新高考數(shù)學(xué)三輪沖刺 押題卷練習(xí)第6題 指對(duì)冪函數(shù)及函數(shù)的基本性質(zhì)(解析版)_第1頁
新高考數(shù)學(xué)三輪沖刺 押題卷練習(xí)第6題 指對(duì)冪函數(shù)及函數(shù)的基本性質(zhì)(解析版)_第2頁
新高考數(shù)學(xué)三輪沖刺 押題卷練習(xí)第6題 指對(duì)冪函數(shù)及函數(shù)的基本性質(zhì)(解析版)_第3頁
新高考數(shù)學(xué)三輪沖刺 押題卷練習(xí)第6題 指對(duì)冪函數(shù)及函數(shù)的基本性質(zhì)(解析版)_第4頁
新高考數(shù)學(xué)三輪沖刺 押題卷練習(xí)第6題 指對(duì)冪函數(shù)及函數(shù)的基本性質(zhì)(解析版)_第5頁
已閱讀5頁,還剩21頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

指對(duì)冪函數(shù)及函數(shù)的基本性質(zhì)考點(diǎn)4年考題考情分析指對(duì)冪函數(shù)及函數(shù)的基本性質(zhì)2023年新高考Ⅰ卷第4題2023年新高考Ⅱ卷第4題2022年新高考Ⅰ卷第7題2022年新高考Ⅱ卷第8題2021年新高考Ⅰ卷第13題2021年新高考Ⅱ卷第7、8題2020年新高考Ⅰ卷第6、8題2020年新高考Ⅱ卷第7、8題指數(shù)對(duì)數(shù)冪函數(shù)難度較易,函數(shù)的基本性質(zhì)難度一般或較難,縱觀近幾年的新高考試題,分別考查單調(diào)性中參數(shù)求解、奇偶性中參數(shù)求解、周期性等性質(zhì)、大小比較等知識(shí)點(diǎn),本內(nèi)容是新高考沖刺復(fù)習(xí)的重點(diǎn)復(fù)習(xí)內(nèi)容??梢灶A(yù)測(cè)2024年新高考命題方向?qū)⒗^續(xù)以指對(duì)冪函數(shù)直接或間接命題來考查函數(shù)中的基本性質(zhì).1.(2023·新高考Ⅰ卷高考真題第4題)設(shè)函數(shù)SKIPIF1<0在區(qū)間SKIPIF1<0上單調(diào)遞減,則SKIPIF1<0的取值范圍是(

)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【答案】D【分析】利用指數(shù)型復(fù)合函數(shù)單調(diào)性,判斷列式計(jì)算作答.【詳解】函數(shù)SKIPIF1<0在R上單調(diào)遞增,而函數(shù)SKIPIF1<0在區(qū)間SKIPIF1<0上單調(diào)遞減,則有函數(shù)SKIPIF1<0在區(qū)間SKIPIF1<0上單調(diào)遞減,因此SKIPIF1<0,解得SKIPIF1<0,所以SKIPIF1<0的取值范圍是SKIPIF1<0.故選:D2.(2023·新高考Ⅱ卷高考真題第4題)若SKIPIF1<0為偶函數(shù),則SKIPIF1<0(

