版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
2025屆河南省林州市林濾中學下期高三第三次質(zhì)量考評數(shù)學試題-注意事項:1.答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知變量x,y間存在線性相關關系,其數(shù)據(jù)如下表,回歸直線方程為,則表中數(shù)據(jù)m的值為()變量x0123變量y35.57A.0.9 B.0.85 C.0.75 D.0.52.若集合,,則下列結論正確的是()A. B. C. D.3.定義在R上的函數(shù)滿足,為的導函數(shù),已知的圖象如圖所示,若兩個正數(shù)滿足,的取值范圍是()A. B. C. D.4.設為虛數(shù)單位,復數(shù),則實數(shù)的值是()A.1 B.-1 C.0 D.25.已知集合,集合,若,則()A. B. C. D.6.展開項中的常數(shù)項為A.1 B.11 C.-19 D.517.設函數(shù)的定義域為,滿足,且當時,.若對任意,都有,則的取值范圍是().A. B. C. D.8.已知函數(shù),集合,,則()A. B.C. D.9.設全集U=R,集合,則()A. B. C. D.10.如圖,在三棱錐中,平面,,,,,分別是棱,,的中點,則異面直線與所成角的余弦值為A.0 B. C. D.111.已知函數(shù)的一條切線為,則的最小值為()A. B. C. D.12.設集合,,則集合A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.如圖,已知,,為的中點,為以為直徑的圓上一動點,則的最小值是_____.14.已知雙曲線-=1(a>0,b>0)與拋物線y2=8x有一個共同的焦點F,兩曲線的一個交點為P,若|FP|=5,則點F到雙曲線的漸近線的距離為_____.15.某中學舉行了一次消防知識競賽,將參賽學生的成績進行整理后分為5組,繪制如圖所示的頻率分布直方圖,記圖中從左到右依次為第一、第二、第三、第四、第五組,已知第二組的頻數(shù)是80,則成績在區(qū)間的學生人數(shù)是__________.16.為激發(fā)學生團結協(xié)作,敢于拼搏,不言放棄的精神,某校高三5個班進行班級間的拔河比賽.每兩班之間只比賽1場,目前(—)班已賽了4場,(二)班已賽了3場,(三)班已賽了2場,(四)班已賽了1場.則目前(五)班已經(jīng)參加比賽的場次為__________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)如圖1,四邊形是邊長為2的菱形,,為的中點,以為折痕將折起到的位置,使得平面平面,如圖2.(1)證明:平面平面;(2)求點到平面的距離.18.(12分)已知函數(shù).(1)若關于的不等式的整數(shù)解有且僅有一個值,當時,求不等式的解集;(2)已知,若,使得成立,求實數(shù)的取值范圍.19.(12分)在直角坐標系中,曲線的標準方程為.以原點為極點,軸的非負半軸為極軸建立極坐標系,直線的極坐標方程為.(1)求直線的直角坐標方程;(2)若點在曲線上,點在直線上,求的最小值.20.(12分)已知數(shù)列滿足:對任意,都有.(1)若,求的值;(2)若是等比數(shù)列,求的通項公式;(3)設,,求證:若成等差數(shù)列,則也成等差數(shù)列.21.(12分)已知橢圓:(),四點,,,中恰有三點在橢圓上.(1)求橢圓的方程;(2)設橢圓的左右頂點分別為.是橢圓上異于的動點,求的正切的最大值.22.(10分)在中國,不僅是購物,而且從共享單車到醫(yī)院掛號再到公共繳費,日常生活中幾乎全部領域都支持手機支付.