版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
4.3利用導(dǎo)數(shù)求極值最值(精講)(提升版)思維導(dǎo)圖思維導(dǎo)圖考點呈現(xiàn)考點呈現(xiàn)例題剖析例題剖析考點一無參函數(shù)的極值(點)【例1】(2022·天津市濱海新區(qū)塘沽第一中學(xué))函數(shù)SKIPIF1<0在區(qū)間SKIPIF1<0上的極小值點是(
)A.0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】B【解析】由題設(shè)SKIPIF1<0,所以在SKIPIF1<0上SKIPIF1<0,SKIPIF1<0遞減,在SKIPIF1<0上SKIPIF1<0,SKIPIF1<0遞增,所以極小值點為SKIPIF1<0.故選:B【一隅三反】1.(2022·天津·耀華中學(xué))已知曲線SKIPIF1<0在點SKIPIF1<0處的切線斜率為3,且SKIPIF1<0是SKIPIF1<0的極值點,則函數(shù)的另一個極值點為(
)A.SKIPIF1<0 B.1 C.SKIPIF1<0 D.2【答案】A【解析】SKIPIF1<0,由題意有SKIPIF1<0,解得SKIPIF1<0,所以SKIPIF1<0,令SKIPIF1<0,解得SKIPIF1<0或SKIPIF1<0,所以函數(shù)的另一個極值點為SKIPIF1<0.故選:A.2.(2022·天津·崇化中學(xué))函數(shù)SKIPIF1<0有(
)A.極大值為5,無極小值 B.極小值為SKIPIF1<0,無極大值C.極大值為5,極小值為SKIPIF1<0 D.極大值為5,極小值為SKIPIF1<0【答案】A【解析】SKIPIF1<0SKIPIF1<0,由SKIPIF1<0,得SKIPIF1<0,由SKIPIF1<0,得SKIPIF1<0,所以函數(shù)SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,在SKIPIF1<0上單調(diào)遞減,所以SKIPIF1<0在SKIPIF1<0時,取得極大值SKIPIF1<0,無極小值.故選:A3.(2022·重慶八中模擬預(yù)測)(多選)設(shè)函數(shù)SKIPIF1<0的定義域為SKIPIF1<0,SKIPIF1<0是SKIPIF1<0的極小值點,以下結(jié)論一定正確的是(
)A.SKIPIF1<0是SKIPIF1<0的最小值點B.SKIPIF1<0是SKIPIF1<0的極大值點C.SKIPIF1<0是SKIPIF1<0的極大值點D.SKIPIF1<0是SKIPIF1<0的極大值點【答案】BD【解析】對A,SKIPIF1<0是SKIPIF1<0的極小值點,不一定是最小值點,故A錯誤;對B,因函數(shù)SKIPIF1<0與函數(shù)SKIPIF1<0的圖象關(guān)于x軸對稱,故SKIPIF1<0應(yīng)是SKIPIF1<0的極大值點,故B正確;對C,因函數(shù)SKIPIF1<0與函數(shù)SKIPIF1<0的圖象關(guān)于y軸對稱,故SKIPIF1<0應(yīng)是SKIPIF1<0的極小值點,故C錯誤;對D,因函數(shù)SKIPIF1<0與函數(shù)SKIPIF1<0的圖象關(guān)于原點對稱,故SKIPIF1<0是SKIPIF1<0的極大值點,故D正確.故選:BD.考點二已知極值(點)求參數(shù)【例2-1】(2022·全國·高三專題練習(xí))已知函數(shù)SKIPIF1<0在區(qū)間SKIPIF1<0上既有極大值又有極小值,則實數(shù)a的取值范圍是(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】C【解析】函數(shù)SKIPIF1<0,導(dǎo)函數(shù)SKIPIF1<0.因為SKIPIF1<0在SKIPIF1<0上既有極大值又有極小值,所以SKIPIF1<0在SKIPIF1<0內(nèi)應(yīng)有兩個不同的異號實數(shù)根.SKIPIF1<0,解得:SKIPIF1<0,實數(shù)a的取值范圍SKIPIF1<0.故選:C.【例2-2】(2022·陜西)已知函數(shù)SKIPIF1<0,若SKIPIF1<0是SKIPIF1<0的極小值點,則實數(shù)SKIPIF1<0的取值范圍是(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】B【解析】由SKIPIF1<0得SKIPIF1<0,令SKIPIF1<0,若SKIPIF1<0,則SKIPIF1<0,此時在SKIPIF1<0單調(diào)遞增,在SKIPIF1<0單調(diào)遞減,這與SKIPIF1<0是SKIPIF1<0的極小值點矛盾,故舍去.若SKIPIF1<0,可知SKIPIF1<0是SKIPIF1<0的極大值點,故不符合題意.若SKIPIF1<0,SKIPIF1<0,此時SKIPIF1<0在SKIPIF1<0單調(diào)遞增,在SKIPIF1<0單調(diào)遞減,可知SKIPIF1<0是SKIPIF1<0的極大值點,故不符合題意.當(dāng)SKIPIF1<0,,SKIPIF1<0,此時SKIPIF1<0在SKIPIF1<0單調(diào)遞增,在SKIPIF1<0單調(diào)遞減,可知SKIPIF1<0是SKIPIF1<0的極小值點,符合題意.若SKIPIF1<0,SKIPIF1<0在定義域內(nèi)單調(diào)遞增,無極值,不符合題意,舍去.綜上可知:SKIPIF1<0故選:B【一隅三反】1.(2022·廣東·惠來縣第一中學(xué))若函數(shù)SKIPIF1<0在SKIPIF1<0處有極值,則(