).A.SKIPIF1<0 B.0 C.SKIPIF1<0 D.1【答案】B【分析】根據(jù)偶函數(shù)性質(zhì),利用特殊值法求出SKIPIF1<0值,再檢驗(yàn)即可.【詳解】因?yàn)镾KIPIF1<0為偶函數(shù),則SKIPIF1<0,解得SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,SKIPIF1<0,解得SKIPIF1<0或SKIPIF1<0,則其定義域?yàn)镾KIPIF1<0或SKIPIF1<0,關(guān)于原點(diǎn)對(duì)稱.SKIPIF1<0,故此時(shí)SKIPIF1<0為偶函數(shù).故選:B.3.(2022·新高考Ⅰ卷高考真題第7題)設(shè)SKIPIF1<0,則(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】C【分析】構(gòu)造函數(shù)SKIPIF1<0,導(dǎo)數(shù)判斷其單調(diào)性,由此確定SKIPIF1<0的大小.【詳解】方法一:構(gòu)造法設(shè)SKIPIF1<0,因?yàn)镾KIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,當(dāng)SKIPIF1<0時(shí)SKIPIF1<0,所以函數(shù)SKIPIF1<0在SKIPIF1<0單調(diào)遞減,在SKIPIF1<0上單調(diào)遞增,所以SKIPIF1<0,所以SKIPIF1<0,故SKIPIF1<0,即SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0,故SKIPIF1<0,所以SKIPIF1<0,故SKIPIF1<0,設(shè)SKIPIF1<0,則SKIPIF1<0,令SKIPIF1<0,SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,函數(shù)SKIPIF1<0單調(diào)遞減,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,函數(shù)SKIPIF1<0單調(diào)遞增,又SKIPIF1<0,所以當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,所以當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,函數(shù)SKIPIF1<0單調(diào)遞增,所以SKIPIF1<0,即SKIPIF1<0,所以SKIPIF1<0故選:C.方法二:比較法解:SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,①SKIPIF1<0,令SKIPIF1<0則SKIPIF1<0,故SKIPIF1<0在SKIPIF1<0上單調(diào)遞減,可得SKIPIF1<0,即SKIPIF1<0,所以SKIPIF1<0;②SKIPIF1<0,令SKIPIF1<0則SKIPIF1<0,令SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,可得SKIPIF1<0,即SKIPIF1<0,所以SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,可得SKIPIF1<0,即SKIPIF1<0,所以SKIPIF1<0故SKIPIF1<04.(2022·新高考Ⅱ卷高考真題第8題)已知函數(shù)SKIPIF1<0的定義域?yàn)镽,且SKIPIF1<0,則SKIPIF1<0(

