2023-2024學年福建省泉州市名校中考數學五模試卷含解析_第1頁
2023-2024學年福建省泉州市名校中考數學五模試卷含解析_第2頁
2023-2024學年福建省泉州市名校中考數學五模試卷含解析_第3頁
2023-2024學年福建省泉州市名校中考數學五模試卷含解析_第4頁
2023-2024學年福建省泉州市名校中考數學五模試卷含解析_第5頁
已閱讀5頁,還剩15頁未讀 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2023-2024學年福建省泉州市名校中考數學五模試卷考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.從3、1、-2這三個數中任取兩個不同的數作為P點的坐標,則P點剛好落在第四象限的概率是()A. B. C. D.2.下列事件中為必然事件的是()A.打開電視機,正在播放茂名新聞 B.早晨的太陽從東方升起C.隨機擲一枚硬幣,落地后正面朝上 D.下雨后,天空出現彩虹3.下列各圖中,∠1與∠2互為鄰補角的是()A. B.C. D.4.如圖,菱形ABCD中,E.F分別是AB、AC的中點,若EF=3,則菱形ABCD的周長是()A.12 B.16 C.20 D.245.已知點A(x1,y1),B(x2,y2),C(x3,y3)在反比例函數y=kx(k<0)的圖象上,若x1<x2<0<x3,則y1,y2,y3A.y1<y2<y3B.y2<y1<y3C.y3<y2<y1D.y3<y1<y26.如圖,在Rt△ABC中,∠C=90°,BE平分∠ABC,ED垂直平分AB于D,若AC=9,則AE的值是()A. B. C.6 D.47.某單位若干名職工參加普法知識競賽,將成績制成如圖所示的扇形統(tǒng)計圖和條形統(tǒng)計圖,根據圖中提供的信息,這些職工成績的中位數和平均數分別是()A.94分,96分 B.96分,96分C.94分,96.4分 D.96分,96.4分8.下列由左邊到右邊的變形,屬于因式分解的是().A.(x+1)(x-1)=x2-1B.x2-2x+1=x(x-2)+1C.a2-b2=(a+b)(a-b)D.mx+my+nx+ny=m(x+y)+n(x+y)9.小明和他的爸爸媽媽共3人站成一排拍照,他的爸爸媽媽相鄰的概率是()A. B. C. D.10.小王拋一枚質地均勻的硬幣,連續(xù)拋4次,硬幣均正面朝上落地,如果他再拋第5次,那么硬幣正面朝上的概率為()A.1 B. C. D.11.PM2.5是指大氣中直徑小于或等于2.5μm(0.0000025m)的顆粒物,含有大量有毒、有害物質,也稱為可入肺顆粒物,將25微米用科學記數法可表示為()米.A.25×10﹣7B.2.5×10﹣6C.0.25×10﹣5D.2.5×10﹣512.若關于x的一元二次方程(k﹣1)x2+2x﹣2=0有兩個不相等的實數根,則k的取值范圍是()A.k> B.k≥ C.k>且k≠1 D.k≥且k≠1二、填空題:(本大題共6個小題,每小題4分,共24分.)13.對于任意實數a、b,定義一種運算:a※b=ab﹣a+b﹣1.例如,1※5=1×5﹣1+5﹣1=ll.請根據上述的定義解決問題:若不等式3※x<1,則不等式的正整數解是_____.14.某商品原價100元,連續(xù)兩次漲價后,售價為144元.若平均每次增長率為x,則x=__________.15.點(1,–2)關于坐標原點O的對稱點坐標是_____.16.兩圓內切,其中一個圓的半徑長為6,圓心距等于2,那么另一個圓的半徑長等于__.17.若,則=_____.18.現有八個大小相同的矩形,可拼成如圖1、2所示的圖形,在拼圖2時,中間留下了一個邊長為2的小正方形,則每個小矩形的面積是_____.