版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2021-2022高考數(shù)學(xué)模擬試卷考生請(qǐng)注意:1.答題前請(qǐng)將考場(chǎng)、試室號(hào)、座位號(hào)、考生號(hào)、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標(biāo)記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號(hào)內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請(qǐng)將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知正方體的棱長(zhǎng)為2,點(diǎn)在線段上,且,平面經(jīng)過(guò)點(diǎn),則正方體被平面截得的截面面積為()A. B. C. D.2.我國(guó)南北朝時(shí)的數(shù)學(xué)著作《張邱建算經(jīng)》有一道題為:“今有十等人,每等一人,宮賜金以等次差降之,上三人先入,得金四斤,持出,下三人后入得金三斤,持出,中間四人未到者,亦依次更給,問(wèn)各得金幾何?”則在該問(wèn)題中,等級(jí)較高的二等人所得黃金比等級(jí)較低的九等人所得黃金()A.多1斤 B.少1斤 C.多斤 D.少斤3.閱讀如圖所示的程序框圖,運(yùn)行相應(yīng)的程序,則輸出的結(jié)果為()A. B.6 C. D.4.已知,,,則的最小值為()A. B. C. D.5.函數(shù)的圖象大致為()A. B.C. D.6.已知雙曲線:的焦距為,焦點(diǎn)到雙曲線的漸近線的距離為,則雙曲線的漸近線方程為()A. B. C. D.7.已知等差數(shù)列的前項(xiàng)和為,且,則()A.45 B.42 C.25 D.368.已知平面向量滿足與的夾角為,且,則實(shí)數(shù)的值為()A. B. C. D.9.已知函數(shù),若,則的取值范圍是()A. B. C. D.10.已知數(shù)列為等差數(shù)列,且,則的值為()A. B. C. D.11.若非零實(shí)數(shù)、滿足,則下列式子一定正確的是()A. B.C. D.12.將3個(gè)黑球3個(gè)白球和1個(gè)紅球排成一排,各小球除了顏色以外其他屬性均相同,則相同顏色的小球不相鄰的排法共有()A.14種 B.15種 C.16種 D.18種二、填空題:本題共4小題,每小題5分,共20分。13.若,則________,________.14.已知函數(shù)函數(shù),則不等式的解集為____.15.已知是拋物線上一點(diǎn),是圓關(guān)于直線對(duì)稱的曲線上任意一點(diǎn),則的最小值為________.16.已知,,是平面向量,是單位向量.若,,且,則的取值范圍是________.三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)在平面直角坐標(biāo)系中,以原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,已知曲線:.過(guò)點(diǎn)的直線:(為參數(shù))與曲線相交于,兩點(diǎn).(1)求曲線的直角坐標(biāo)方程和直線的普通方程;(2)若,求實(shí)數(shù)的值.18.(12分)已知點(diǎn)P在拋物線上,且點(diǎn)P的橫坐標(biāo)為2,以P為圓心,為半徑的圓(O為原點(diǎn)),與拋物線C的準(zhǔn)線交于M,N兩點(diǎn),且.(1)求拋物線C的方程;(2)若拋物線的準(zhǔn)線與y軸的交點(diǎn)為H.過(guò)拋物線焦點(diǎn)F的直線l與拋物線C交于A,B,且,求的值.19.(12分)已知函數(shù).(1)討論的單調(diào)性;(2)若在定義域內(nèi)是增函數(shù),且存在不相等的正實(shí)數(shù),使得,證明:.20.