)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.a(chǎn)不存在【答案】B【解析】因為函數(shù)SKIPIF1<0,故SKIPIF1<0又函數(shù)SKIPIF1<0在SKIPIF1<0處有極值,故SKIPIF1<0,解得SKIPIF1<0.經(jīng)檢驗滿足題意故選:B.2.(2022·河南)已知函數(shù)SKIPIF1<0有兩個極值點,則實數(shù)a的取值范圍為(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】D【解析】SKIPIF1<0,令SKIPIF1<0,因為函數(shù)SKIPIF1<0有兩個極值點,所以SKIPIF1<0有兩個不同的解,且SKIPIF1<0在零點的兩側(cè)符號異號.SKIPIF1<0,當(dāng)SKIPIF1<0時,SKIPIF1<0,SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,故不可能有兩個零點.當(dāng)SKIPIF1<0時,SKIPIF1<0時,SKIPIF1<0,SKIPIF1<0在SKIPIF1<0上單調(diào)遞增;SKIPIF1<0時,SKIPIF1<0,SKIPIF1<0在SKIPIF1<0上單調(diào)遞減,所以SKIPIF1<0,即SKIPIF1<0,SKIPIF1<0.當(dāng)SKIPIF1<0時,SKIPIF1<0,故SKIPIF1<0在SKIPIF1<0上有一個零點;當(dāng)SKIPIF1<0時,SKIPIF1<0,所以SKIPIF1<0在SKIPIF1<0上有一個零點,綜上,SKIPIF1<0,故選:D.3.(2022·江西鷹潭)已知函數(shù)SKIPIF1<0的極大值點SKIPIF1<0,極小值點SKIPIF1<0,則SKIPIF1<0的取值范圍是(
)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【答案】B【解析】SKIPIF1<0又因為當(dāng)SKIPIF1<0時取得極大值,當(dāng)SKIPIF1<0時取得極小值,可得SKIPIF1<0、SKIPIF1<0是方程SKIPIF1<0的兩個根,根據(jù)一元二次方程根的分布可得SKIPIF1<0即:SKIPIF1<0作出該不等式組表示的平面區(qū)域如圖中陰影部分所示(不包括邊界),可求出邊界交點坐標(biāo)分別為SKIPIF1<0、SKIPIF1<0、SKIPIF1<0,SKIPIF1<0表示平面區(qū)域內(nèi)的點SKIPIF1<0與點SKIPIF1<0連線的斜率,由圖可知SKIPIF1<0SKIPIF1<0,根據(jù)傾斜角的變化,可得SKIPIF1<0故選:B4.(2022·河南洛陽·三模(理))若函數(shù)SKIPIF1<0在SKIPIF1<0上有且僅有6個極值點,則正整數(shù)SKIPIF1<0的值為(
)A.2 B.3 C.4 D.5【答案】B【解析】設(shè)SKIPIF1<0,則當(dāng)SKIPIF1<0時,SKIPIF1<0由SKIPIF1<0在SKIPIF1<0上有且僅有6個極值點,則SKIPIF1<0在SKIPIF1<0上有且僅有6個極值點.如圖由正弦函數(shù)的圖像性質(zhì)可得SKIPIF1<0解得SKIPIF1<0,所以正整數(shù)SKIPIF1<0的值為3故選:B考點三無參函數(shù)的最值【例3】(2022·全國·高考真題(文))函數(shù)SKIPIF1<0在區(qū)間SKIPIF1<0的最小值、最大值分別為(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】D【解析】SKIPIF1<0,所以SKIPIF1<0在區(qū)間SKIPIF1<0和SKIPIF1<0上SKIPIF1<0,即SKIPIF1<0單調(diào)遞增;在區(qū)間SKIPIF1<0上SKIPIF1<0,即SKIPIF1<0單調(diào)遞減,又SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0在區(qū)間SKIPIF1<0上的最小值為SKIPIF1<0,最大值為SKIPIF1<0.故選:D【一隅三反】1.(2022·海南華僑中學(xué))已知函數(shù)SKIPIF1<0,下列說法正確的是(