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19.(6分)如圖,已知拋物線經過原點o和x軸上一點A(4,0),拋物線頂點為E,它的對稱軸與x軸交于點D.直線y=﹣2x﹣1經過拋物線上一點B(﹣2,m)且與y軸交于點C,與拋物線的對稱軸交于點F.(1)求m的值及該拋物線對應的解析式;(2)P(x,y)是拋物線上的一點,若S△ADP=S△ADC,求出所有符合條件的點P的坐標;(3)點Q是平面內任意一點,點M從點F出發(fā),沿對稱軸向上以每秒1個單位長度的速度勻速運動,設點M的運動時間為t秒,是否能使以Q、A、E、M四點為頂點的四邊形是菱形.若能,請直接寫出點M的運動時間t的值;若不能,請說明理由.20.(6分)A糧倉和B糧倉分別庫存糧食12噸和6噸,現決定支援給C市10噸和D市8噸.已知從A糧倉調運一噸糧食到C市和D市的運費分別為400元和800元;從B糧倉調運一噸糧食到C市和D市的運費分別為300元和500元.設B糧倉運往C市糧食x噸,求總運費W(元)關于x的函數關系式.(寫出自變量的取值范圍)若要求總運費不超過9000元,問共有幾種調運方案?求出總運費最低的調運方案,最低運費是多少?21.(6分)如圖,已知拋物線過點A(4,0),B(﹣2,0),C(0,﹣4).(1)求拋物線的解析式;(2)在圖甲中,點M是拋物線AC段上的一個動點,當圖中陰影部分的面積最小值時,求點M的坐標;(3)在圖乙中,點C和點C1關于拋物線的對稱軸對稱,點P在拋物線上,且∠PAB=∠CAC1,求點P的橫坐標.22.(8分)工人師傅用一塊長為10dm,寬為6dm的矩形鐵皮制作一個無蓋的長方體容器,需要將四角各裁掉一個正方形.(厚度不計)求長方體底面面積為12dm2時,裁掉的正方形邊長多大?23.(8分)如圖,吊車在水平地面上吊起貨物時,吊繩BC與地面保持垂直,吊臂AB與水平線的夾角為64°,吊臂底部A距地面1.5m.(計算結果精確到0.1m,參考數據sin64°≈0.90,cos64°≈0.44,tan64°≈2.05)(1)當吊臂底部A與貨物的水平距離AC為5m時,吊臂AB的長為m.(2)如果該吊車吊臂的最大長度AD為20m,那么從地面上吊起貨物的最大高度是多少?(吊鉤的長度與貨物的高度忽略不計)24.(10分)將如圖所示的牌面數字分別是1,2,3,4的四張撲克牌背面朝上,洗勻后放在桌面上.從中隨機抽出一張牌,牌面數字是偶數的概率是_____;先從中隨機抽出一張牌,將牌面數字作為十位上的數字,然后將該牌放回并重新洗勻,再隨機抽取一張,將牌面數字作為個位上的數字,請用畫樹狀圖或列表的方法求組成的兩位數恰好是4的倍數的概率.25.(10分)如圖,△ABC中,∠A=90°,AB=AC=4,D是BC邊上一點,將點D繞點A逆時針旋轉60°得到點E,連接CE.(1)當點E在BC邊上時,畫出圖形并求出∠BAD的度數;(2)當△CDE為等腰三角形時,求∠BAD的度數;(3)在點D的運動過程中,求CE的最小值.(參考數值:sin75°=,cos75°=,tan75°=)26.(12分)如圖,在直角坐標系中,矩形OABC的頂點O與坐標原點重合,A、C分別在坐標軸上,點B的坐標為(4,2),直線交AB,BC分別于點M,N,反比例函數的圖象經過點M,N.(1)求反比例函數的解析式;(2)若點P在y軸上,且△OPM的面積與四邊形BMON的面積相等,求點P的坐標.27.(12分)如圖,已知點D在△ABC的外部,AD∥BC,點E在邊AB上,AB?AD=BC?AE.求證:∠BAC=∠AED;在邊AC取一點F,如果∠AFE=∠D,求證:.