)A.SKIPIF1<0 B.SKIPIF1<0 C.0 D.1【答案】A【分析】法一:根據(jù)題意賦值即可知函數(shù)SKIPIF1<0的一個(gè)周期為SKIPIF1<0,求出函數(shù)一個(gè)周期中的SKIPIF1<0的值,即可解出.【詳解】[方法一]:賦值加性質(zhì)因?yàn)镾KIPIF1<0,令SKIPIF1<0可得,SKIPIF1<0,所以SKIPIF1<0,令SKIPIF1<0可得,SKIPIF1<0,即SKIPIF1<0,所以函數(shù)SKIPIF1<0為偶函數(shù),令SKIPIF1<0得,SKIPIF1<0,即有SKIPIF1<0,從而可知SKIPIF1<0,SKIPIF1<0,故SKIPIF1<0,即SKIPIF1<0,所以函數(shù)SKIPIF1<0的一個(gè)周期為SKIPIF1<0.因?yàn)镾KIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,所以一個(gè)周期內(nèi)的SKIPIF1<0.由于22除以6余4,所以SKIPIF1<0.故選:A.[方法二]:【最優(yōu)解】構(gòu)造特殊函數(shù)由SKIPIF1<0,聯(lián)想到余弦函數(shù)和差化積公式SKIPIF1<0,可設(shè)SKIPIF1<0,則由方法一中SKIPIF1<0知SKIPIF1<0,解得SKIPIF1<0,取SKIPIF1<0,所以SKIPIF1<0,則SKIPIF1<0,所以SKIPIF1<0符合條件,因此SKIPIF1<0的周期SKIPIF1<0,SKIPIF1<0,且SKIPIF1<0,所以SKIPIF1<0,由于22除以6余4,所以SKIPIF1<0.故選:A.【整體點(diǎn)評(píng)】法一:利用賦值法求出函數(shù)的周期,即可解出,是該題的通性通法;法二:作為選擇題,利用熟悉的函數(shù)使抽象問題具體化,簡(jiǎn)化推理過程,直接使用具體函數(shù)的性質(zhì)解題,簡(jiǎn)單明了,是該題的最優(yōu)解.5.(2021·新高考Ⅰ卷高考真題第13題)已知函數(shù)SKIPIF1<0是偶函數(shù),則SKIPIF1<0.【答案】1【分析】利用偶函數(shù)的定義可求參數(shù)SKIPIF1<0的值.【詳解】因?yàn)镾KIPIF1<0,故SKIPIF1<0,因?yàn)镾KIPIF1<0為偶函數(shù),故SKIPIF1<0,時(shí)SKIPIF1<0,整理得到SKIPIF1<0,故SKIPIF1<0,故答案為:16.(2021·新高考Ⅱ卷高考真題第7題)已知SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,則下列判斷正確的是(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】C【分析】對(duì)數(shù)函數(shù)的單調(diào)性可比較SKIPIF1<0、SKIPIF1<0與SKIPIF1<0的大小關(guān)系,由此可得出結(jié)論.【詳解】SKIPIF1<0,即SKIPIF1<0.故選:C.7.(2021·新高考Ⅱ卷高考真題第8題)已知函數(shù)SKIPIF1<0的定義域?yàn)镾KIPIF1<0,SKIPIF1<0為偶函數(shù),SKIPIF1<0為奇函數(shù),則(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】B【分析】推導(dǎo)出函數(shù)SKIPIF1<0是以SKIPIF1<0為周期的周期函數(shù),由已知條件得出SKIPIF1<0,結(jié)合已知條件可得出結(jié)論.【詳解】因?yàn)楹瘮?shù)SKIPIF1<0為偶函數(shù),則SKIPIF1<0,可得SKIPIF1<0,因?yàn)楹瘮?shù)SKIPIF1<0為奇函數(shù),則SKIPIF1<0,所以,SKIPIF1<0,所以,SKIPIF1<0,即SKIPIF1<0,故函數(shù)SKIPIF1<0是以SKIPIF1<0為周期的周期函數(shù),因?yàn)楹瘮?shù)SKIPIF1<0為奇函數(shù),則SKIPIF1<0,故SKIPIF1<0,其它三個(gè)選項(xiàng)未知.故選:B.單調(diào)性單調(diào)性的運(yùn)算①增函數(shù)(↗)SKIPIF1<0增函數(shù)(↗)SKIPIF1<0增函數(shù)↗②減函數(shù)(↘)SKIPIF1<0減函數(shù)(↘)SKIPIF1<0減函數(shù)↘③SKIPIF1<0為↗,則SKIPIF1<0為↘,SKIPIF1<0為↘④增函數(shù)(↗)SKIPIF1<0減函數(shù)(↘)SKIPIF1<0增函數(shù)↗⑤減函數(shù)(↘)SKIPIF1<0增函數(shù)(↗)SKIPIF1<0減函數(shù)↘⑥增函數(shù)(↗)SKIPIF1<0減函數(shù)(↘)SKIPIF1<0未知(導(dǎo)數(shù))復(fù)合函數(shù)的單調(diào)性SKIPIF1<0奇偶性①具有奇偶性的函數(shù)定義域關(guān)于原點(diǎn)對(duì)稱(大前提)②奇偶性的定義:奇函數(shù):SKIPIF1<0,圖象關(guān)于原點(diǎn)對(duì)稱偶函數(shù):SKIPIF1<0,圖象關(guān)于SKIPIF1<0軸對(duì)稱③奇偶性的四則運(yùn)算SKIPIF1<0SKIPIF1<0周期性(差為常數(shù)有周期)①若SKIPIF1<0,則SKIPIF1<0的周期為:SKIPIF1<0②若SKIPIF1<0,則SKIPIF1<0的周期為:SKIPIF1<0③若SKIPIF1<0,則SKIPIF1<0的周期為:SKIPIF1<0(周期擴(kuò)倍問題)④若SKIPIF1<0,則SKIPIF1<0的周期為:SKIPIF1<0(周期擴(kuò)倍問題)對(duì)稱性(和為常數(shù)有對(duì)稱軸)軸對(duì)稱①若SKIPIF1<0,則SKIPIF1<0的對(duì)稱軸為SKIPIF1<0②若SKIPIF1<0,則SKIPIF1<0的對(duì)稱軸為SKIPIF1<0點(diǎn)對(duì)稱①若SKIPIF1<0,則SKIPIF1<0的對(duì)稱中心為SKIPIF1<0②若SKIPIF1<0,則SKIPIF1<0的對(duì)稱中心為SKIPIF1<0周期性對(duì)稱性綜合問題①若SKIPIF1<0,SKIPIF1<0,其中SKIPIF1<0,則SKIPIF1<0的周期為:SKIPIF1<0②若SKIPIF1<0,SKIPIF1<0,其中SKIPIF1<0,則SKIPIF1<0的周期為:SKIPIF1<0③若SKIPIF1<0,SKIPIF1<0,其中SKIPIF1<0,則SKIPIF1<0的周期為:SKIPIF1<0奇偶性對(duì)稱性綜合問題①已知SKIPIF1<0為偶函數(shù),SKIPIF1<0為奇函數(shù),則SKIPIF1<0的周期為:SKIPIF1<0②已知SKIPIF1<0為奇函數(shù),SKIPIF1<0為偶函數(shù),則SKIPIF1<0的周期為:SKIPIF1<0對(duì)數(shù)的性質(zhì)與運(yùn)算法則①兩個(gè)基本對(duì)數(shù):①SKIPIF1<0,②SKIPIF1<0②對(duì)數(shù)恒等式:①SKIPIF1<0,②SKIPIF1<0。③換底公式:SKIPIF1<0;推廣1:對(duì)數(shù)的倒數(shù)式SKIPIF1<0SKIPIF1<0推廣2:SKIPIF1<0。④積的對(duì)數(shù):SKIPIF1<0;⑤商的對(duì)數(shù):SKIPIF1<0;⑥冪的對(duì)數(shù):?SKIPIF1<0,?SKIPIF1<0,?SKIPIF1<0,?SKIPIF1<0冪函數(shù)恒過定點(diǎn)SKIPIF1<0冪函數(shù)的單調(diào)性SKIPIF1<0冪函數(shù)的奇偶性SKIPIF1<0與指數(shù)函數(shù)相關(guān)的奇函數(shù)和偶函數(shù)SKIPIF1<0,(SKIPIF1<0,且SKIPIF1<0)為偶函數(shù),SKIPIF1<0,(SKIPIF1<0,且SKIPIF1<0)為奇函數(shù)SKIPIF1<0和SKIPIF1<0,(SKIPIF1<0,且SKIPIF1<0)為其定義域上的奇函數(shù)SKIPIF1<0和SKIPIF1<0,(SKIPIF1<0,且SKIPIF1<0)為其定義域上的奇函數(shù)SKIPIF1<0為偶函數(shù)與對(duì)數(shù)函數(shù)相關(guān)的奇函數(shù)和偶函數(shù)SKIPIF1<0,(SKIPIF1<0且SKIPIF1<0)為奇函數(shù),SKIPIF1<0,(SKIPIF1<0且SKIPIF1<0)為奇函數(shù)1.(2024·江蘇·模擬預(yù)測(cè))已知函數(shù)SKIPIF1<0是定義在SKIPIF1<0上的奇函數(shù),則實(shí)數(shù)SKIPIF1<0(