)A.函數(shù)在SKIPIF1<0上遞增 B.函數(shù)無極小值C.函數(shù)只有一個極大值SKIPIF1<0 D.函數(shù)在SKIPIF1<0上最大值為3【答案】C【解析】因為SKIPIF1<0定義域為SKIPIF1<0,所以SKIPIF1<0,所以當(dāng)SKIPIF1<0或SKIPIF1<0時SKIPIF1<0,當(dāng)SKIPIF1<0時SKIPIF1<0,所以SKIPIF1<0在SKIPIF1<0上單調(diào)遞減,在SKIPIF1<0和SKIPIF1<0上單調(diào)遞增,所以SKIPIF1<0在SKIPIF1<0處取得極大值,在SKIPIF1<0處取得極小值,即SKIPIF1<0,SKIPIF1<0,又SKIPIF1<0,SKIPIF1<0,故函數(shù)在SKIPIF1<0上最大值為SKIPIF1<0;故選:C2.(2022·四川省成都市新都一中)函數(shù)SKIPIF1<0在區(qū)間SKIPIF1<0上的最大值為______.【答案】SKIPIF1<0【解析】對SKIPIF1<0求導(dǎo),可得:SKIPIF1<0故SKIPIF1<0在區(qū)間SKIPIF1<0上單調(diào)遞減,在區(qū)間SKIPIF1<0單調(diào)遞增可得:SKIPIF1<0,SKIPIF1<0,SKIPIF1<0可得:SKIPIF1<0故SKIPIF1<0在區(qū)間SKIPIF1<0上的最大值為SKIPIF1<0故答案為:SKIPIF1<03.(2022·四川·威遠(yuǎn)中學(xué)校)對任意SKIPIF1<0,存在SKIPIF1<0,使得SKIPIF1<0,則SKIPIF1<0的最小值為_____.【答案】SKIPIF1<0【解析】由SKIPIF1<0得:SKIPIF1<0,令SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0;SKIPIF1<0,令SKIPIF1<0,則SKIPIF1<0,令SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,又SKIPIF1<0,SKIPIF1<0當(dāng)SKIPIF1<0時,SKIPIF1<0;當(dāng)SKIPIF1<0時,SKIPIF1<0;SKIPIF1<0在SKIPIF1<0上單調(diào)遞減,在SKIPIF1<0上單調(diào)遞增,SKIPIF1<0,即SKIPIF1<0的最小值為SKIPIF1<0.故答案為:SKIPIF1<0.考點四已知最值求參數(shù)【例4-1】(2022·全國·高考真題(理))當(dāng)SKIPIF1<0時,函數(shù)SKIPIF1<0取得最大值SKIPIF1<0,則SKIPIF1<0(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.1【答案】B【解析】因為函數(shù)SKIPIF1<0定義域為SKIPIF1<0,所以依題可知,SKIPIF1<0,SKIPIF1<0,而SKIPIF1<0,所以SKIPIF1<0,即SKIPIF1<0,所以SKIPIF1<0,因此函數(shù)SKIPIF1<0在SKIPIF1<0上遞增,在SKIPIF1<0上遞減,SKIPIF1<0時取最大值,滿足題意,即有SKIPIF1<0.故選:B.【例4-2】(2022·遼寧·大連二十四中模擬預(yù)測)若將函數(shù)SKIPIF1<0的圖象向左平移SKIPIF1<0個單位,所得圖象對應(yīng)的函數(shù)在區(qū)間SKIPIF1<0上無極值點,則SKIPIF1<0的最大值為(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】A【解析】因為SKIPIF1<0SKIPIF1<0,SKIPIF1<0,所以將函數(shù)SKIPIF1<0的圖象向左平移SKIPIF1<0個單位,可得SKIPIF1<0,令SKIPIF1<0,解得SKIPIF1<0即函數(shù)SKIPIF1<0的單調(diào)遞增區(qū)間為SKIPIF1<0,令SKIPIF1<0,可得函數(shù)的單調(diào)遞增區(qū)間為SKIPIF1<0,又由函數(shù)SKIPIF1<0在區(qū)間SKIPIF1<0上無極值點,則SKIPIF1<0的最大值為SKIPIF1<0.故選:A.【一隅三反】1.(2022·江西省豐城中學(xué)模擬預(yù)測(文))已知函數(shù)SKIPIF1<0在SKIPIF1<0上有最小值,則實數(shù)SKIPIF1<0的取值范圍為(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】D【解析】SKIPIF1<0,SKIPIF1<0,若函數(shù)SKIPIF1<0在SKIPIF1<0上有最小值,即SKIPIF1<0在SKIPIF1<0先遞減再遞增,即SKIPIF1<0在SKIPIF1<0先小于0,再大于0,令SKIPIF1<0,得SKIPIF1<0,令SKIPIF1<0,SKIPIF1<0,只需SKIPIF1<0的斜率SKIPIF1<0大于過SKIPIF1<0的SKIPIF1<0的切線的斜率即可,設(shè)切點是SKIPIF1<0,SKIPIF1<0,則切線方程是:SKIPIF1<0,將SKIPIF1<0代入切線方程得:SKIPIF1<0,故切點是SKIPIF1<0,切線的斜率是1,只需SKIPIF1<0即可,解得SKIPIF1<0,即SKIPIF1<0,故選:D.2.