![2025屆湖北沙市中學高三數(shù)學試題二診模擬試題含解析_第1頁](http://file4.renrendoc.com/view2/M03/36/22/wKhkFma-zS-AOSubAAI1HBeGwG4274.jpg)
![2025屆湖北沙市中學高三數(shù)學試題二診模擬試題含解析_第2頁](http://file4.renrendoc.com/view2/M03/36/22/wKhkFma-zS-AOSubAAI1HBeGwG42742.jpg)
![2025屆湖北沙市中學高三數(shù)學試題二診模擬試題含解析_第3頁](http://file4.renrendoc.com/view2/M03/36/22/wKhkFma-zS-AOSubAAI1HBeGwG42743.jpg)
![2025屆湖北沙市中學高三數(shù)學試題二診模擬試題含解析_第4頁](http://file4.renrendoc.com/view2/M03/36/22/wKhkFma-zS-AOSubAAI1HBeGwG42744.jpg)
![2025屆湖北沙市中學高三數(shù)學試題二診模擬試題含解析_第5頁](http://file4.renrendoc.com/view2/M03/36/22/wKhkFma-zS-AOSubAAI1HBeGwG42745.jpg)
版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2025屆湖北沙市中學高三數(shù)學試題二診模擬試題考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內,不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內,第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知向量,,則向量在向量上的投影是()A. B. C. D.2.已知底面為邊長為的正方形,側棱長為的直四棱柱中,是上底面上的動點.給出以下四個結論中,正確的個數(shù)是()①與點距離為的點形成一條曲線,則該曲線的長度是;②若面,則與面所成角的正切值取值范圍是;③若,則在該四棱柱六個面上的正投影長度之和的最大值為.A. B. C. D.3.在等腰直角三角形中,,為的中點,將它沿翻折,使點與點間的距離為,此時四面體的外接球的表面積為().A. B. C. D.4.已知數(shù)列對任意的有成立,若,則等于()A. B. C. D.5.著名的斐波那契數(shù)列:1,1,2,3,5,8,…,滿足,,,若,則()A.2020 B.4038 C.4039 D.40406.如圖,在三棱錐中,平面,,現(xiàn)從該三棱錐的個表面中任選個,則選取的個表面互相垂直的概率為()A. B. C. D.7.函數(shù),,則“的圖象關于軸對稱”是“是奇函數(shù)”的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件8.如圖,已知直線與拋物線相交于A,B兩點,且A、B兩點在拋物線準線上的投影分別是M,N,若,則的值是()A. B. C. D.9.若,則實數(shù)的大小關系為()A. B. C. D.10.若滿足,且目標函數(shù)的最大值為2,則的最小值為()A.8 B.4 C. D.611.已知函數(shù)若關于的方程有六個不相等的實數(shù)根,則實數(shù)的取值范圍為()A. B. C. D.12.“十二平均律”是通用的音律體系,明代朱載堉最早用數(shù)學方法計算出半音比例,為這個理論的發(fā)展做出了重要貢獻.十二平均律將一個純八度音程分成十二份,依次得到十三個單音,從第二個單音起,每一個單音的頻率與它的前一個單音的頻率的比都等于.若第一個單音的頻率為f,則第八個單音的頻率為A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.