意可畫出以上圖像,過點作垂線并交于點,因為,在雙曲線上,所以根據(jù)雙曲線性質(zhì)可知,,即,,因為圓的半徑為,是圓的半徑,所以,因為,,,,所以,三角形是直角三角形,因為,所以,,即點縱坐標為,將點縱坐標帶入圓的方程中可得,解得,,將點坐標帶入雙曲線中可得,化簡得,,,,故選D?!军c睛】本題考查了圓錐曲線的相關性質(zhì),主要考察了圓與雙曲線的相關性質(zhì),考查了圓與雙曲線的綜合應用,考查了數(shù)形結(jié)合思想,體現(xiàn)了綜合性,提高了學生的邏輯思維能力,是難題。4.A【解析】

由平面向量基本定理,化簡得,所以,即可求解,得到答案.【詳解】由平面向量基本定理,化簡,所以,即,故選A.【點睛】本題主要考查了平面向量基本定理的應用,其中解答熟記平面向量的基本定理,化簡得到是解答的關鍵,著重考查了運算與求解能力,數(shù)基礎題.5.A【解析】

將fx整理為3sinωx+π3,根據(jù)x的范圍可求得ωx+π3∈π【詳解】f當x∈0,π時,又f0=3sin由fx在0,π上的值域為32解得:ω∈本題正確選項:A【點睛】本題考查利用正弦型函數(shù)的值域求解參數(shù)范圍的問題,關鍵是能夠結(jié)合正弦型函數(shù)的圖象求得角的范圍的上下限,從而得到關于參數(shù)的不等式.6.A【解析】

首先判斷函數(shù)的奇偶性,再根據(jù)特殊值即可利用排除法解得;【詳解】解:依題意,,故函數(shù)為偶函數(shù),圖象關于軸對稱,排除C;而,排除B;,排除D.故選:.【點睛】本題考查函數(shù)圖象的識別,函數(shù)的奇偶性的應用,屬于基礎題.7.D【解析】

先將函數(shù)化為,再由三角函數(shù)的性質(zhì),逐項判斷,即可得出結(jié)果.【詳解】可得對于A,的最小正周期為,故A正確;對于B,由,可得,故B正確;對于C,正弦函數(shù)對稱軸可得:解得:,當,,故C正確;對于D,正弦函數(shù)對稱中心的橫坐標為:解得:若圖象關于點對稱,則解得:,故D錯誤;故選:D.【點睛】本題考查三角恒等變換,三角函數(shù)的性質(zhì),熟記三角函數(shù)基本公式和基本性質(zhì),考查了分析能力和計算能力,屬于基礎題.8.D【解析】

設,可得,構造()22,結(jié)合,可得,根據(jù)向量減法的模長不等式可得解.【詳解】設,則,,∴()2?2||22=4,所以可得:,配方可得,所以,又則[0,2].故選:D.【點睛】本題考查了向量的運算綜合,考查了學生綜合分析,轉(zhuǎn)化劃歸,數(shù)學運算的能力,屬于中檔題.9.C【解析】

先計算出總的基本事件的個數(shù),再計算出兩張都沒獲獎的個數(shù),根據(jù)古典概型的概率,求出兩張都沒有獎的概率,由對立事件的概率關系,即可求解.【詳解】從5張“刮刮卡”中隨機取出2張,共有種情況,2張均沒有獎的情況有(種),故所求概率為.故選:C.【點睛】本題考查古典概型的概率、對立事件的概率關系,意在考查數(shù)學建模、數(shù)學計算能力,屬于基礎題.10.A【解析】分析:通過對an﹣an+1=2anan+1變形可知,進而可知,利用裂項相消法求和即可.詳解:∵,∴,又∵=5,∴,即,∴,∴數(shù)列前項的和為,故選A.點睛:裂項相消法是最難把握的求和方法之一,其原因是有時很難找到裂項的方向,突破這一難點的方法是根據(jù)式子的結(jié)構特點,常見的裂項技巧:(1);(2);(3);(4);此外,需注意裂項之后相消的過程中容易出現(xiàn)丟項或多項的問題,導致計算結(jié)果錯誤.11.C【解析】

①舉反例,如直線x、y、z位于正方體的三條共點棱時②用垂直于同一平面的兩直線平行判斷.③用垂直于同一直線的兩平面平行判斷.④舉例,如x、y、z位于正方體的三個共點側(cè)面時.【詳解】①當直線x、y、z位于正方體的三條共點棱時,不正確;②因為垂直于同一平面的兩直線平行,正確;③因為垂直于同一直線的兩平面平行,正確;④如x、y、z位于正方體的三個共點側(cè)面時,不正確.故選:C.【點睛】此題考查立體幾何中線面關系,選擇題一般可通過特殊值法進行排除,屬于簡單題目.12.D【解析】因為的展開式中第4項與第8項的二項式系數(shù)相等,所以,解得,所以二項式中奇數(shù)項的二項式系數(shù)和為.考點:二項式系數(shù),二項式系數(shù)和.二、填空題:本題共4小題,每小題5分,共20分。13.【解析】