參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、B【解析】解:畫樹狀圖得:∵共有6種等可能的結果,其中(1,-2),(3,-2)點落在第四項象限,∴P點剛好落在第四象限的概率==.故選B.點睛:本題考查的是用列表法或畫樹狀圖法求概率.列表法或畫樹狀圖法可以不重復不遺漏的列出所有可能的結果,列表法適合于兩步完成的事件,樹狀圖法適合兩步或兩步以上完成的事件,熟記各象限內點的符號特點是解題的關鍵.2、B【解析】分析:根據必然事件、不可能事件、隨機事件的概念可區(qū)別各類事件:A、打開電視機,正在播放茂名新聞,可能發(fā)生,也可能不發(fā)生,是隨機事件,故本選項錯誤;B、早晨的太陽從東方升起,是必然事件,故本選項正確;C、隨機擲一枚硬幣,落地后可能正面朝上,也可能背面朝上,故本選項錯誤;D、下雨后,天空出現彩虹,可能發(fā)生,也可能不發(fā)生,故本選項錯誤.故選B.3、D【解析】根據鄰補角的定義可知:只有D圖中的是鄰補角,其它都不是.故選D.4、D【解析】

根據三角形的中位線平行于第三邊并且等于第三邊的一半求出,再根據菱形的周長公式列式計算即可得解.【詳解】、分別是、的中點,是的中位線,,菱形的周長.故選:.【點睛】本題主要考查了菱形的四邊形都相等,三角形的中位線平行于第三邊并且等于第三邊的一半,求出菱形的邊長是解題的關鍵.5、D【解析】試題分析:反比例函數y=-的圖象位于二、四象限,在每一象限內,y隨x的增大而增大,∵A(x1,y1)、B(x2,y2)、C(x3,y3)在該函數圖象上,且x1<x2<0<x3,,∴y3<y1<y2;故選D.考點:反比例函數的性質.6、C【解析】

由角平分線的定義得到∠CBE=∠ABE,再根據線段的垂直平分線的性質得到EA=EB,則∠A=∠ABE,可得∠CBE=30°,根據含30度的直角三角形三邊的關系得到BE=2EC,即AE=2EC,由AE+EC=AC=9,即可求出AC.【詳解】解:∵BE平分∠ABC,∴∠CBE=∠ABE,∵ED垂直平分AB于D,∴EA=EB,∴∠A=∠ABE,∴∠CBE=30°,∴BE=2EC,即AE=2EC,而AE+EC=AC=9,∴AE=1.故選C.7、D【解析】

解:總人數為6÷10%=60(人),則91分的有60×20%=12(人),98分的有60-6-12-15-9=18(人),第30與31個數據都是96分,這些職工成績的中位數是(96+96)÷2=96;這些職工成績的平均數是(92×6+91×12+96×15+98×18+100×9)÷60=(552+1128+1110+1761+900)÷60=5781÷60=96.1.故選D.【點睛】本題考查1.中位數;2.扇形統(tǒng)計圖;3.條形統(tǒng)計圖;1.算術平均數,掌握概念正確計算是關鍵.8、C【解析】

因式分解是把一個多項式化為幾個整式的積的形式,據此進行解答即可.【詳解】解:A、B、D三個選項均不是把一個多項式化為幾個整式的積的形式,故都不是因式分解,只有C選項符合因式分解的定義,故選擇C.【點睛】本題考查了因式分解的定義,牢記定義是解題關鍵.9、D【解析】試題解析:設小明為A,爸爸為B,媽媽為C,則所有的可能性是:(ABC),(ACB),(BAC),(BCA),(CAB),(CBA),∴他的爸爸媽媽相鄰的概率是:,故選D.10、B【解析】

直接利用概率的意義分析得出答案.【詳解】解:因為一枚質地均勻的硬幣只有正反兩面,所以不管拋多少次,硬幣正面朝上的概率都是,故選B.【點睛】此題主要考查了概率的意義,明確概率的意義是解答的關鍵.11、B【解析】