不等式對于定義域內的任意恒成立,則的取值范圍為__________.14.如圖是由3個全等的三角形與中間的一個小等邊三角形拼成的一個大等邊三角形,設,,則的面積為________.15.兩光滑的曲線相切,那么它們在公共點處的切線方向相同.如圖所示,一列圓(an>0,rn>0,n=1,2…)逐個外切,且均與曲線y=x2相切,若r1=1,則a1=___,rn=______16.在的二項展開式中,x的系數(shù)為________.(用數(shù)值作答)三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)若數(shù)列滿足:對于任意,均為數(shù)列中的項,則稱數(shù)列為“數(shù)列”.(1)若數(shù)列的前項和,,試判斷數(shù)列是否為“數(shù)列”?說明理由;(2)若公差為的等差數(shù)列為“數(shù)列”,求的取值范圍;(3)若數(shù)列為“數(shù)列”,,且對于任意,均有,求數(shù)列的通項公式.18.(12分)已知.(1)已知關于的不等式有實數(shù)解,求的取值范圍;(2)求不等式的解集.19.(12分)如圖,平面分別是上的動點,且.(1)若平面與平面的交線為,求證:;(2)當平面平面時,求平面與平面所成的二面角的余弦值.20.(12分)已知,點分別為橢圓的左、右頂點,直線交于另一點為等腰直角三角形,且.(Ⅰ)求橢圓的方程;(Ⅱ)設過點的直線與橢圓交于兩點,總使得為銳角,求直線斜率的取值范圍.21.(12分)已知函數(shù).(Ⅰ)當時,求不等式的解集;(Ⅱ)若存在滿足不等式,求實數(shù)的取值范圍.22.(10分)棉花的纖維長度是評價棉花質量的重要指標,某農(nóng)科所的專家在土壤環(huán)境不同的甲、乙兩塊實驗地分別種植某品種的棉花,為了評價該品種的棉花質量,在棉花成熟后,分別從甲、乙兩地的棉花中各隨機抽取21根棉花纖維進行統(tǒng)計,結果如下表:(記纖維長度不低于311的為“長纖維”,其余為“短纖維”)纖維長度甲地(根數(shù))34454乙地(根數(shù))112116(1)由以上統(tǒng)計數(shù)據(jù),填寫下面列聯(lián)表,并判斷能否在犯錯誤概率不超過1.125的前提下認為“纖維長度與土壤環(huán)境有關系”.甲地乙地總計長纖維短纖維總計附:(1);(2)臨界值表;1.111.151.1251.1111.1151.1112.7163.8415.1246.6357.87911.828(2)現(xiàn)從上述41根纖維中,按纖維長度是否為“長纖維”還是“短纖維”采用分層抽樣的方法抽取8根進行檢測,在這8根纖維中,記乙地“短纖維”的根數(shù)為,求的分布列及數(shù)學期望.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.A【解析】
先利用向量坐標運算求解,再利用向量在向量上的投影公式即得解【詳解】由于向量,故向量在向量上的投影是.故選:A本題考查了向量加法、減法的坐標運算和向量投影的概念,考查了學生概念理解,數(shù)學運算的能力,屬于中檔題.2.C【解析】
①與點距離為的點形成以為圓心,半徑為的圓弧,利用弧長公式,可得結論;②當在(或時,與面所成角(或的正切值為最小,當在時,與面所成角的正切值為最大,可得正切值取值范圍是;③設,,,則,即,可得在前后、左右、上下面上的正投影長,即可求出六個面上的正投影長度之和.【詳解】如圖:①錯誤,因為,與點距離為的點形成以為圓心,半徑為的圓弧,長度為;②正確,因為面面,所以點必須在面對角線上運動,當在(或)時,與面所成角(或)的正切值為最?。橄碌酌婷鎸蔷€的交點),當在時,與面所成角的正切值為最大,所以正切值取值范圍是;③正確,設,則,即,在前后、左右、上下面上的正投影長分別為,,,所以六個面上的正投影長度之,當且僅當在時取等號.故選:.本題以命題的真假判斷為載體,考查了軌跡問題、線面角、正投影等知識點,綜合性強,屬于難題.3.D【解析】
