河北省衡水市2021-2022學年高考全國統(tǒng)考預測密卷數(shù)學試卷含解析_第1頁
河北省衡水市2021-2022學年高考全國統(tǒng)考預測密卷數(shù)學試卷含解析_第2頁
河北省衡水市2021-2022學年高考全國統(tǒng)考預測密卷數(shù)學試卷含解析_第3頁
河北省衡水市2021-2022學年高考全國統(tǒng)考預測密卷數(shù)學試卷含解析_第4頁
河北省衡水市2021-2022學年高考全國統(tǒng)考預測密卷數(shù)學試卷含解析_第5頁
已閱讀5頁,還剩15頁未讀 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

2021-2022高考數(shù)學模擬試卷注意事項:1.答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知非零向量、,若且,則向量在向量方向上的投影為()A. B. C. D.2.已知平行于軸的直線分別交曲線于兩點,則的最小值為()A. B. C. D.3.已知滿足,,,則在上的投影為()A. B. C. D.24.定義在R上的函數(shù)y=fx滿足fx≤2x-1A. B. C. D.5.給出個數(shù),,,,,,其規(guī)律是:第個數(shù)是,第個數(shù)比第個數(shù)大,第個數(shù)比第個數(shù)大,第個數(shù)比第個數(shù)大,以此類推,要計算這個數(shù)的和.現(xiàn)已給出了該問題算法的程序框圖如圖,請在圖中判斷框中的①處和執(zhí)行框中的②處填上合適的語句,使之能完成該題算法功能()A.; B.;C.; D.;6.已知向量,滿足,在上投影為,則的最小值為()A. B. C. D.7.如圖所示,用一邊長為的正方形硬紙,按各邊中點垂直折起四個小三角形,做成一個蛋巢,將體積為的雞蛋(視為球體)放入其中,蛋巢形狀保持不變,則雞蛋(球體)離蛋巢底面的最短距離為()A. B.C. D.8.已知平面向量滿足,且,則所夾的銳角為()A. B. C. D.09.對于任意,函數(shù)滿足,且當時,函數(shù).若,則大小關系是()A. B. C. D.10.三國時代吳國數(shù)學家趙爽所注《周髀算經(jīng)》中給出了勾股定理的絕妙證明.下面是趙爽的弦圖及注文,弦圖是一個以勾股形之弦為邊的正方形,其面積稱為弦實.圖中包含四個全等的勾股形及一個小正方形,分別涂成紅(朱)色及黃色,其面積稱為朱實、黃實,利用,化簡,得.設勾股形中勾股比為,若向弦圖內(nèi)隨機拋擲顆圖釘(大小忽略不計),則落在黃色圖形內(nèi)的圖釘數(shù)大約為()A. B. C. D.11.已知雙曲線與雙曲線沒有公共點,則雙曲線的離心率的取值范圍是()A. B. C. D.12.已知集合A={y|y},B={x|y=lg(x﹣2x2)},則?R(A∩B)=()A.[0,) B.(﹣∞,0)∪[,+∞)C.(0,) D.(﹣∞,0]∪[,+∞)二、填空題:本題共4小題,每小題5分,共20分。13.若點在直線上,則的值等于______________.14.如果函數(shù)(,且,)在區(qū)間上單調遞減,那么的最大值為__________.15.若函數(shù)在和上均單調遞增,則實數(shù)的取值范圍為________.16.已知圓柱的兩個底面的圓周在同一個球的球面上,圓柱的高和球半徑均為2,則該圓柱的底面半徑為__________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知是拋物線:的焦點,點在上,到軸的距離比小1.(1)求的方程;(2)設直線與交于另一點,為的中點,點在軸上,.若,求直線的斜率.18.(12分)已知拋物線的準線過橢圓C:(a>b>0)的左焦點F,且點F到直線l:(c為橢圓焦距的一半)的距離為4.(1)求橢圓C的標準方程;(2)過點F做直線與橢圓C交于A,B兩點,P是AB的中點,線段AB的中垂線交直線l于點Q.若,求直線AB的方程.19.(12分)2019年12月以來,湖北省武漢市持續(xù)開展流感及相關疾病監(jiān)測,發(fā)現(xiàn)多起病毒性肺炎病例,均診斷為病毒性肺炎/肺部感染,后被命名為新型冠狀病毒肺炎(CoronaVirusDisease2019,COVID—19),簡稱“新冠肺炎”.下圖是2020年1月15日至1月24日累計確診人數(shù)隨時間變化的散點圖.為了預測在未釆取強力措施下,后期的累計確診人數(shù),建立了累計確診人數(shù)y與時間變量t的兩個回歸模型,根據(jù)1月15日至1月24日的數(shù)據(jù)(時間變量t的值依次1,2,…,10)建立模型和.(1)根據(jù)散點圖判斷,與哪一個適宜作為累計確診人數(shù)y與時間變量t的回歸方程類型?(給出判斷即可,不必說明理由)(2根據(jù)(1)的判斷結果及附表中數(shù)據(jù),建立y關于x的回歸方程;(3)以下是1月25日至1月29日累計確診人數(shù)的真實數(shù)據(jù),根據(jù)(2)的結果回答下列問題:時間1月25日1月26日1月27日1月28日1月29日累計確診人數(shù)的真實數(shù)據(jù)19752744451559747111(?。┊?月25日至1月27日這3天的誤差(模型預測數(shù)據(jù)與真實數(shù)據(jù)差值的絕對值與真實數(shù)據(jù)的比值)都小于0.1則認為模型可靠,請判斷(2)的回歸方程是否可靠?(ⅱ)2020年1月24日在人民政府的強力領導下,全國人民共同采取了強力的預防“新冠肺炎”的措施,若采取措施5天后,真實數(shù)據(jù)明顯低于預測數(shù)據(jù),則認為防護措施有效,請判斷預防措施是否有效?附:對于一組數(shù)據(jù)(,,……,,其回歸直線的斜率和截距的最小二乘估計分別為,.參考數(shù)據(jù):其中,.5.53901938576403152515470010015022533850720.(12分)已知函數(shù),其中為自然對數(shù)的底數(shù).(1)若函數(shù)在區(qū)間上是單調函數(shù),試求的取值范圍;(2)若函數(shù)在區(qū)間上恰有3個零點,且,求的取值范圍.21.(12分)設,(1)求的單調區(qū)間;(2)設恒成立,求實數(shù)的取值范圍.22.(10分)以直角坐標系的原點為極坐標系的極點,軸的正半軸為極軸.已知曲線的極坐標方程為,是上一動點,,點的軌跡為.(1)求曲線的極坐標方程,并化為直角坐標方程;(2)若點,直線的參數(shù)方程(為參數(shù)),直線與曲線的交點為,當取最小值時,求直線的普通方程.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.D【解析】