出門不帶現(xiàn)金的人數(shù)正在迅速增加。中國人民大學和法國調(diào)查公司益普索合作,調(diào)查了騰訊服務的6000名用戶,從中隨機抽取了60名,統(tǒng)計他們出門隨身攜帶現(xiàn)金(單位:元)如莖葉圖如示,規(guī)定:隨身攜帶的現(xiàn)金在100元以下(不含100元)的為“手機支付族”,其他為“非手機支付族”.(1)根據(jù)上述樣本數(shù)據(jù),將列聯(lián)表補充完整,并判斷有多大的把握認為“手機支付族”與“性別”有關?(2)用樣本估計總體,若從騰訊服務的用戶中隨機抽取3位女性用戶,這3位用戶中“手機支付族”的人數(shù)為,求隨機變量的期望和方差;(3)某商場為了推廣手機支付,特推出兩種優(yōu)惠方案,方案一:手機支付消費每滿1000元可直減100元;方案二:手機支付消費每滿1000元可抽獎2次,每次中獎的概率同為,且每次抽獎互不影響,中獎一次打9折,中獎兩次打8.5折.如果你打算用手機支付購買某樣價值1200元的商品,請從實際付款金額的數(shù)學期望的角度分析,選擇哪種優(yōu)惠方案更劃算?附:0.0500.0100.0013.8416.63510.828
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.A【解析】
計算,代入回歸方程可得.【詳解】由題意,,∴,解得.故選:A.本題考查線性回歸直線方程,解題關鍵是掌握性質(zhì):線性回歸直線一定過中心點.2.D【解析】
由題意,分析即得解【詳解】由題意,故,故選:D本題考查了元素和集合,集合和集合之間的關系,考查了學生概念理解,數(shù)學運算能力,屬于基礎題.3.C【解析】
先從函數(shù)單調(diào)性判斷的取值范圍,再通過題中所給的是正數(shù)這一條件和常用不等式方法來確定的取值范圍.【詳解】由的圖象知函數(shù)在區(qū)間單調(diào)遞增,而,故由可知.故,又有,綜上得的取值范圍是.故選:C本題考查了函數(shù)單調(diào)性和不等式的基礎知識,屬于中檔題.4.A【解析】
根據(jù)復數(shù)的乘法運算化簡,由復數(shù)的意義即可求得的值.【詳解】復數(shù),由復數(shù)乘法運算化簡可得,所以由復數(shù)定義可知,解得,故選:A.本題考查了復數(shù)的乘法運算,復數(shù)的意義,屬于基礎題.5.A【解析】
根據(jù)或,驗證交集后求得的值.【詳解】因為,所以或.當時,,不符合題意,當時,.故選A.本小題主要考查集合的交集概念及運算,屬于基礎題.6.B【解析】
展開式中的每一項是由每個括號中各出一項組成的,所以可分成三種情況.【詳解】展開式中的項為常數(shù)項,有3種情況:(1)5個括號都出1,即;(2)兩個括號出,兩個括號出,一個括號出1,即;(3)一個括號出,一個括號出,三個括號出1,即;所以展開項中的常數(shù)項為,故選B.本題考查二項式定理知識的生成過程,考查定理的本質(zhì),即展開式中每一項是由每個括號各出一項相乘組合而成的.7.B【解析】
求出在的解析式,作出函數(shù)圖象,數(shù)形結合即可得到答案.【詳解】當時,,,,又,所以至少小于7,此時,令,得,解得或,結合圖象,故.故選:B.本題考查不等式恒成立求參數(shù)的范圍,考查學生數(shù)形結合的思想,是一道中檔題.8.C【解析】
分別求解不等式得到集合,再利用集合的交集定義求解即可.【詳解】,,∴.故選C.本題主要考查了集合的基本運算,難度容易.9.A【解析】
求出集合M和集合N,,利用集合交集補集的定義進行計算即可.【詳解】,,則,故選:A.本題考查集合的交集和補集的運算,考查指數(shù)不等式和二次不等式的解法,屬于基礎題.10.B【解析】
根據(jù)題意可得平面,,則即異面直線與所成的角,連接CG,在中,,易得,所以,所以,故選B.11.A【解析】