如圖,將四面體放到直三棱柱中,求四面體的外接球的半徑轉化為求三棱柱外接球的半徑,然后確定球心在上下底面外接圓圓心連線中點,這樣根據(jù)幾何關系,求外接球的半徑.【詳解】中,易知,翻折后,,,設外接圓的半徑為,,,如圖:易得平面,將四面體放到直三棱柱中,則球心在上下底面外接圓圓心連線中點,設幾何體外接球的半徑為,,四面體的外接球的表面積為.故選:D本題考查幾何體的外接球的表面積,意在考查空間想象能力,和計算能力,屬于中檔題型,求幾何體的外接球的半徑時,一般可以用補形法,因正方體,長方體的外接球半徑容易求,可以將一些特殊的幾何體補形為正方體或長方體,比如三條側棱兩兩垂直的三棱錐,或是構造直角三角形法,確定球心的位置,構造關于外接球半徑的方程求解.4.B【解析】
觀察已知條件,對進行化簡,運用累加法和裂項法求出結果.【詳解】已知,則,所以有,,,,兩邊同時相加得,又因為,所以.故選:本題考查了求數(shù)列某一項的值,運用了累加法和裂項法,遇到形如時就可以采用裂項法進行求和,需要掌握數(shù)列中的方法,并能熟練運用對應方法求解.5.D【解析】
計算,代入等式,根據(jù)化簡得到答案.【詳解】,,,故,,故.故選:.本題考查了斐波那契數(shù)列,意在考查學生的計算能力和應用能力.6.A【解析】
根據(jù)線面垂直得面面垂直,已知平面,由,可得平面,這樣可確定垂直平面的對數(shù),再求出四個面中任選2個的方法數(shù),從而可計算概率.【詳解】由已知平面,,可得,從該三棱錐的個面中任選個面共有種不同的選法,而選取的個表面互相垂直的有種情況,故所求事件的概率為.故選:A.本題考查古典概型概率,解題關鍵是求出基本事件的個數(shù).7.B【解析】
根據(jù)函數(shù)奇偶性的性質,結合充分條件和必要條件的定義進行判斷即可.【詳解】設,若函數(shù)是上的奇函數(shù),則,所以,函數(shù)的圖象關于軸對稱.所以,“是奇函數(shù)”“的圖象關于軸對稱”;若函數(shù)是上的偶函數(shù),則,所以,函數(shù)的圖象關于軸對稱.所以,“的圖象關于軸對稱”“是奇函數(shù)”.因此,“的圖象關于軸對稱”是“是奇函數(shù)”的必要不充分條件.故選:B.本題主要考查充分條件和必要條件的判斷,結合函數(shù)奇偶性的性質判斷是解決本題的關鍵,考查推理能力,屬于中等題.8.C【解析】
直線恒過定點,由此推導出,由此能求出點的坐標,從而能求出的值.【詳解】設拋物線的準線為,直線恒過定點,如圖過A、B分別作于M,于N,由,則,點B為AP的中點、連接OB,則,∴,點B的橫坐標為,∴點B的坐標為,把代入直線,解得,故選:C.本題考查直線與圓錐曲線中參數(shù)的求法,考查拋物線的性質,是中檔題,解題時要注意等價轉化思想的合理運用,屬于中檔題.9.A【解析】
將化成以為底的對數(shù),即可判斷的大小關系;由對數(shù)函數(shù)、指數(shù)函數(shù)的性質,可判斷出與1的大小關系,從而可判斷三者的大小關系.【詳解】依題意,由對數(shù)函數(shù)的性質可得.又因為,故.故選:A.本題考查了指數(shù)函數(shù)的性質,考查了對數(shù)函數(shù)的性質,考查了對數(shù)的運算性質.兩個對數(shù)型的數(shù)字比較大小時,底數(shù)相同,則構造對數(shù)函數(shù),結合對數(shù)的單調性可判斷大??;若真數(shù)相同,則結合對數(shù)函數(shù)的圖像或者換底公式可判斷大?。蝗粽鏀?shù)和底數(shù)都不相同,則可與中間值如1,0比較大小.10.A【解析】