(12分)如圖所示,四棱錐P﹣ABCD中,PC⊥底面ABCD,PC=CD=2,E為AB的中點(diǎn),底面四邊形ABCD滿足∠ADC=∠DCB=90°,AD=1,BC=1.(Ⅰ)求證:平面PDE⊥平面PAC;(Ⅱ)求直線PC與平面PDE所成角的正弦值;(Ⅲ)求二面角D﹣PE﹣B的余弦值.21.(12分)設(shè)首項(xiàng)為1的正項(xiàng)數(shù)列{an}的前n項(xiàng)和為Sn,數(shù)列的前n項(xiàng)和為Tn,且,其中p為常數(shù).(1)求p的值;(2)求證:數(shù)列{an}為等比數(shù)列;(3)證明:“數(shù)列an,2xan+1,2yan+2成等差數(shù)列,其中x、y均為整數(shù)”的充要條件是“x=1,且y=2”.22.(10分)為了拓展城市的旅游業(yè),實(shí)現(xiàn)不同市區(qū)間的物資交流,政府決定在市與市之間建一條直達(dá)公路,中間設(shè)有至少8個(gè)的偶數(shù)個(gè)十字路口,記為,現(xiàn)規(guī)劃在每個(gè)路口處種植一顆楊樹或者木棉樹,且種植每種樹木的概率均為.(1)現(xiàn)征求兩市居民的種植意見,看看哪一種植物更受歡迎,得到的數(shù)據(jù)如下所示:A市居民B市居民喜歡楊樹300200喜歡木棉樹250250是否有的把握認(rèn)為喜歡樹木的種類與居民所在的城市具有相關(guān)性;(2)若從所有的路口中隨機(jī)抽取4個(gè)路口,恰有個(gè)路口種植楊樹,求的分布列以及數(shù)學(xué)期望;(3)在所有的路口種植完成后,選取3個(gè)種植同一種樹的路口,記總的選取方法數(shù)為,求證:.附:0.1000.0500.0100.0012.7063.8416.63510.828
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.B【解析】
先根據(jù)平面的基本性質(zhì)確定平面,然后利用面面平行的性質(zhì)定理,得到截面的形狀再求解.【詳解】如圖所示:確定一個(gè)平面,因?yàn)槠矫嫫矫?,所以,同理,所以四邊形是平行四邊?即正方體被平面截的截面.因?yàn)?,所以,即所以由余弦定理得:所以所以四邊形故選:B【點(diǎn)睛】本題主要考查平面的基本性質(zhì),面面平行的性質(zhì)定理及截面面積的求法,還考查了空間想象和運(yùn)算求解的能力,屬于中檔題.2.C【解析】設(shè)這十等人所得黃金的重量從大到小依次組成等差數(shù)列則由等差數(shù)列的性質(zhì)得,故選C3.D【解析】
用列舉法,通過(guò)循環(huán)過(guò)程直接得出與的值,得到時(shí)退出循環(huán),即可求得.【詳解】執(zhí)行程序框圖,可得,,滿足條件,,,滿足條件,,,滿足條件,,,由題意,此時(shí)應(yīng)該不滿足條件,退出循環(huán),輸出S的值為.故選D.【點(diǎn)睛】本題主要考查了循環(huán)結(jié)構(gòu)的程序框圖的應(yīng)用,正確依次寫出每次循環(huán)得到的與的值是解題的關(guān)鍵,難度較易.4.B【解析】,選B5.A【解析】
根據(jù)函數(shù)的奇偶性和單調(diào)性,排除錯(cuò)誤選項(xiàng),從而得出正確選項(xiàng).【詳解】因?yàn)?,所以是偶函?shù),排除C和D.當(dāng)時(shí),,,令,得,即在上遞減;令,得,即在上遞增.所以在處取得極小值,排除B.故選:A【點(diǎn)睛】本小題主要考查函數(shù)圖像的識(shí)別,考查利用導(dǎo)數(shù)研究函數(shù)的單調(diào)區(qū)間和極值,屬于中檔題.6.A【解析】
利用雙曲線:的焦點(diǎn)到漸近線的距離為,求出,的關(guān)系式,然后求解雙曲線的漸近線方程.【詳解】雙曲線:的焦點(diǎn)到漸近線的距離為,可得:,可得,,則的漸近線方程為.故選A.【點(diǎn)睛】本題考查雙曲線的簡(jiǎn)單性質(zhì)的應(yīng)用,構(gòu)建出的關(guān)系是解題的關(guān)鍵,考查計(jì)算能力,屬于中檔題.7.D【解析】