(2022·全國·高三專題練習(xí))已知不等式SKIPIF1<0對SKIPIF1<0恒成立,則實數(shù)a的最小值為(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】C【解析】因為SKIPIF1<0,所以SKIPIF1<0,即SKIPIF1<0,構(gòu)造函數(shù)SKIPIF1<0,SKIPIF1<0所以SKIPIF1<0SKIPIF1<0,令SKIPIF1<0,解得:SKIPIF1<0,令SKIPIF1<0,解得:SKIPIF1<0,故SKIPIF1<0在SKIPIF1<0上單調(diào)遞減,在SKIPIF1<0上單調(diào)遞增,當(dāng)SKIPIF1<0時,SKIPIF1<0SKIPIF1<0與1的大小不定,但當(dāng)實數(shù)a最小時,只需考慮其為負(fù)數(shù)的情況,此時SKIPIF1<0因為當(dāng)SKIPIF1<0時,SKIPIF1<0單調(diào)遞減,故SKIPIF1<0,兩邊取對數(shù)得:SKIPIF1<0SKIPIF1<0,令SKIPIF1<0,則SKIPIF1<0,令SKIPIF1<0得:SKIPIF1<0,令SKIPIF1<0得:SKIPIF1<0,所以SKIPIF1<0在SKIPIF1<0單調(diào)遞增,在SKIPIF1<0單調(diào)遞減,所以SKIPIF1<0故a的最小值是SKIPIF1<0.當(dāng)SKIPIF1<0時,SKIPIF1<0,從四個選項均為負(fù),考慮SKIPIF1<0,此時有SKIPIF1<0,SKIPIF1<0兩邊取對數(shù)得:SKIPIF1<0,所以SKIPIF1<0令SKIPIF1<0,則SKIPIF1<0,當(dāng)SKIPIF1<0時,SKIPIF1<0恒成立,所以SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,無最大值,此時無解,綜上:故a的最小值是SKIPIF1<0.故選:C3.(2022·河南洛陽)若曲線SKIPIF1<0與曲線:SKIPIF1<0=SKIPIF1<0SKIPIF1<0有公切線,則實數(shù)SKIPIF1<0的最大值為(
)A.SKIPIF1<0+SKIPIF1<0 B.SKIPIF1<0-SKIPIF1<0 C.SKIPIF1<0+SKIPIF1<0 D.SKIPIF1<0SKIPIF1<0【答案】C【解析】設(shè)在曲線SKIPIF1<0上的切點為SKIPIF1<0,則切線斜率為SKIPIF1<0,在曲線SKIPIF1<0上的切點為SKIPIF1<0,切線斜率為SKIPIF1<0,所以切線方程分別為SKIPIF1<0、SKIPIF1<0,即SKIPIF1<0、SKIPIF1<0,有SKIPIF1<0,整理得SKIPIF1<0,設(shè)SKIPIF1<0,則SKIPIF1<0,令SKIPIF1<0,令SKIPIF1<0,故函數(shù)SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,在SKIPIF1<0上單調(diào)遞減,所以在SKIPIF1<0上SKIPIF1<0,如圖,由圖可知SKIPIF1<0,即k的最大值為SKIPIF1<0.故選:C.4(2022·吉林·延邊二中)若函數(shù)SKIPIF1<0最小值為SKIPIF1<0,SKIPIF1<0最小值為SKIPIF1<0,則SKIPIF1<0+SKIPIF1<0=(
)A.-2 B.0 C.2 D.-4【答案】A【解析】由題意知:SKIPIF1<0、SKIPIF1<0定義域均為SKIPIF1<0;SKIPIF1<0,SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,SKIPIF1<0在SKIPIF1<0上單調(diào)遞減,SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,又當(dāng)SKIPIF1<0時,SKIPIF1<0,當(dāng)SKIPIF1<0時,SKIPIF1<0,SKIPIF1<0,使得SKIPIF1<0,此時SKIPIF1<0,SKIPIF1<0,SKIPIF1<0當(dāng)SKIPIF1<0時,SKIPIF1<0;當(dāng)SKIPIF1<0時,SKIPIF1<0;SKIPIF1<0在SKIPIF1<0上單調(diào)遞減,在SKIPIF1<0上單調(diào)遞增,SKIPIF1<0;SKIPIF1<0;令SKIPIF1<0,則SKIPIF1<0,令SKIPIF1<0,解得:SKIPIF1<0,令SKIPIF1<0,解得:SKIPIF1<0SKIPIF1<0在SKIPIF1<0上單調(diào)遞減,在SKIPIF1<0上單調(