作出可行域,由,可得.當直線過可行域內的點時,最大,可得.再由基本不等式可求的最小值.【詳解】作出可行域,如圖所示由,可得.平移直線,當直線過可行域內的點時,最大,即最大,最大值為2.解方程組,得..,當且僅當,即時,等號成立.的最小值為8.故選:.本題考查簡單的線性規(guī)劃,考查基本不等式,屬于中檔題.11.B【解析】
令,則,由圖象分析可知在上有兩個不同的根,再利用一元二次方程根的分布即可解決.【詳解】令,則,如圖與頂多只有3個不同交點,要使關于的方程有六個不相等的實數(shù)根,則有兩個不同的根,設由根的分布可知,,解得.故選:B.本題考查復合方程根的個數(shù)問題,涉及到一元二次方程根的分布,考查學生轉化與化歸和數(shù)形結合的思想,是一道中檔題.12.D【解析】分析:根據(jù)等比數(shù)列的定義可知每一個單音的頻率成等比數(shù)列,利用等比數(shù)列的相關性質可解.詳解:因為每一個單音與前一個單音頻率比為,所以,又,則故選D.點睛:此題考查等比數(shù)列的實際應用,解決本題的關鍵是能夠判斷單音成等比數(shù)列.等比數(shù)列的判斷方法主要有如下兩種:(1)定義法,若()或(),數(shù)列是等比數(shù)列;(2)等比中項公式法,若數(shù)列中,且(),則數(shù)列是等比數(shù)列.二、填空題:本題共4小題,每小題5分,共20分。13.【解析】
根據(jù)題意,分離參數(shù),轉化為只對于內的任意恒成立,令,則只需在定義域內即可,利用放縮法,得出,化簡后得出,即可得出的取值范圍.【詳解】解:已知對于定義域內的任意恒成立,即對于內的任意恒成立,令,則只需在定義域內即可,,,當時取等號,由可知,,當時取等號,,當有解時,令,則,在上單調遞增,又,,使得,,則,所以的取值范圍為.故答案為:.本題考查利用導數(shù)研究函數(shù)單調性和最值,解決恒成立問題求參數(shù)值,涉及分離參數(shù)法和放縮法,考查轉化能力和計算能力.14.【解析】
根據(jù)個全等的三角形,得到,設,求得,利用余弦定理求得,再利用三角形的面積公式,求得三角形的面積.【詳解】由于三角形是由個全等的三角形與中間的一個小等邊三角形拼成的一個大等邊三角形,所以.在三角形中,.設,則.由余弦定理得,解得.所以三角形邊長為,面積為.故答案為:本題考查了等邊三角形的面積計算公式、余弦定理、全等三角形的性質,考查了推理能力與計算能力,屬于中檔題.15.【解析】
第一空:將圓與聯(lián)立,利用計算即可;第二空:找到兩外切的圓的圓心與半徑的關系,再將與聯(lián)立,得到,與結合可得為等差數(shù)列,進而可得.【詳解】當r1=1時,圓,與聯(lián)立消去得,則,解得;由圖可知當時,①,將與聯(lián)立消去得,則,整理得,代入①得,整理得,則.故答案為:;.本題是拋物線與圓的關系背景下的數(shù)列題,關鍵是找到圓心和半徑的關系,建立遞推式,由遞推式求通項公式,綜合性較強,是一道難度較大的題目.16.-40【解析】
由題意,可先由公式得出二項展開式的通項,再令10-3r=1,得r=3即可得出x項的系數(shù)【詳解】的二項展開式的通項公式為,r=0,1,2,3,4,5,令,所以的二項展開式中x項的系數(shù)為.故答案為:-40.本題考查二項式定理的應用,解題關鍵是靈活掌握二項式展開式通項的公式,屬于基礎題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(1)不是,見解析(2)(3)【解析】