設非零向量與的夾角為,在等式兩邊平方,求出的值,進而可求得向量在向量方向上的投影為,即可得解.【詳解】,由得,整理得,,解得,因此,向量在向量方向上的投影為.故選:D.【點睛】本題考查向量投影的計算,同時也考查利用向量的模計算向量的夾角,考查計算能力,屬于基礎題.2.A【解析】

設直線為,用表示出,,求出,令,利用導數(shù)求出單調區(qū)間和極小值、最小值,即可求出的最小值.【詳解】解:設直線為,則,,而滿足,那么設,則,函數(shù)在上單調遞減,在上單調遞增,所以故選:.【點睛】本題考查導數(shù)知識的運用:求單調區(qū)間和極值、最值,考查化簡整理的運算能力,正確求導確定函數(shù)的最小值是關鍵,屬于中檔題.3.A【解析】

根據(jù)向量投影的定義,即可求解.【詳解】在上的投影為.故選:A【點睛】本題考查向量的投影,屬于基礎題.4.D【解析】

根據(jù)y=fx+1為奇函數(shù),得到函數(shù)關于1,0中心對稱,排除AB,計算f1.5≤【詳解】y=fx+1為奇函數(shù),即fx+1=-f-x+1,函數(shù)關于f1.5≤2故選:D.【點睛】本題考查了函數(shù)圖像的識別,確定函數(shù)關于1,0中心對稱是解題的關鍵.5.A【解析】

要計算這個數(shù)的和,這就需要循環(huán)50次,這樣可以確定判斷語句①,根據(jù)累加最的變化規(guī)律可以確定語句②.【詳解】因為計算這個數(shù)的和,循環(huán)變量的初值為1,所以步長應該為1,故判斷語句①應為,第個數(shù)是,第個數(shù)比第個數(shù)大,第個數(shù)比第個數(shù)大,第個數(shù)比第個數(shù)大,這樣可以確定語句②為,故本題選A.【點睛】本題考查了補充循環(huán)結構,正確讀懂題意是解本題的關鍵.6.B【解析】