求導得到,根據(jù)切線方程得到,故,設,求導得到函數(shù)在上單調(diào)遞減,在上單調(diào)遞增,故,計算得到答案.【詳解】,則,取,,故,.故,故,.設,,取,解得.故函數(shù)在上單調(diào)遞減,在上單調(diào)遞增,故.故選:.本題考查函數(shù)的切線問題,利用導數(shù)求最值,意在考查學生的計算能力和綜合應用能力.12.B【解析】
先求出集合和它的補集,然后求得集合的解集,最后取它們的交集得出結果.【詳解】對于集合A,,解得或,故.對于集合B,,解得.故.故選B.本小題主要考查一元二次不等式的解法,考查對數(shù)不等式的解法,考查集合的補集和交集的運算.對于有兩個根的一元二次不等式的解法是:先將二次項系數(shù)化為正數(shù),且不等號的另一邊化為,然后通過因式分解,求得對應的一元二次方程的兩個根,再利用“大于在兩邊,小于在中間”來求得一元二次不等式的解集.二、填空題:本題共4小題,每小題5分,共20分。13.【解析】
建立合適的直角坐標系,求出相關點的坐標,進而可得的坐標表示,利用平面向量數(shù)量積的坐標表示求出的表達式,求出其最小值即可.【詳解】建立直角坐標系如圖所示:則點,,,設點,所以,由平面向量數(shù)量積的坐標表示可得,,其中,因為,所以的最小值為.故答案為:本題考查平面向量數(shù)量積的坐標表示和利用輔助角公式求最值;考查數(shù)形結合思想和轉化與化歸能力、運算求解能力;建立直角坐標系,把表示為關于角的三角函數(shù),利用輔助角公式求最值是求解本題的關鍵;屬于中檔題.14.【解析】
設點為,由拋物線定義知,,求出點P坐標代入雙曲線方程得到的關系式,求出雙曲線的漸近線方程,利用點到直線的距離公式求解即可.【詳解】由題意得F(2,0),因為點P在拋物線y2=8x上,|FP|=5,設點為,由拋物線定義知,,解得,不妨取P(3,2),代入雙曲線-=1,得-=1,又因為a2+b2=4,解得a=1,b=,因為雙曲線的漸近線方程為,所以雙曲線的漸近線為y=±x,由點到直線的距離公式可得,點F到雙曲線的漸近線的距離.故答案為:本題考查雙曲線和拋物線方程及其幾何性質(zhì);考查運算求解能力和知識遷移能力;靈活運用雙曲線和拋物線的性質(zhì)是求解本題的關鍵;屬于中檔題、??碱}型.15.30【解析】
根據(jù)頻率直方圖中數(shù)據(jù)先計算樣本容量,再計算成績在80~100分的頻率,繼而得解.【詳解】根據(jù)直方圖知第二組的頻率是,則樣本容量是,又成績在80~100分的頻率是,則成績在區(qū)間的學生人數(shù)是.故答案為:30本題考查了頻率分布直方圖的應用,考查了學生綜合分析,數(shù)據(jù)處理,數(shù)形運算的能力,屬于基礎題.16.2【解析】
根據(jù)比賽場次,分析,畫出圖象,計算結果.【詳解】畫圖所示,可知目前(五)班已經(jīng)賽了2場.故答案為:2本題考查推理,計數(shù)原理的圖形表示,意在考查數(shù)形結合分析問題的能力,屬于基礎題型.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(1)證明見解析(2)【解析】