由等差數(shù)列的性質(zhì)可知,進(jìn)而代入等差數(shù)列的前項(xiàng)和的公式即可.【詳解】由題,.故選:D【點(diǎn)睛】本題考查等差數(shù)列的性質(zhì),考查等差數(shù)列的前項(xiàng)和.8.D【解析】
由已知可得,結(jié)合向量數(shù)量積的運(yùn)算律,建立方程,求解即可.【詳解】依題意得由,得即,解得.故選:.【點(diǎn)睛】本題考查向量的數(shù)量積運(yùn)算,向量垂直的應(yīng)用,考查計(jì)算求解能力,屬于基礎(chǔ)題.9.B【解析】
對(duì)分類討論,代入解析式求出,解不等式,即可求解.【詳解】函數(shù),由得或解得.故選:B.【點(diǎn)睛】本題考查利用分段函數(shù)性質(zhì)解不等式,屬于基礎(chǔ)題.10.B【解析】
由等差數(shù)列的性質(zhì)和已知可得,即可得到,代入由誘導(dǎo)公式計(jì)算可得.【詳解】解:由等差數(shù)列的性質(zhì)可得,解得,,故選:B.【點(diǎn)睛】本題考查等差數(shù)列的下標(biāo)和公式的應(yīng)用,涉及三角函數(shù)求值,屬于基礎(chǔ)題.11.C【解析】
令,則,,將指數(shù)式化成對(duì)數(shù)式得、后,然后取絕對(duì)值作差比較可得.【詳解】令,則,,,,,因此,.故選:C.【點(diǎn)睛】本題考查了利用作差法比較大小,同時(shí)也考查了指數(shù)式與對(duì)數(shù)式的轉(zhuǎn)化,考查推理能力,屬于中等題.12.D【解析】
采取分類計(jì)數(shù)和分步計(jì)數(shù)相結(jié)合的方法,分兩種情況具體討論,一種是黑白依次相間,一種是開始僅有兩個(gè)相同顏色的排在一起【詳解】首先將黑球和白球排列好,再插入紅球.情況1:黑球和白球按照黑白相間排列(“黑白黑白黑白”或“白黑白黑白黑”),此時(shí)將紅球插入6個(gè)球組成的7個(gè)空中即可,因此共有2×7=14種;情況2:黑球或白球中僅有兩個(gè)相同顏色的排在一起(“黑白白黑白黑”、“黑白黑白白黑”、“白黑黑白黑白”“白黑白黑黑白”),此時(shí)紅球只能插入兩個(gè)相同顏色的球之中,共4種.綜上所述,共有14+4=18種.故選:D【點(diǎn)睛】本題考查排列組合公式的具體應(yīng)用,插空法的應(yīng)用,屬于基礎(chǔ)題二、填空題:本題共4小題,每小題5分,共20分。13.【解析】
根據(jù)誘導(dǎo)公式和二倍角公式計(jì)算得到答案.【詳解】,故.故答案為:;.【點(diǎn)睛】本題考查了誘導(dǎo)公式和二倍角公式,屬于簡(jiǎn)單題.14.【解析】,,所以,所以的解集為。點(diǎn)睛:本題考查絕對(duì)值不等式。本題先對(duì)絕對(duì)值函數(shù)進(jìn)行分段處理,再得到的解析式,求得的分段函數(shù)解析式,再解不等式即可。絕對(duì)值函數(shù)一般都去絕對(duì)值轉(zhuǎn)化為分段函數(shù)處理。15.【解析】
由題意求出圓的對(duì)稱圓的圓心坐標(biāo),求出對(duì)稱圓的圓坐標(biāo)到拋物線上的點(diǎn)的距離的最小值,減去半徑即可得到的最小值.【詳解】假設(shè)圓心關(guān)于直線對(duì)稱的點(diǎn)為,則有,解方程組可得,所以曲線的方程為,圓心為,設(shè),則,又,所以,,即,所以,故答案為:.【點(diǎn)睛】該題考查的是有關(guān)動(dòng)點(diǎn)距離的最小值問(wèn)題,涉及到的知識(shí)點(diǎn)有點(diǎn)關(guān)于直線的對(duì)稱點(diǎn),點(diǎn)與圓上點(diǎn)的距離的最小值為到圓心的距離減半徑,屬于中檔題目.16.【解析】