diào)遞增,又SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,使得SKIPIF1<0,SKIPIF1<0,即SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0;SKIPIF1<0當(dāng)SKIPIF1<0時,SKIPIF1<0單調(diào)遞減;當(dāng)SKIPIF1<0時,SKIPIF1<0單調(diào)遞增;當(dāng)SKIPIF1<0時,SKIPIF1<0單調(diào)遞減;當(dāng)SKIPIF1<0時,SKIPIF1<0單調(diào)遞增;SKIPIF1<0的極小值SKIPIF1<0,SKIPIF1<0,SKIPIF1<0;SKIPIF1<0.故選:A.考點五最值極值綜合運(yùn)用【例5】(2022·浙江嘉興)已知函數(shù)SKIPIF1<0.(注:SKIPIF1<0是自然對數(shù)的底數(shù))(1)當(dāng)SKIPIF1<0時,求曲線SKIPIF1<0在點SKIPIF1<0處的切線方程;(2)若SKIPIF1<0只有一個極值點,求實數(shù)a的取值范圍;(3)若存在SKIPIF1<0,對與任意的SKIPIF1<0,使得SKIPIF1<0恒成立,求SKIPIF1<0的最小值.【答案】(1)SKIPIF1<0(2)SKIPIF1<0(3)SKIPIF1<0【解析】(1)當(dāng)SKIPIF1<0時,SKIPIF1<0,故SKIPIF1<0,故在點SKIPIF1<0處的切線方程為SKIPIF1<0,化簡得SKIPIF1<0.(2)由題意知SKIPIF1<0有且只有一個根且SKIPIF1<0有正有負(fù).構(gòu)建SKIPIF1<0,則SKIPIF1<0①當(dāng)SKIPIF1<0時,SKIPIF1<0當(dāng)SKIPIF1<0時恒成立,SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,因為SKIPIF1<0,所以SKIPIF1<0有一個零點,即為SKIPIF1<0的一個極值點;②當(dāng)SKIPIF1<0時,SKIPIF1<0當(dāng)SKIPIF1<0時恒成立,即SKIPIF1<0無極值點;③當(dāng)SKIPIF1<0時,當(dāng)SKIPIF1<0;當(dāng)SKIPIF1<0,所以SKIPIF1<0在SKIPIF1<0單調(diào)遞減,在SKIPIF1<0上單調(diào)遞增,故SKIPIF1<0,若SKIPIF1<0,則SKIPIF1<0即SKIPIF1<0.當(dāng)SKIPIF1<0時,SKIPIF1<0,當(dāng)SKIPIF1<0時,SKIPIF1<0,設(shè)SKIPIF1<0,故SKIPIF1<0,故SKIPIF1<0在SKIPIF1<0上為增函數(shù),故SKIPIF1<0,故SKIPIF1<0,故當(dāng)SKIPIF1<0時,SKIPIF1<0有兩個零點,此時SKIPIF1<0有兩個極值點.當(dāng)SKIPIF1<0時,SKIPIF1<0當(dāng)SKIPIF1<0時恒成立,即SKIPIF1<0無極值點;綜上所述:SKIPIF1<0.(3)由題意知,對與任意的SKIPIF1<0,使得SKIPIF1<0恒成立,則SKIPIF1<0,又要使SKIPIF1<0取到最小值,則SKIPIF1<0.當(dāng)SKIPIF1<0時,SKIPIF1<0,故SKIPIF1<0,所以SKIPIF1<0的最小值為e;當(dāng)SKIPIF1<0時,當(dāng)SKIPIF1<0時,SKIPIF1<0,所以SKIPIF1<0無最小值,即SKIPIF1<0無最小值;當(dāng)SKIPIF1<0時,由(2)得SKIPIF1<0只有一個零點SKIPIF1<0,即SKIPIF1<0且SKIPIF1<0當(dāng)SKIPIF1<0時,SKIPIF1<0,當(dāng)SKIPIF1<0時,SKIPIF1<0,所以SKIPIF1<0在SKIPIF1<0上單調(diào)遞減,在SKIPIF1<0上單調(diào)遞增,SKIPIF1<0,此時SKIPIF1<0,因SKIPIF1<0,所以SKIPIF1<0代入得SKIPIF1<0,令SKIPIF1<0,當(dāng)SKIPIF1<0時,SKIPIF1<0,當(dāng)SKIPIF1<0時,SKIPIF1<0,所以SKIPIF1<0在SKIPIF1<0上單調(diào)遞減,在SKIPIF1<0上單調(diào)遞增,SKIPIF1<0,此時SKIPIF1<0,所以SKIPIF1<0的最小值為SKIPIF1<0.【一隅三反】1.(2022·河北·石家莊二中)已知函數(shù)SKIPIF1<0.(1)當(dāng)SKIPIF1<0時,證明:當(dāng)SKIPIF1<0時,SKIPIF1<0;(2)若SKIPIF1<0,函數(shù)SKIPIF1<0在區(qū)間SKIPIF1<0上存在極大值,求a的取值范圍.