由科學計數法的概念表示出0.0000025即可.【詳解】0.0000025=2.5×10﹣6.故選B.【點睛】本題主要考查科學計數法,熟記相關概念是解題關鍵.12、C【解析】

根據題意得k-1≠0且△=22-4(k-1)×(-2)>0,解得:k>且k≠1.故選C【點睛】本題考查了一元二次方程ax2+bx+c=0(a≠0)的根的判別式△=b2-4ac,關鍵是熟練掌握:當△>0,方程有兩個不相等的實數根;當△=0,方程有兩個相等的實數根;當△<0,方程沒有實數根.二、填空題:(本大題共6個小題,每小題4分,共24分.)13、2【解析】【分析】根據新定義可得出關于x的一元一次不等式,解之取其中的正整數即可得出結論.【詳解】∵3※x=3x﹣3+x﹣2<2,∴x<,∵x為正整數,∴x=2,故答案為:2.【點睛】本題考查一元一次不等式的整數解以及實數的運算,通過解不等式找出x<是解題的關鍵.14、20%.【解析】試題分析:根據原價為100元,連續(xù)兩次漲價x后,現價為144元,根據增長率的求解方法,列方程求x.試題解析:依題意,有:100(1+x)2=144,1+x=±1.2,解得:x=20%或-2.2(舍去).考點:一元二次方程的應用.15、(-1,2)【解析】

根據兩個點關于原點對稱時,它們的坐標符號相反可得答案.【詳解】A(1,-2)關于原點O的對稱點的坐標是(-1,2),

故答案為:(-1,2).【點睛】此題主要考查了關于原點對稱的點的坐標,關鍵是掌握點的坐標的變化規(guī)律.16、4或1【解析】∵兩圓內切,一個圓的半徑是6,圓心距是2,∴另一個圓的半徑=6-2=4;或另一個圓的半徑=6+2=1,故答案為4或1.【點睛】本題考查了根據兩圓位置關系來求圓的半徑的方法.注意圓的半徑是6,要分大圓和小圓兩種情況討論.17、【解析】=.18、1.【解析】

設小矩形的長為x,寬為y,則由圖1可得5y=3x;由圖2可知2y-x=2.【詳解】解:設小矩形的長為x,寬為y,則可列出方程組,,解得,則小矩形的面積為6×10=1.【點睛】本題考查了二元一次方程組的應用.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19、(1);(2)(,1)(,1);(3)存在,,,,【解析】試題分析:(1)將x=-2代入y=-2x-1即可求得點B的坐標,根據拋物線過點A、O、B即可求出拋物線的方程.(2)根據題意,可知△ADP和△ADC的高相等,即點P縱坐標的絕對值為1,所以點P的縱坐標為,分別代入中求解,即可得到所有符合題意的點P的坐標.(3)由拋物線的解析式為,得頂點E(2,﹣1),對稱軸為x=2;點F是直線y=﹣2x﹣1與對稱軸x=2的交點,求出F(2,﹣1),DF=1.又由A(4,0),根據勾股定理得.然后分4種情況求解.點睛:(1)首先求出點B的坐標和m的值,然后利用待定系數法求出拋物線的解析式;(2)△ADP與△ADC有共同的底邊AD,因為面積相等,所以AD邊上的高相等,即為1;從而得到點P的縱坐標為1,再利用拋物線的解析式求出點P的縱坐標;(3)如解答圖所示,在點M的運動過程中,依次出現四個菱形,注意不要漏解.針對每一個菱形,分別進行計算,求出線段MF的長度,從而得到運動時間t的值.20、(1)w=200x+8600(0≤x≤6);(2)有3種調運方案,方案一:從B市調運到C市0臺,D市6臺;從A市調運到C市10臺,D市2臺;方案二:從B市調運到C市1臺,D市5臺;從A市調運到C市9臺,D市3臺;方案三:從B市調運到C市2臺,D市4臺;從A市調運到C市8臺,D市4臺;(3)從A市調運到C市10臺,D市2臺;最低運費是8600元.【解析】