先由題意設(shè)向量的坐標(biāo),再結(jié)合平面向量數(shù)量積的運(yùn)算及不等式可得解.【詳解】由是單位向量.若,,設(shè),則,,又,則,則,則,又,所以,(當(dāng)或時(shí)取等)即的取值范圍是,,故答案為:,.【點(diǎn)睛】本題考查了平面向量數(shù)量積的坐標(biāo)運(yùn)算,意在考查學(xué)生對(duì)這些知識(shí)的理解掌握水平.三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17.(1),;(2).【解析】
(1)將代入求解,由(為參數(shù))消去即可.(2)將(為參數(shù))與聯(lián)立得,設(shè),兩點(diǎn)對(duì)應(yīng)的參數(shù)為,,則,,再根據(jù),即,利用韋達(dá)定理求解.【詳解】(1)把代入,得,由(為參數(shù)),消去得,∴曲線的直角坐標(biāo)方程和直線的普通方程分別是,.(2)將(為參數(shù))代入得,設(shè),兩點(diǎn)對(duì)應(yīng)的參數(shù)為,,則,,由得,所以,即,所以,而,解得.【點(diǎn)睛】本題主要考查參數(shù)方程、極坐標(biāo)方程、直角坐標(biāo)方程的轉(zhuǎn)化和直線參數(shù)方程的應(yīng)用,還考查了運(yùn)算求解的能力,屬于中檔題.18.(1)(2)4【解析】
(1)將點(diǎn)P橫坐標(biāo)代入拋物線中求得點(diǎn)P的坐標(biāo),利用點(diǎn)P到準(zhǔn)線的距離d和勾股定理列方程求出p的值即可;(2)設(shè)A、B點(diǎn)坐標(biāo)以及直線AB的方程,代入拋物線方程,利用根與系數(shù)的關(guān)系,以及垂直關(guān)系,得出關(guān)系式,計(jì)算的值即可.【詳解】(1)將點(diǎn)P橫坐標(biāo)代入中,求得,∴P(2,),,點(diǎn)P到準(zhǔn)線的距離為,∴,∴,解得,∴,∴拋物線C的方程為:;(2)拋物線的焦點(diǎn)為F(0,1),準(zhǔn)線方程為,;設(shè),直線AB的方程為,代入拋物線方程可得,∴,…①由,可得,又,,∴,∴,即,∴,…②把①代入②得,,則.【點(diǎn)睛】本題考查直線與拋物線的位置關(guān)系,以及拋物線與圓的方程應(yīng)用問(wèn)題,考查轉(zhuǎn)化思想以及計(jì)算能力,是中檔題.19.(1)當(dāng)時(shí),在上遞增,在上遞減;當(dāng)時(shí),在上遞增,在上遞減,在上遞增;當(dāng)時(shí),在上遞增;當(dāng)時(shí),在上遞增,在上遞減,在上遞增;(2)證明見解析【解析】
(1)對(duì)求導(dǎo),分,,進(jìn)行討論,可得的單調(diào)性;(2)在定義域內(nèi)是是增函數(shù),由(1)可知,,設(shè),可得,則,設(shè),對(duì)求導(dǎo),利用其單調(diào)性可證明.【詳解】解:的定義域?yàn)?,因?yàn)?,所以,?dāng)時(shí),令,得,令,得;當(dāng)時(shí),則,令,得,或,令,得;當(dāng)時(shí),,當(dāng)時(shí),則,令,得;綜上所述,當(dāng)時(shí),在上遞增,在上遞減;當(dāng)時(shí),在上遞增,在上遞減,在上遞增;當(dāng)時(shí),在上遞增;當(dāng)時(shí),在上遞增,在上遞減,在上遞增;(2)在定義域內(nèi)是是增函數(shù),由(1)可知,此時(shí),設(shè),又因?yàn)?,則,設(shè),則對(duì)于任意成立,所以在上是增函數(shù),所以對(duì)于,有,即,有,因?yàn)?,所以,即,又在遞增,所以,即.【點(diǎn)睛】本題主要考查利用導(dǎo)數(shù)研究含參函數(shù)的單調(diào)性及導(dǎo)數(shù)在極值點(diǎn)偏移中的應(yīng)用,考查學(xué)生分類討論與轉(zhuǎn)化的思想,綜合性大,屬于難題.20.(Ⅰ)證明見解析(Ⅱ).(Ⅲ)﹣.【解析】