【答案】(1)證明見解析(2)SKIPIF1<0【解析】(1)由題意得SKIPIF1<0,則SKIPIF1<0,當(dāng)SKIPIF1<0時,SKIPIF1<0,SKIPIF1<0在SKIPIF1<0上是減函數(shù),∴SKIPIF1<0,設(shè)SKIPIF1<0,SKIPIF1<0在SKIPIF1<0上是增函數(shù),∴SKIPIF1<0,∴當(dāng)SKIPIF1<0時,SKIPIF1<0.(2)SKIPIF1<0,且SKIPIF1<0,令SKIPIF1<0,得SKIPIF1<0或a,①當(dāng)SKIPIF1<0時,則SKIPIF1<0,SKIPIF1<0單調(diào)遞減,函數(shù)SKIPIF1<0沒有極值;②當(dāng)SKIPIF1<0時,當(dāng)SKIPIF1<0時,SKIPIF1<0,SKIPIF1<0單調(diào)遞減;當(dāng)SKIPIF1<0時,SKIPIF1<0,SKIPIF1<0單調(diào)遞增;當(dāng)SKIPIF1<0時,SKIPIF1<0,SKIPIF1<0單調(diào)遞減,∴SKIPIF1<0在SKIPIF1<0取得極大值,在SKIPIF1<0取得極小值,則SKIPIF1<0;③當(dāng)SKIPIF1<0時,當(dāng)SKIPIF1<0時,SKIPIF1<0,SKIPIF1<0單調(diào)遞減;當(dāng)SKIPIF1<0時,SKIPIF1<0,SKIPIF1<0單調(diào)遞增;當(dāng)SKIPIF1<0時,SKIPIF1<0,SKIPIF1<0單調(diào)遞減,∴SKIPIF1<0在SKIPIF1<0取得極大值,在SKIPIF1<0取得極小值,由SKIPIF1<0得:SKIPIF1<0,綜上,函數(shù)SKIPIF1<0在區(qū)間SKIPIF1<0上存在極大值時,a的取值范圍為SKIPIF1<0.2.(2022·四川省成都市新都一中)已知函數(shù)SKIPIF1<0.(1)當(dāng)SKIPIF1<0時,若對任意SKIPIF1<0,SKIPIF1<0恒成立,求b的取值范圍;(2)若SKIPIF1<0,函數(shù)SKIPIF1<0在區(qū)間SKIPIF1<0上存在極大值,求a的取值范圍.【答案】(1)SKIPIF1<0;(2)SKIPIF1<0.【解析】(1)由題意,SKIPIF1<0在SKIPIF1<0上恒成立,即SKIPIF1<0,設(shè)SKIPIF1<0,對稱軸為SKIPIF1<0,開口向上,所以當(dāng)SKIPIF1<0時,SKIPIF1<0,則SKIPIF1<0.(2)SKIPIF1<0,且SKIPIF1<0,令SKIPIF1<0,得SKIPIF1<0或a.①當(dāng)SKIPIF1<0時,則SKIPIF1<0,SKIPIF1<0單調(diào)遞減,函數(shù)SKIPIF1<0沒有極值;②當(dāng)SKIPIF1<0時,當(dāng)SKIPIF1<0時,SKIPIF1<0,SKIPIF1<0單調(diào)遞減;當(dāng)SKIPIF1<0時,SKIPIF1<0,SKIPIF1<0單調(diào)遞增;當(dāng)SKIPIF1<0時,SKIPIF1<0,SKIPIF1<0單調(diào)遞減.∴SKIPIF1<0在SKIPIF1<0取得極大值,在SKIPIF1<0取得極小值,則SKIPIF1<0;③當(dāng)SKIPIF1<0時,當(dāng)SKIPIF1<0時,SKIPIF1<0,SKIPIF1<0單調(diào)遞減;當(dāng)SKIPIF1<0時,SKIPIF1<0,SKIPIF1<0單調(diào)遞增;當(dāng)SKIPIF1<0時,SKIPIF1<0,SKIPIF1<0單調(diào)遞減.∴SKIPIF1<0在SKIPIF1<0取得極大值,在SKIPIF1<0取得極小值,由SKIPIF1<0得:SKIPIF1<0.綜上,函數(shù)SKIPIF1<0在SKIPIF1<0上存在極大值時,a的取值范圍為SKIPIF1<0.3.(2022·全國·哈師大附中)已知函數(shù)SKIPIF1<0,SKIPIF1<0為SKIPIF1<0的導(dǎo)函數(shù).(1)證明:當(dāng)SKIPIF1<0時,函數(shù)SKIPIF1<0在區(qū)SKIPIF1<0內(nèi)存在唯一的極值點SKIPIF1<0,SKIPIF1<0;(2)若SKIPIF1<0在SKIPIF1<0上單調(diào)遞減,求整數(shù)a的最小值.【答案】(1)證明見解析(2)SKIPIF1<0【解析】(1)當(dāng)SKIPIF1<0時,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,令SKIPIF1<0,則SKIPIF1<0,所以導(dǎo)函數(shù)SKIPIF1<0在區(qū)間SKIPIF1<0單調(diào)遞減,又SKIPIF1<0,SKIPIF1<0,據(jù)零點存在定理可知,SKIPIF1<0存在唯一零點SKIPIF1<0,使得SKIPIF1<0,所以當(dāng)SKIPIF1<0時,SKIPIF1<0,SKIPIF1<0在區(qū)間SKIPIF1<0上單調(diào)遞增,當(dāng)SKIPIF1<0]時,SKIPIF1<0,SKIPIF1<0在區(qū)間SKIPIF1<0上單調(diào)遞減,所以函數(shù)SKIPIF1<0在區(qū)間SKIPIF1<0內(nèi)存在唯一的極值點SKIPIF1<0,又SKIPIF1<0,所以SKIPIF1<0;(2)若SKIPIF1<0在SKIPIF1<0上單調(diào)遞減,則SKIPIF1<0在SKIPIF1<0上恒成立,參變分離得SKIPIF1<0,SKIPIF1<0,令SKIPIF1<0,SKIPIF1<0,即是求SKIPIF1<0在SKIPIF1<0時的最大值,SKIPIF1<0,當(dāng)SKIPIF1<0時,SKIPIF1<0