)A.-1 B.0 C.SKIPIF1<0 D.1【答案】C【分析】利用奇函數(shù)定義求解.【詳解】SKIPIF1<0為奇函數(shù),SKIPIF1<0,∴SKIPIF1<0,即SKIPIF1<0∴SKIPIF1<0,即SKIPIF1<0,解得SKIPIF1<0,故選:C.2.(2024·江蘇宿遷·一模)已知函數(shù)SKIPIF1<0,則不等式SKIPIF1<0的解集為(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】A【分析】解法一:判斷函數(shù)SKIPIF1<0的單調(diào)性,再利用單調(diào)性解不等式即可.解法二:特值排除法.【詳解】解法一:函數(shù)SKIPIF1<0的定義域?yàn)镽,函數(shù)SKIPIF1<0分別是R上的增函數(shù)和減函數(shù),因此函數(shù)SKIPIF1<0是R上的增函數(shù),由SKIPIF1<0,得SKIPIF1<0,解得SKIPIF1<0,所以原不等式的解集是SKIPIF1<0.故選:A解法二:特值當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,排除B,D,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,排除C,對(duì)A:當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,因?yàn)楹瘮?shù)SKIPIF1<0是R上的增函數(shù),所以SKIPIF1<0,故A成立.故選A.3.(2024·重慶·模擬預(yù)測(cè))若函數(shù)SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,則實(shí)數(shù)SKIPIF1<0的取值范圍是(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】B【分析】根據(jù)復(fù)合函數(shù)單調(diào)性的規(guī)則以及函數(shù)在SKIPIF1<0上有意義列不等式求解即可.【詳解】因?yàn)楹瘮?shù)SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,所以SKIPIF1<0,解得SKIPIF1<0.故選:B.4.(2024·重慶·模擬預(yù)測(cè))已知SKIPIF1<0是周期為SKIPIF1<0的函數(shù),且SKIPIF1<0都有SKIPIF1<0,則SKIPIF1<0(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】C【分析】根據(jù)函數(shù)的周期性與對(duì)稱性可得解.【詳解】由已知SKIPIF1<0,即SKIPIF1<0,令SKIPIF1<0,可知SKIPIF1<0,即SKIPIF1<0,又函數(shù)SKIPIF1<0的周期為SKIPIF1<0,則SKIPIF1<0,故選:C.5.(2024·湖南·模擬預(yù)測(cè))已知函數(shù)SKIPIF1<0是定義在SKIPIF1<0上的偶函數(shù),對(duì)任意實(shí)數(shù)SKIPIF1<0.當(dāng)SKIPIF1<0時(shí),SKIPIF1<0.則SKIPIF1<0的值為(