(Ⅰ)由題知,如圖以點(diǎn)為原點(diǎn),直線分別為軸,建立空間直角坐標(biāo)系,計(jì)算,證明,從而平面PAC,即可得證;(Ⅱ)求解平面PDE的一個(gè)法向量,計(jì)算,即可得直線PC與平面PDE所成角的正弦值;(Ⅲ)求解平面PBE的一個(gè)法向量,計(jì)算,即可得二面角D﹣PE﹣B的余弦值.【詳解】(Ⅰ)PC⊥底面ABCD,,如圖以點(diǎn)為原點(diǎn),直線分別為軸,建立空間直角坐標(biāo)系,則,,,,又,平面PAC,平面PDE,平面PDE⊥平面PAC;(Ⅱ)設(shè)為平面PDE的一個(gè)法向量,又,則,取,得,直線PC與平面PDE所成角的正弦值;(Ⅲ)設(shè)為平面PBE的一個(gè)法向量,又則,取,得,,二面角D﹣PE﹣B的余弦值﹣.【點(diǎn)睛】本題主要考查了平面與平面的垂直,直線與平面所成角的計(jì)算,二面角大小的求解,考查了空間向量在立體幾何中的應(yīng)用,考查了學(xué)生的空間想象能力與運(yùn)算求解能力.21.(1)p=2;(2)見解析(3)見解析【解析】
(1)取n=1時(shí),由得p=0或2,計(jì)算排除p=0的情況得到答案.(2),則,相減得到3an+1=4﹣Sn+1﹣Sn,再化簡(jiǎn)得到,得到證明.(3)分別證明充分性和必要性,假設(shè)an,2xan+1,2yan+2成等差數(shù)列,其中x、y均為整數(shù),計(jì)算化簡(jiǎn)得2x﹣2y﹣2=1,設(shè)k=x﹣(y﹣2),計(jì)算得到k=1,得到答案.【詳解】(1)n=1時(shí),由得p=0或2,若p=0時(shí),,當(dāng)n=2時(shí),,解得a2=0或,而an>0,所以p=0不符合題意,故p=2;(2)當(dāng)p=2時(shí),①,則②,②﹣①并化簡(jiǎn)得3an+1=4﹣Sn+1﹣Sn③,則3an+2=4﹣Sn+2﹣Sn+1④,④﹣③得(n∈N*),又因?yàn)?,所以?shù)列{an}是等比數(shù)列,且;(3)充分性:若x=1,y=2,由知an,2xan+1,2yan+2依次為,,,滿足,即an,2xan+1,2yan+2成等差數(shù)列;必要性:假
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 福建師范大學(xué)《書法技法與常識(shí)》2021-2022學(xué)年第一學(xué)期期末試卷
- 福建師范大學(xué)《廣播電視編導(dǎo)》2021-2022學(xué)年第一學(xué)期期末試卷
- 福建師范大學(xué)《多聲部音樂(lè)分析與習(xí)作一》2021-2022學(xué)年第一學(xué)期期末試卷
- 國(guó)家開放大學(xué)《建筑結(jié)構(gòu)》學(xué)習(xí)行為表現(xiàn)(第3套)
- 綠色食品(葡萄)綠色防控技術(shù)指南
- 檔案數(shù)字化成果移交清單
- 2024屆云南省玉龍納西族自治縣一中高三高考熱身試題
- 新型玻璃課件教學(xué)
- 2024年南京客運(yùn)從業(yè)資格證題目及答案
- 頭暈課件教學(xué)課件
- 高考熱點(diǎn)作文素材:《黑神話:悟空》
- 工業(yè)大學(xué)安全施工組織設(shè)計(jì)
- 2023-2024學(xué)年北京市朝陽(yáng)區(qū)陳經(jīng)綸中學(xué)七年級(jí)(上)期中數(shù)學(xué)試卷【含解析】
- 財(cái)政投資評(píng)審咨詢服務(wù)預(yù)算和結(jié)算評(píng)審項(xiàng)目 投標(biāo)方案(技術(shù)方案)
- 高中化學(xué)必修一《2.2 氯及其化合物》導(dǎo)學(xué)案
- DL-T5024-2020電力工程地基處理技術(shù)規(guī)程
- 廣西小學(xué)生詩(shī)詞大賽備考試題庫(kù)400題(一二年級(jí)適用)
- 天津市河?xùn)|區(qū)2023-2024九年級(jí)上學(xué)期期中數(shù)學(xué)試題
- 揚(yáng)塵治理公示牌
- 事故報(bào)告調(diào)查和處理制度(完整版)
- 道路運(yùn)輸(普貨)安全生產(chǎn)管理制度
評(píng)論
0/150
提交評(píng)論