由數(shù)量積的運算律求得,再由數(shù)量積的定義可得結(jié)論.【詳解】由題意,∴,即,∴.故答案為:.【點睛】本題考查求向量的夾角,掌握數(shù)量積的定義與運算律是解題關鍵.14.【解析】

利用復數(shù)模的運算性質(zhì),即可得答案.【詳解】由已知可得:,,解得.故答案為:.【點睛】本題考查復數(shù)模的運算性質(zhì),考查推理能力與計算能力,屬于基礎題.15.-160【解析】試題分析:常數(shù)項為.考點:二項展開式系數(shù)問題.16.【解析】

化簡函數(shù),求出在上的單調(diào)遞增區(qū)間,然后根據(jù)在和上均單調(diào)遞增,列出不等式求解即可.【詳解】由知,當時,在和上單調(diào)遞增,在和上均單調(diào)遞增,,

,

的取值范圍為:.

故答案為:.【點睛】本題主要考查了三角函數(shù)的圖象與性質(zhì),關鍵是根據(jù)函數(shù)的單調(diào)性列出關于m的方程組,屬中檔題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(1)(2)①2②期望值為X900600300100P【解析】

(1)一件手工藝品質(zhì)量為B級的概率為.(2)①由題意可得一件手工藝品質(zhì)量為D級的概率為,設10件手工藝品中不能外銷的手工藝品可能是件,則,則,.由得,所以當時,,即,由得,所以當時,,所以當時,最大,即10件手工藝品中不能外銷的手工藝品最有可能是2件.②由上可得一件手工藝品質(zhì)量為A級的概率為,一件手工藝品質(zhì)量為B級的概率為,一件手工藝品質(zhì)量為C級的概率為,一件手工藝品質(zhì)量為D級的概率為,所以X的分布列為X900600300100P則期望為.18.(1)證明見解析;(2)【解析】

(1)由已知可證,即可證明結(jié)論;(2)根據(jù)已知可證平面,建立空間直角坐標系,求出坐標,進而求出平面和平面的法向量坐標,由空間向量的二面角公式,即可求解.【詳解】方法一:(1)依題意,且∴,∴四邊形是平行四邊形,∴,∵平面,平面,∴平面.(2)∵平面,∴,∵且為的中點,∴,∵平面且,∴平面,以為原點,分別以為軸、軸、軸的正方向,建立如圖所示的空間直角坐標系,則,,,,∴設平面的法向量為,則,∴,取,則.設平面的法向量為,則,∴,取,則.∴,設二面角的平面角為,則,∴二面角的正弦值為.方法二:(1)證明:連接交于點,因為四邊形為平行四邊形,所以為中點,又因為四邊形為菱形,所以為中點,∴在中,且,∵平面,平面,∴平面(2)略,同方法一.【點睛】本題主要考查線面平行的證明,考查空間向量法求面面角,意在考查直觀想象、邏輯推理與數(shù)學運算的數(shù)學核心素養(yǎng),屬于中檔題.19.(1)見解析;(2)(i)(ii)證明見解析【解析】

(1)求出導函數(shù),分類討論即可求解;(2)(i)結(jié)合(1)的單調(diào)性分析函數(shù)有兩個零點求解參數(shù)取值范圍;(ii)設,通過轉(zhuǎn)化,討論函數(shù)的單調(diào)性得證.【詳解】(1)因為,所以當時,在上恒成立,所以在上單調(diào)遞增,當時,的解集為,的解集為,所以的單調(diào)增區(qū)間為,的單調(diào)減區(qū)間為;(2)(i)由(1)可知,當時,在上單調(diào)遞增,至多一個零點,不符題意,當時,因為有兩個零點,所以,解得,因為,且,所以存在,使得,又因為,設,則,所以單調(diào)遞增,所以,即,因為,所以存在,使得,綜上,;(ii)因為,所以,因為,所以,設,則,所以,解得,所以,所以,設,則,設,則,所以單調(diào)遞增,所以,所以,即,所以單調(diào)遞增,即隨著的增大而增大,所以隨著的增大而增大,命題得證.【點睛】此題考查利用導函數(shù)處理函數(shù)的單調(diào)性,根據(jù)函數(shù)的零點個數(shù)求參數(shù)的取值范圍,通過等價轉(zhuǎn)化證明與零點相關的命題.20.(1)3;(2);(3)見解析.【解析】

(1)依據(jù)下標的關系,有,,兩式相加,即可求出;(2)依據(jù)等比數(shù)列的通項公式知,求出首項和公比即可。利用關系式,列出方程,可以解出首項和公比;(3)利用等差數(shù)列的定義,即可證出。【詳解】(1)因為對任意,都有,所以,,兩式相加,,解得;(2)設等比數(shù)列的首項為,公比為,因為對任意,都有,所以有,解得,又,即有,化簡得,,即,或,因為,化簡得,所以故。(3)因為對任意,都有,所以有,成等

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論