)A.0 B.1 C.SKIPIF1<0 D.SKIPIF1<0【答案】B【分析】利用函數(shù)的奇偶性以及SKIPIF1<0,推出函數(shù)的周期,再結(jié)合SKIPIF1<0時(shí)函數(shù)解析式,即可求得答案.【詳解】由已知SKIPIF1<0為偶函數(shù),所以SKIPIF1<0,又SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0,所以函數(shù)SKIPIF1<0是周期為2的周期函數(shù),結(jié)合SKIPIF1<0時(shí),SKIPIF1<0,故SKIPIF1<0,故選:B.6.(2024·山東青島·一模)SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0的值為(

)A.2 B.1 C.0 D.-1【答案】B【分析】利用賦值法求出SKIPIF1<0的值,將SKIPIF1<0變形為SKIPIF1<0,即可推出SKIPIF1<0,可得函數(shù)周期,由此即可求得答案.【詳解】由題意知SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,令SKIPIF1<0,則SKIPIF1<0顯然SKIPIF1<0時(shí),SKIPIF1<0不成立,故SKIPIF1<0,故SKIPIF1<0,則SKIPIF1<0,即6為函數(shù)SKIPIF1<0的周期,則SKIPIF1<0,故選:B7.(2024·福建廈門·一模)已知函數(shù)SKIPIF1<0的定義域?yàn)镾KIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,若SKIPIF1<0,則SKIPIF1<0(

)A.SKIPIF1<0 B.SKIPIF1<0 C.2 D.4【答案】A【分析】利用賦值法對(duì)SKIPIF1<0進(jìn)行賦值結(jié)合函數(shù)的周期可得答案.【詳解】令SKIPIF1<0,得SKIPIF1<0,即SKIPIF1<0,令SKIPIF1<0,得SKIPIF1<0,得SKIPIF1<0,所以函數(shù)SKIPIF1<0為偶函數(shù),令SKIPIF1<0,得SKIPIF1<0,令SKIPIF1<0,得SKIPIF1<0,SKIPIF1<0,SKIPIF1<0或SKIPIF1<0,若SKIPIF1<0,解得SKIPIF1<0與已知SKIPIF1<0矛盾,SKIPIF1<0,即SKIPIF1<0,解得SKIPIF1<0,SKIPIF1<0,令SKIPIF1<0,得SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0SKIPIF1<0,所以函數(shù)SKIPIF1<0的周期為4.SKIPIF1<0.故選:A.8.(2024·浙江·二模)若函數(shù)SKIPIF1<0為偶函數(shù),則實(shí)數(shù)a的值為(

)A.SKIPIF1<0 B.0 C.SKIPIF1<0 D.1【答案】A【分析】根據(jù)偶函數(shù)滿足的關(guān)系即可化簡(jiǎn)求解.【詳解】SKIPIF1<0的定義域?yàn)镾KIPIF1<0,SKIPIF1<0,由于SKIPIF1<0為偶函數(shù),故SKIPIF1<0,即SKIPIF1<0,故SKIPIF1<0,解得SKIPIF1<0故選:A9.(2024·河北滄州·一模)已知定義在SKIPIF1<0上的函數(shù)SKIPIF1<0滿足:SKIPIF1<0,且SKIPIF1<0.若SKIPIF1<0,則SKIPIF1<0(