根據(jù)在上投影為,以及,可得;再對所求模長進行平方運算,可將問題轉化為模長和夾角運算,代入即可求得.【詳解】在上投影為,即又本題正確選項:【點睛】本題考查向量模長的運算,對于含加減法運算的向量模長的求解,通常先求解模長的平方,再開平方求得結果;解題關鍵是需要通過夾角取值范圍的分析,得到的最小值.7.D【解析】因為蛋巢的底面是邊長為的正方形,所以過四個頂點截雞蛋所得的截面圓的直徑為,又因為雞蛋的體積為,所以球的半徑為,所以球心到截面的距離,而截面到球體最低點距離為,而蛋巢的高度為,故球體到蛋巢底面的最短距離為.點睛:本題主要考查折疊問題,考查球體有關的知識.在解答過程中,如果遇到球體或者圓錐等幾何體的內(nèi)接或外接幾何體的問題時,可以采用軸截面的方法來處理.也就是畫出題目通過球心和最低點的截面,然后利用弦長和勾股定理來解決.球的表面積公式和體積公式是需要熟記的.8.B【解析】

根據(jù)題意可得,利用向量的數(shù)量積即可求解夾角.【詳解】因為即而所以夾角為故選:B【點睛】本題考查了向量數(shù)量積求夾角,需掌握向量數(shù)量積的定義求法,屬于基礎題.9.A【解析】

由已知可得的單調性,再由可得對稱性,可求出在單調性,即可求出結論.【詳解】對于任意,函數(shù)滿足,因為函數(shù)關于點對稱,當時,是單調增函數(shù),所以在定義域上是單調增函數(shù).因為,所以,.故選:A.【點睛】本題考查利用函數(shù)性質比較函數(shù)值的大小,解題的關鍵要掌握函數(shù)對稱性的代數(shù)形式,屬于中檔題..10.A【解析】分析:設三角形的直角邊分別為1,,利用幾何概型得出圖釘落在小正方形內(nèi)的概率即可得出結論.解析:設三角形的直角邊分別為1,,則弦為2,故而大正方形的面積為4,小正方形的面積為.圖釘落在黃色圖形內(nèi)的概率為.落在黃色圖形內(nèi)的圖釘數(shù)大約為.故選:A.點睛:應用幾何概型求概率的方法建立相應的幾何概型,將試驗構成的總區(qū)域和所求事件構成的區(qū)域轉化為幾何圖形,并加以度量.(1)一般地,一個連續(xù)變量可建立與長度有關的幾何概型,只需把這個變量放在數(shù)軸上即可;(2)若一個隨機事件需要用兩個變量來描述,則可用這兩個變量的有序實數(shù)對來表示它的基本事件,然后利用平面直角坐標系就能順利地建立與面積有關的幾何概型;(3)若一個隨機事件需要用三個連續(xù)變量來描述,則可用這三個變量組成的有序數(shù)組來表示基本事件,利用空間直角坐標系即可建立與體積有關的幾何概型.11.C【解析】

先求得的漸近線方程,根據(jù)沒有公共點,判斷出漸近線斜率的取值范圍,由此求得離心率的取值范圍.【詳解】雙曲線的漸近線方程為,由于雙曲線與雙曲線沒有公共點,所以雙曲線的漸近線的斜率,所以雙曲線的離心率.故選:C【點睛】本小題主要考查雙曲線的漸近線,考查雙曲線離心率的取值范圍的求法,屬于基礎題.12.D【解析】

求函數(shù)的值域得集合,求定義域得集合,根據(jù)交集和補集的定義寫出運算結果.【詳解】集合A={y|y}={y|y≥0}=[0,+∞);B={x|y=lg(x﹣2x2)}={x|x﹣2x2>0}={x|0<x}=(0,),∴A∩B=(0,),∴?R(A∩B)=(﹣∞,0]∪[,+∞).故選:D.【點睛】該題考查的是有關集合的問題,涉及到的知識點有函數(shù)的定義域,函數(shù)的值域,集合的運算,屬于基礎題目.二、填空題:本題共4小題,每小題5分,共20分。13.【解析】

根據(jù)題意可得,再由,即可得到結論.【詳解】由題意,得,又,解得,當時,則,此時;當時,則,此時,綜上,.故答案為:.【點睛】本題考查誘導公式和同角的三角函數(shù)的關系,考查計算能力,屬于基礎題.14.18【解析】

根據(jù)函數(shù)單調性的性質,分一次函數(shù)和一元二次函數(shù)的對稱性和單調區(qū)間的關系建立不等式,利用基本不等式求解即可.【詳解】解:①當時,,在區(qū)間上單調遞減,則,即,則.②當時,,函數(shù)開口向上,對稱軸為,因為在區(qū)間上單調遞減,則,因為,則,整理得,又因為,則.所以即,所以當且僅當時等號成立.綜上所述,的最大值為18.故答案為:18【點睛】本題主要考查一次函數(shù)與二次函數(shù)的單調性和均值不等式.利用均值不等式求解要注意”一定,二正,三相等”.15.【解析】

化簡函數(shù),求出在上的單調遞增區(qū)間,然后根據(jù)在和上均單調遞增,列出不等式求解即可.【詳解】由知,當時,在和上單調遞增,在和上均單調遞增,,

的取值范圍為:.