(1)由題意可證得,,所以平面,則平面平面可證;(2)解法一:利用等體積法由可求出點到平面的距離;解法二:由條件知點到平面的距離等于點到平面的距離,過點作的垂線,垂足,證明平面,計算出即可.【詳解】解法一:(1)依題意知,因為,所以.又平面平面,平面平面,平面,所以平面.又平面,所以.由已知,是等邊三角形,且為的中點,所以.因為,所以.又,所以平面.又平面,所以平面平面.(2)在中,,,所以.由(1)知,平面,且,所以三棱錐的體積.在中,,,得,由(1)知,平面,所以,所以,設點到平面的距離,則三棱錐的體積,得.解法二:(1)同解法一;(2)因為,平面,平面,所以平面.所以點到平面的距離等于點到平面的距離.過點作的垂線,垂足,即.由(1)知,平面平面,平面平面,平面,所以平面,即為點到平面的距離.由(1)知,,在中,,,得.又,所以.所以點到平面的距離為.本題主要考查空間面面垂直的的判定及點到面的距離,考查學生的空間想象能力、推理論證能力、運算求解能力.求點到平面的距離一般可采用兩種方法求解:①等體積法;②作(找)出點到平面的垂線段,進行計算即可.18.(1)(2)【解析】
(1)求解不等式,結合整數(shù)解有且僅有一個值,可得,分類討論,求解不等式,即得解;(2)轉化,使得成立為,利用不等式性質(zhì),求解二次函數(shù)最小值,代入解不等式即可.【詳解】(1)不等式,即,所以,由,解得.因為,所以,當時,,不等式等價于或或即或或,故,故不等式的解集為.(2)因為,由,可得,又由,使得成立,則,解得或.故實數(shù)的取值范圍為.本題考查了絕對值不等式的求解和恒成立問題,考查了學生轉化劃歸,分類討論,數(shù)學運算的能力,屬于中檔題.19.(1)(2)【解析】
(1)直接利用極坐標公式計算得到答案(2)設,,根據(jù)三角函數(shù)的有界性得到答案.【詳解】(1)因為,所以,因為所以直線的直角坐標方程為.(2)由題意可設,則點到直線的距離.因為,所以,因為,故的最小值為.本題考查了極坐標方程,參數(shù)方程,意在考查學生的計算能力和轉化能力.20.(1)3;(2);(3)見解析.【解析】
(1)依據(jù)下標的關系,有,,兩式相加,即可求出;(2)依據(jù)等比數(shù)列的通項公式知,求出首項和公比即可。利用關系式,列出方程,可以解出首項和公比;(3)利用等差數(shù)列的定義,即可證出?!驹斀狻浚?)因為對任意,都有,所以,,兩式相加,,解得;(2)設等比數(shù)列的首項為,公比為,因為對任意,都有,所以有,解得,又,即有,化簡得,,即,或,因為,化簡得,所以故。(3)因為對任意,都有,所以有,成等差數(shù)列,設公差為,,,,,由等差數(shù)列的定義知,也成等差數(shù)列。本題主要考查等差、等比數(shù)列的定義以及賦值法的應用,意在考查學生的邏輯推理,數(shù)學建模,綜合運用
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 科技驅(qū)動的工業(yè)互聯(lián)網(wǎng)創(chuàng)新生態(tài)構建研究
- 課題申報參考:賈湖骨笛的實驗音樂考古學研究
- 2025年度個人消費借款信用保證合同范本4篇
- 2025版挖掘機買賣合同及挖掘機操作人員培訓協(xié)議3篇
- 2025版新媒體人工智能助手研發(fā)與運營合同2篇
- 2025版小程序技術支持授權協(xié)議范本2篇
- 2025年福州貨車資格證答案
- 2025年度知識產(chǎn)權代理服務合同樣本8篇
- 二零二五版毛竹砍伐與林業(yè)碳排放權交易合同3篇
- 二零二五年度出納風險控制擔保及咨詢合同4篇
- 二零二五年度無人駕駛車輛測試合同免責協(xié)議書
- 2025年湖北華中科技大學招聘實驗技術人員52名歷年高頻重點提升(共500題)附帶答案詳解
- 高三日語一輪復習助詞「と」的用法課件
- 毛渣采購合同范例
- 無子女離婚協(xié)議書范文百度網(wǎng)盤
- 2023中華護理學會團體標準-注射相關感染預防與控制
- 五年級上冊小數(shù)遞等式計算200道及答案
- 2024年廣東高考政治真題考點分布匯 總- 高考政治一輪復習
- 燃氣管道年度檢驗報告
- GB/T 44052-2024液壓傳動過濾器性能特性的標識
- 國際市場營銷環(huán)境案例分析
評論
0/150
提交評論