)A.506 B.1012 C.2024 D.4048【答案】C【分析】根據(jù)條件得到函數(shù)SKIPIF1<0是周期為SKIPIF1<0的函數(shù),再根據(jù)條件得出SKIPIF1<0,即可求出結(jié)果.【詳解】SKIPIF1<0,①SKIPIF1<0,即SKIPIF1<0,所以SKIPIF1<0,所以函數(shù)SKIPIF1<0的圖象關(guān)于SKIPIF1<0對(duì)稱,令SKIPIF1<0,則SKIPIF1<0,所以SKIPIF1<0,令SKIPIF1<0,SKIPIF1<0,又SKIPIF1<0,所以SKIPIF1<0,又SKIPIF1<0,SKIPIF1<0,②即函數(shù)SKIPIF1<0的圖象關(guān)于直線SKIPIF1<0對(duì)稱,SKIPIF1<0且由①和②,得SKIPIF1<0,所以SKIPIF1<0,則函數(shù)SKIPIF1<0的一個(gè)周期為4,則SKIPIF1<0,所以SKIPIF1<0.故選:C10.(2024·安徽·模擬預(yù)測(cè))科學(xué)家從由實(shí)際生活得出的大量統(tǒng)計(jì)數(shù)據(jù)中發(fā)現(xiàn)以1開頭的數(shù)出現(xiàn)的頻率較高,以1開頭的數(shù)出現(xiàn)的頻數(shù)約為總數(shù)的三成,并提出定律:在大量b進(jìn)制隨機(jī)數(shù)據(jù)中,以n開頭的數(shù)出現(xiàn)的概率為SKIPIF1<0,如裴波那契數(shù)、階乘數(shù)、素?cái)?shù)等都比較符合該定律.后來常有數(shù)學(xué)愛好者用此定律來檢驗(yàn)?zāi)承┙?jīng)濟(jì)數(shù)據(jù)、選舉數(shù)據(jù)等大數(shù)據(jù)的真實(shí)性.若SKIPIF1<0(SKIPIF1<0,SKIPIF1<0),則k的值為(

)A.11 B.15 C.19 D.21【答案】A【分析】根據(jù)條件中的概率公式,結(jié)合求和公式,以及對(duì)數(shù)運(yùn)算,即可求解.【詳解】SKIPIF1<0,即SKIPIF1<0,則SKIPIF1<0,得SKIPIF1<0.故選:A11.(2024·全國(guó)·模擬預(yù)測(cè))萬有引力定律是英國(guó)偉大的物理學(xué)家、數(shù)學(xué)家、天文學(xué)家牛頓提出來的,即任意兩個(gè)質(zhì)點(diǎn)通過連心線方向上的力相互吸引,其數(shù)學(xué)表達(dá)式為SKIPIF1<0,其中SKIPIF1<0表示兩個(gè)物體間的引力大小,SKIPIF1<0為引力常數(shù),SKIPIF1<0分別表示兩個(gè)物體的質(zhì)量,SKIPIF1<0表示兩個(gè)物體間的距離.若地球與月球的近地點(diǎn)間的距離為SKIPIF1<0,與月球的遠(yuǎn)地點(diǎn)間的距離為SKIPIF1<0,地球與月球近地點(diǎn)間的引力大小為SKIPIF1<0,與月球遠(yuǎn)地點(diǎn)間的引力大小為SKIPIF1<0,則(