,令SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0單調(diào)遞增,SKIPIF1<0,SKIPIF1<0,根據(jù)零點存在定理可知,存在唯一SKIPIF1<0,使得SKIPIF1<0,∴SKIPIF1<0在SKIPIF1<0上單調(diào)遞減,在SKIPIF1<0上單調(diào)遞增,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,根據(jù)零點存在定理可知,存在唯一SKIPIF1<0,SKIPIF1<0使SKIPIF1<0,SKIPIF1<0,大致圖像如下:所以SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,在SKIPIF1<0上單調(diào)遞減,在SKIPIF1<0上單調(diào)遞增,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0∴SKIPIF1<0,SKIPIF1<0,SKIPIF1<0∴SKIPIF1<0;綜上,a的最小值為1.4.3利用導(dǎo)數(shù)求極值最值(精練)(提升版)題組一題組一無參函數(shù)的極值(點)1.(2022·山東·巨野縣實驗中學(xué))已知函數(shù)SKIPIF1<0的定義域為SKIPIF1<0,導(dǎo)函數(shù)SKIPIF1<0在SKIPIF1<0內(nèi)的圖像如圖所示,則函數(shù)SKIPIF1<0在SKIPIF1<0內(nèi)的極小值有(
)A.1個 B.2個 C.3個 D.4個【答案】A【解析】由導(dǎo)函數(shù)SKIPIF1<0在區(qū)間SKIPIF1<0內(nèi)的圖像可知,函數(shù)SKIPIF1<0在SKIPIF1<0內(nèi)的圖像與SKIPIF1<0軸有四個公共點,在從左到右第一個點處導(dǎo)數(shù)左正右負(fù),在從左到右第二個點處導(dǎo)數(shù)左負(fù)右正,在從左到右第三個點處導(dǎo)數(shù)左正右正,在從左到右第四個點處導(dǎo)數(shù)左正右負(fù),所以函數(shù)SKIPIF1<0在開區(qū)間SKIPIF1<0內(nèi)的極小值有SKIPIF1<0個,故選:A.2.(2022·天津?qū)嶒炛袑W(xué))下列函數(shù)中存在極值點的是(
)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【答案】B【解析】對選項A,SKIPIF1<0,故沒有極值點;對選項B,SKIPIF1<0,則極值點為SKIPIF1<0,故正確;對選項C,SKIPIF1<0,故沒有極值點;對選項D,SKIPIF1<0,故沒有極值點;故選:B3.(2022·福建省連城縣第一中學(xué))函數(shù)SKIPIF1<0的極值點的個數(shù)是(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.無數(shù)個【答案】A【解析】由題,SKIPIF1<0,故SKIPIF1<0無極值點故選:A4.(2022·全國·哈師大附中)已知SKIPIF1<0是函數(shù)SKIPIF1<0的一個極值點,則SKIPIF1<0的值是(
)A.1 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】D【解析】SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0故選:D5.(2022·遼寧·鞍山市華育高級中學(xué))已知函數(shù)SKIPIF1<0的導(dǎo)函數(shù)SKIPIF1<0的圖像如圖所示,則下列判斷正確的是(