(1)利用遞推關系求出數(shù)列的通項公式,進一步驗證時,是否為數(shù)列中的項,即可得答案;(2)由題意得,再對公差進行分類討論,即可得答案;(3)由題意得數(shù)列為等差數(shù)列,設數(shù)列的公差為,再根據(jù)不等式得到公差的值,即可得答案;【詳解】(1)當時,又,所以.所以當時,,而,所以時,不是數(shù)列中的項,故數(shù)列不是為“數(shù)列”(2)因為數(shù)列是公差為的等差數(shù)列,所以.因為數(shù)列為“數(shù)列”所以任意,存在,使得,即有.①若,則只需,使得,從而得是數(shù)列中的項.②若,則.此時,當時,不為正整數(shù),所以不符合題意.綜上,.(3)由題意,所以,又因為,且數(shù)列為“數(shù)列”,所以,即,所以數(shù)列為等差數(shù)列.設數(shù)列的公差為,則有,由,得,整理得,①.②若,取正整數(shù),則當時,,與①式對應任意恒成立相矛盾,因此.同樣根據(jù)②式可得,所以.又,所以.經(jīng)檢驗當時,①②兩式對應任意恒成立,所以數(shù)列的通項公式為.本題考查數(shù)列新定義題、等差數(shù)列的通項公式,考查函數(shù)與方程思想、轉化與化歸思想、分類討論思想,考查邏輯推理能力、運算求解能力,難度較大.18.(1);(2).【解析】
(1)依據(jù)能成立問題知,,然后利用絕對值三角不等式求出的最小值,即求得的取值范圍;(2)按照零點分段法解含有兩個絕對值的不等式即可?!驹斀狻恳驗椴坏仁接袑崝?shù)解,所以因為,所以故。①當時,,所以,故②當時,,所以,故③當時,,所以,故綜上,原不等式的解集為。本題主要考查不等式有解問題的解法以及含有兩個絕對值的不等式問題的解法,意在考查零點分段法、絕對值三角不等式和轉化思想、分類討論思想的應用。19.(1)見解析;(2)【解析】
(1)首先由線面平行的判定定理可得平面,再由線面平行的性質定理即可得證;(2)以點為坐標原點,,所在的直線分別為軸,以過點且垂直于的直線為軸建立空間直角坐標系,利用空間向量法求出二面角的余弦值;【詳解】解:(1)由,又平面,平面,所以平面.又平面,且平面平面,故.(2)因為平面,所以,又,所以平面,所以,又,所以.若平面平面,則平面,所以,由且,又,所以.以點為坐標原點,,所在的直線分別為軸,以過點且垂直于的直線為軸建立空間直角坐標系,則,,設則由,可得,,即,所以可得,所以,設平面的一個法向量為,則,,,取,得所以易知平面的法向量為,設平面與平面所成的二面角為,則,結合圖形可知平面與平面所成的二面角的余弦值為.本題考查線面平行的判定定理及性質定理的應用,利用空間向量法求二面角,解題時要認真審題,注意空間思維能力的培養(yǎng),屬于中檔題.20.(Ⅰ);(Ⅱ).【解析】
(Ⅰ)由題意可知:由,求得點坐標,即可求得橢圓的方程;(Ⅱ)設直線,代入橢圓方程,由韋達定理,由,由為銳角,則,由向
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年二手車個體交易策劃合同范本
- 2025年專利權交換協(xié)議格式
- 2025年個人信用管理協(xié)議書
- 2025年二手汽車交易未過戶合同模板
- 2025年農(nóng)資研發(fā)與實驗勞動合同
- 2025年體重管理服務協(xié)議
- 2025年企業(yè)員工住房公積金貸款合同
- 2025年上海市新能源汽車產(chǎn)業(yè)投資合作協(xié)議
- 2025年養(yǎng)殖場租賃協(xié)議正式版本
- 2025年云服務器租用合同示范
- 安全生產(chǎn)技術規(guī)范 第25部分:城鎮(zhèn)天然氣經(jīng)營企業(yè)DB50-T 867.25-2021
- 現(xiàn)代企業(yè)管理 (全套完整課件)
- 走進本土項目化設計-讀《PBL項目化學習設計》有感
- 《網(wǎng)店運營與管理》整本書電子教案全套教學教案
- 教師信息技術能力提升培訓課件希沃的課件
- 高端公寓住宅項目營銷策劃方案(項目定位 發(fā)展建議)
- 執(zhí)業(yè)獸醫(yī)師聘用協(xié)議(合同)書
- 第1本書出體旅程journeys out of the body精教版2003版
- [英語考試]同等學力英語新大綱全部詞匯
- 2022年肝動脈化療栓塞術(TACE)
- 形式發(fā)票格式2 INVOICE
評論
0/150
提交評論