(1)設出B糧倉運往C的數量為x噸,然后根據A,B兩市的庫存量,和C,D兩市的需求量,分別表示出B運往C,D的數量,再根據總費用=A運往C的運費+A運往D的運費+B運往C的運費+B運往D的運費,列出函數關系式;(2)由(1)中總費用不超過9000元,然后根據取值范圍來得出符合條件的方案;(3)根據(1)中的函數式以及自變量的取值范圍即可得出費用最小的方案.【詳解】解:(1)設B糧倉運往C市糧食x噸,則B糧倉運往D市糧食6﹣x噸,A糧倉運往C市糧食10﹣x噸,A糧倉運往D市糧食12﹣(10﹣x)=x+2噸,總運費w=300x+500(6﹣x)+400(10﹣x)+800(x+2)=200x+8600(0≤x≤6).(2)200x+8600≤9000解得x≤2共有3種調運方案方案一:從B市調運到C市0臺,D市6臺;從A市調運到C市10臺,D市2臺;方案二:從B市調運到C市1臺,D市5臺;從A市調運到C市9臺,D市3臺;方案三:從B市調運到C市2臺,D市4臺;從A市調運到C市8臺,D市4臺;(3)w=200x+8600k>0,所以當x=0時,總運費最低.也就是從B市調運到C市0臺,D市6臺;從A市調運到C市10臺,D市2臺;最低運費是8600元.【點睛】本題重點考查函數模型的構建,考查利用一次函數的有關知識解答實際應用題,解答一次函數的應用問題中,要注意自變量的取值范圍還必須使實際問題有意義.21、(1)y=12x2-x-4(2)點M的坐標為(2,-4)(3)-83【解析】【分析】(1)設交點式y(tǒng)=a(x+2)(x-4),然后把C點坐標代入求出a即可得到拋物線解析式;

(2)連接OM,設點M的坐標為m,12m2-m-4.由題意知,當四邊形OAMC面積最大時,陰影部分的面積最小.S四邊形OAMC=S△OAM(3)拋物線的對稱軸為直線x=1,點C與點C1關于拋物線的對稱軸對稱,所以C1(2,-4).連接CC1,過C1作C1D⊥AC于D,則CC1=2.先求AC=42,CD=C1D=2,AD=42-2=32;設點Pn,12n2-n-4,過P作PQ垂直于x軸,垂足為Q.證△PAQ∽△C1AD,得PQC1【詳解】(1)拋物線的解析式為y=12(x-4)(x+2)=12x(2)連接OM,設點M的坐標為m,1由題意知,當四邊形OAMC面積最大時,陰影部分的面積最?。甋四邊形OAMC=S△OAM+S△OCM=12×4m+12×4=-m2+4m+8=-(m-2)2+12.當m=2時,四邊形OAMC面積最大,此時陰影部分面積最小,所以點M的坐標為(2,-4).(3)∵拋物線的對稱軸為直線x=1,點C與點C1關于拋物線的對稱軸對稱,所以C1(2,-4).連接CC1,過C1作C1D⊥AC于D,則CC1=2.∵OA=OC,∠AOC=90°,∠CDC1=90°,∴AC=42,CD=C1D=2,AD=42-2=32,設點Pn,1∵∠PAB=∠CAC1,∠AQP=∠ADC1,∴△PAQ∽△C1AD,∴PQC即12n2即3n2-6n-24=8-2n,或3n2-6n-24=-(8-2n),解得n=-83,或n=-4∴點P的橫坐標為-83或-4【點睛】本題考核知識點:二次函數綜合運用.解題關鍵點:熟記二次函數的性質,數形結合,由所求分析出必知條件.22、裁掉的正方形的邊長為2dm,底面積為12dm2.【解析】試題分析:設裁掉的正方形的邊長為xdm,則制作無蓋的長方體容器的長為(10-2x)dm,寬為(6-2x)dm,根據長方體底面面積為12dm2列出方程,解方程即可求得裁掉的正方形邊長.試題解析:設裁掉的正方形的邊長為xdm,由題意可得(10-2x)(6-2x)=12,即x2-8x+12=0,解得x=2或x=6(舍去),答:裁掉的正方形的邊長為2dm,底面積為12dm2.23、(1)11.4;(2)19.5m.【解析】