故答案為:.【點睛】本題主要考查了三角函數(shù)的圖象與性質,關鍵是根據(jù)函數(shù)的單調性列出關于m的方程組,屬中檔題.16.【解析】

由圓柱外接球的性質,即可求得結果.【詳解】解:由于圓柱的高和球半徑均為2,,則球心到圓柱底面的距離為1,設圓柱底面半徑為,由已知有,∴,即圓柱的底面半徑為.故答案為:.【點睛】本題考查由圓柱的外接球的性質求圓柱底面半徑,屬于基礎題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(1)(2)【解析】

(1)由拋物線定義可知,解得,故拋物線的方程為;(2)設直線:,聯(lián)立,利用韋達定理算出的中點,又,所以直線的方程為,求出,利用求解即可.【詳解】(1)設的準線為,過作于,則由拋物線定義,得,因為到的距離比到軸的距離大1,所以,解得,所以的方程為(2)由題意,設直線方程為,由消去,得,設,,則,所以,又因為為的中點,點的坐標為,直線的方程為,令,得,點的坐標為,所以,解得,所以直線的斜率為.【點睛】本題主要考查拋物線的定義,直線與拋物線的位置關系等基礎知識,考查學生的運算求解能力.涉及拋物線的弦的中點,斜率問題時,可采用韋達定理或“點差法”求解.18.(1);(2)或.【解析】

(1)由拋物線的準線方程求出的值,確定左焦點坐標,再由點F到直線l:的距離為4,求出即可;(2)設直線方程,與橢圓方程聯(lián)立,運用根與系數(shù)關系和弦長公式,以及兩直線垂直的條件和中點坐標公式,即可得到所求直線的方程.【詳解】(1)拋物線的準線方程為,,直線,點F到直線l的距離為,,所以橢圓的標準方程為;(2)依題意斜率不為0,又過點,設方程為,聯(lián)立,消去得,,,設,,,,線段AB的中垂線交直線l于點Q,所以橫坐標為3,,,,平方整理得,解得或(舍去),,所求的直線方程為或.【點睛】本題考查橢圓的方程以及直線與橢圓的位置關系,要熟練應用根與系數(shù)關系、相交弦長公式,合理運用兩點間的距離公式,考查計算求解能力,屬于中檔題.19.(1)適宜(2)(3)(?。┗貧w方程可靠(ⅱ)防護措施有效【解析】

(1)根據(jù)散點圖即可判斷出結果.(2)設,則,求出,再由回歸方程過樣本中心點求出,即可求出回歸方程.(3)(?。├帽碇袛?shù)據(jù),計算出誤差即可判斷回歸方程可靠;(ⅱ)當時,,與真實值作比較即可判斷有效.【詳解】(1)根據(jù)散點圖可知:適宜作為累計確診人數(shù)與時間變量的回歸方程類型;(2)設,則,,,;(3)(?。r,,,當時,,,當時,,,所以(2)的回歸方程可靠:(ⅱ)當時,,10150遠大于7111,所以防護措施有效.【點睛】本題考查了函數(shù)模型的應用,在求非線性回歸方程時,現(xiàn)將非線性的化為線性的,考查了誤差的計算以及用函數(shù)模型分析數(shù)據(jù),屬于基礎題.20.(1);(2).【解析】

(1)求出,再求恒成立,以及恒成立時,的取值范圍;(2)由已知,在區(qū)間內(nèi)恰有一個零點,轉化為在區(qū)間內(nèi)恰有兩個零點,由(1)的結論對分類討論,根據(jù)單調性,結合零點存在性定理,即可求出結論.【詳解】(1)由題意得,則,當函數(shù)在區(qū)間上單調遞增時,在區(qū)間上恒成立.∴(其中),解得.當函數(shù)在區(qū)間上單調遞減時,在區(qū)間上恒成立,∴(其中),解得.綜上所述,實數(shù)的取值范圍是.(2).由,知在區(qū)間內(nèi)恰有一個零點,設該零點為,則在區(qū)間內(nèi)不單調.∴在區(qū)間內(nèi)存在零點,同理在區(qū)間內(nèi)存在零點.∴在區(qū)間內(nèi)恰有兩個零點.由(1)易知,當時,在區(qū)間上單調遞增,故在區(qū)間內(nèi)至多有一個零點

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論