)A.在區(qū)間SKIPIF1<0上,SKIPIF1<0是增函數(shù) B.在區(qū)間SKIPIF1<0上,SKIPIF1<0是減函數(shù)C.SKIPIF1<0為SKIPIF1<0的極小值點 D.2為SKIPIF1<0的極大值點【答案】D【解析】由導(dǎo)函數(shù)SKIPIF1<0的圖像可知,在區(qū)間SKIPIF1<0上為單調(diào)遞減,在區(qū)間SKIPIF1<0上為單調(diào)遞增,則選項SKIPIF1<0不正確;在區(qū)間SKIPIF1<0上,SKIPIF1<0,則SKIPIF1<0是增函數(shù),則選項SKIPIF1<0不正確;由圖像可知SKIPIF1<0,且SKIPIF1<0為單調(diào)遞增區(qū)間,SKIPIF1<0為單調(diào)遞減區(qū)間,則SKIPIF1<0為SKIPIF1<0的極大值點,則選項SKIPIF1<0不正確;由圖像可知SKIPIF1<0,且SKIPIF1<0為單調(diào)遞增區(qū)間,SKIPIF1<0為單調(diào)遞減區(qū)間,則SKIPIF1<0為SKIPIF1<0的極大值點,則選項SKIPIF1<0正確;故選:D.6.(2022·湖北·南漳縣第一中學(xué))函數(shù)SKIPIF1<0的極大值為(
)A.-2 B.2 C.SKIPIF1<0 D.不存在【答案】A【解析】SKIPIF1<0=1-SKIPIF1<0=SKIPIF1<0.令SKIPIF1<0得SKIPIF1<0或SKIPIF1<0(舍).由于SKIPIF1<0,當(dāng)SKIPIF1<0時,SKIPIF1<0,當(dāng)SKIPIF1<0時,SKIPIF1<0,所以函數(shù)在SKIPIF1<0上單調(diào)遞增,在SKIPIF1<0上單調(diào)遞減.故函數(shù)在SKIPIF1<0處取得極大值SKIPIF1<0.故選:A7(2022·天津河北)設(shè)SKIPIF1<0是函數(shù)f(x)的導(dǎo)函數(shù),若函數(shù)f(x)的圖象如圖所示,則下列說法錯誤的是(
)A.當(dāng)SKIPIF1<0時,SKIPIF1<0 B.當(dāng)SKIPIF1<0或SKIPIF1<0時,SKIPIF1<0C.當(dāng)SKIPIF1<0或SKIPIF1<0時,SKIPIF1<0 D.函數(shù)f(x)在SKIPIF1<0處取得極小值【答案】D【解析】A.由圖象知:當(dāng)SKIPIF1<0時,函數(shù)f(x)遞增,所以SKIPIF1<0,故正確;B.由圖象知:當(dāng)SKIPIF1<0或SKIPIF1<0時,函數(shù)f(x)遞增,所以SKIPIF1<0,故正確;C.由圖象知:當(dāng)SKIPIF1<0或SKIPIF1<0時,函數(shù)f(x)分別取得極小值和極大值SKIPIF1<0,故正確;D.由圖象知:函數(shù)f(x)在SKIPIF1<0處取得極大值,故錯誤;故選:D題組二題組二已知極值(點)求參數(shù)1.(2022·山東濰坊)已知函數(shù)SKIPIF1<0的圖像與直線SKIPIF1<0有3個不同的交點,則實數(shù)m的取值范圍是(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】B【解析】對函數(shù)SKIPIF1<0求導(dǎo)得:SKIPIF1<0,當(dāng)SKIPIF1<0或SKIPIF1<0時,SKIPIF1<0,當(dāng)SKIPIF1<0時,SKIPIF1<0,即SKIPIF1<0在SKIPIF1<0
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025下半年湖南永州江永縣引進(jìn)急需緊缺人才137人歷年高頻重點提升(共500題)附帶答案詳解
- 2025下半年四川自貢事業(yè)單位考試聘用人員高頻重點提升(共500題)附帶答案詳解
- 2025下半年四川省南充閬中市招聘事業(yè)單位人員48人歷年高頻重點提升(共500題)附帶答案詳解
- 2025上海軌道交通培訓(xùn)中心(集團(tuán)黨委黨校)招聘(集團(tuán)公司內(nèi)部招聘)高頻重點提升(共500題)附帶答案詳解
- 2025上海醫(yī)療器械高等??茖W(xué)校事業(yè)單位招考高頻重點提升(共500題)附帶答案詳解
- 2025上半年福建省寧德市福鼎事業(yè)單位公開招聘234人歷年高頻重點提升(共500題)附帶答案詳解
- 2025上半年江蘇省蘇州姑蘇事業(yè)單位招聘51人歷年高頻重點提升(共500題)附帶答案詳解
- 2025上半年四川綿陽聚融股權(quán)投資基金管理限公司招聘員工1人高頻重點提升(共500題)附帶答案詳解
- 2025上半年四川廣元市利州區(qū)引進(jìn)高層次和急需緊缺人才46人高頻重點提升(共500題)附帶答案詳解
- 文化活動設(shè)施租賃合同協(xié)議
- 2024年上海市黃埔區(qū)九年級英語一模試卷
- 初中勵志主題班會《梅花香自苦寒來》課件(共17張)
- 小學(xué)生思維漫畫合輯
- 課本劇西門豹治鄴劇本
- 新(完整)小學(xué)三年級語文教學(xué)案例
- 《多式聯(lián)運(yùn)單證》課件
- 工程量清單及招標(biāo)控制價編制、審核入庫類服務(wù)方案
- 特種設(shè)備(承壓類)生產(chǎn)單位安全風(fēng)險管控(日管控、周排查、月調(diào)度)清單
- 醫(yī)保藥品編碼數(shù)據(jù)庫Excel表2023版
- 混凝土配合比全自動計算書
- 網(wǎng)絡(luò)傳播法規(guī)(自考14339)復(fù)習(xí)必備題庫(含答案)
評論
0/150
提交評論