(1)根據直角三角形的性質和三角函數解答即可;

(2)過點D作DH⊥地面于H,利用直角三角形的性質和三角函數解答即可.【詳解】解:(1)在Rt△ABC中,∵∠BAC=64°,AC=5m,∴AB=ACcos64°故答案為:11.4;(2)過點D作DH⊥地面于H,交水平線于點E,在Rt△ADE中,∵AD=20m,∠DAE=64°,EH=1.5m,∴DE=sin64°×AD≈20×0.9≈18(m),即DH=DE+EH=18+1.5=19.5(m),答:如果該吊車吊臂的最大長度AD為20m,那么從地面上吊起貨物的最大高度是19.5m.【點睛】本題考查解直角三角形、銳角三角函數等知識,解題的關鍵是添加輔助線,構造直角三角形.24、(1)12;(2)1【解析】

(1)直接利用概率公式求解即可;(2)依據題意先用列表法或畫樹狀圖法分析所有等可能的出現結果,然后根據概率公式求出該事件的概率即可.【詳解】(1)從中隨機抽出一張牌,牌面所有可能出現的結果有4種,且它們出現的可能性相等,其中出現偶數的情況有2種,∴P(牌面是偶數)=24=1故答案為:12(2)根據題意,畫樹狀圖:可知,共有16種等可能的結果,其中恰好是4的倍數的共有4種,∴【點睛】本題考查的是用列表法或畫樹狀圖法求概率.列表法或畫樹狀圖法可以不重復不遺漏的列出所有可能的結果,適合于兩步完成的事件.用到的知識點為:概率=所求情況數與總情況數之比.25、(1)∠BAD=15°;(2)∠BAC=45°或∠BAD=60°;(3)CE=.【解析】

(1)如圖1中,當點E在BC上時.只要證明△BAD≌△CAE,即可推出∠BAD=∠CAE=(90°-60°)=15°;(2)分兩種情形求解①如圖2中,當BD=DC時,易知AD=CD=DE,此時△DEC是等腰三角形.②如圖3中,當CD=CE時,△DEC是等腰三角形;(3)如圖4中,當E在BC上時,E記為E′,D記為D′,連接EE′.作CM⊥EE′于M,E′N⊥AC于N,DE交AE′于O.首先確定點E的運動軌跡是直線EE′(過點E與BC成60°角的直線上),可得EC的最小值即為線段CM的長(垂線段最短).【詳解】解:(1)如圖1中,當點E在BC上時.

∵AD=AE,∠DAE=60°,∴△ADE是等邊三角形,∴∠ADE=∠AED=60°,∴∠ADB=∠AEC=120°,∵AB=AC,∠BAC=90°,∴∠B=∠C=45°,在△ABD和△ACE中,∠B=∠C,∠ADB=∠AEC,AB=AC,∴△BAD≌△CAE,∴∠BAD=∠CAE=(90°-60°)=15°.(2)①如圖2中,當BD=DC時,易知AD=CD=DE,此時△DEC是等腰三角形,∠BAD=∠BAC=45°.

②如圖3中,當CD=CE時,△DEC是等腰三角形.∵AD=AE,∴AC垂直平分線段DE,∴∠ACD=∠ACE=45°,∴∠DCE=90°,∴∠EDC=∠CED=45°,∵∠B=45°,∴∠EDC=∠B,∴DE∥AB,∴∠BAD=∠ADE=60°.

(3)如圖4中,當E在BC上

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論