)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【答案】A【分析】根據(jù)題意,由對(duì)數(shù)的運(yùn)算代入計(jì)算,即可得到結(jié)果.【詳解】由題意知,SKIPIF1<0,兩邊同時(shí)取對(duì)數(shù)得SKIPIF1<0,SKIPIF1<0,即SKIPIF1<0.故選:A.12.(2024·全國(guó)·模擬預(yù)測(cè))在一個(gè)空房間中大聲講話會(huì)產(chǎn)生回音,這個(gè)現(xiàn)象叫做“混響”.用聲強(qiáng)來度量聲音的強(qiáng)弱,假設(shè)講話瞬間發(fā)出聲音的聲強(qiáng)為SKIPIF1<0,則經(jīng)過SKIPIF1<0秒后這段聲音的聲強(qiáng)變?yōu)镾KIPIF1<0,其中SKIPIF1<0是一個(gè)常數(shù).把混響時(shí)間SKIPIF1<0定義為聲音的聲強(qiáng)衰減到原來的SKIPIF1<0所需的時(shí)間,則SKIPIF1<0約為(參考數(shù)據(jù):SKIPIF1<0)(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】C【分析】根據(jù)已知公式及對(duì)數(shù)運(yùn)算可得結(jié)果.【詳解】由題意,SKIPIF1<0,即SKIPIF1<0,等號(hào)兩邊同時(shí)取自然對(duì)數(shù)得SKIPIF1<0,即SKIPIF1<0,所以SKIPIF1<0.故選:C.13.(2024·河北滄州·模擬預(yù)測(cè))某企業(yè)的廢水治理小組積極探索改良工藝,致力于使排放的廢水中含有的污染物數(shù)量逐漸減少.已知改良工藝前排放的廢水中含有的污染物數(shù)量為SKIPIF1<0,首次改良工藝后排放的廢水中含有的污染物數(shù)量為SKIPIF1<0,第n次改良工藝后排放的廢水中含有的污染物數(shù)量SKIPIF1<0滿足函數(shù)模型SKIPIF1<0(SKIPIF1<0,SKIPIF1<0),其中SKIPIF1<0為改良工藝前排放的廢水中含有的污染物數(shù)量,SKIPIF1<0為首次改良工藝后排放的廢水中含有的污染物數(shù)量,n為改良工藝的次數(shù).假設(shè)廢水中含有的污染物數(shù)量不超過SKIPIF1<0時(shí)符合廢水排放標(biāo)準(zhǔn),若該企業(yè)排放的廢水符合排放標(biāo)準(zhǔn),則改良工藝的次數(shù)最少為(

)(參考數(shù)據(jù):SKIPIF1<0,SKIPIF1<0)A.12 B.13 C.14 D.15【答案】D【分析】由題意,根據(jù)指數(shù)冪和對(duì)數(shù)運(yùn)算的性質(zhì)可得SKIPIF1<0,由SKIPIF1<0,解不等式即可求解.【詳解】由題意知SKIPIF1<0,SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,故SKIPIF1<0,解得SKIPIF1<0,所以SKIPIF1<0.由SKIPIF1<0,得SKIPIF1<0,即SKIPIF1<0,得SKIPIF1<0,又SKIPIF1<0,所以SKIPIF1<0,故若該企業(yè)排放的廢水符合排放標(biāo)準(zhǔn),則改良工藝的次數(shù)最少要15次.故選:D14.(2024·河北·模擬預(yù)測(cè))已知定義在SKIPIF1<0上的函數(shù)SKIPIF1<0滿足SKIPIF1<0,則(

)A.SKIPIF1<0是奇函數(shù)且在SKIPIF1<0上單調(diào)遞減B.SKIPIF1<0是奇函數(shù)且在SKIPIF1<0上單調(diào)遞增C.SKIPIF1<0是偶函數(shù)且在SKIPIF1<0上單調(diào)遞減D.SKIPIF1<0是偶函數(shù)且在SKIPIF1<0上單調(diào)遞增【答案】A【分析】令SKIPIF1<0,求出SKIPIF1<0,令SKIPIF1<0,求出SKIPIF1<0,再分別令SKIPIF1<0,SKIPIF1<0,即可求出函數(shù)SKIPIF1<0的解析式,進(jìn)而可得出答案.【詳解】令SKIPIF1<0,則SKIPIF1<0,所以SKIPIF1<0,令SKIPIF1<0,則SKIPIF1<0,所以SKIPIF1<0,令SKIPIF1<0,則SKIPIF1<0,所以SKIPIF1<0,令SKIPIF1<0,則SKIPIF1<0,所以SKIPIF1<0,因?yàn)镾KIPIF1<0,且定義域關(guān)于原點(diǎn)對(duì)稱,所以函數(shù)SKIPIF1<0是奇函數(shù),由反比例函數(shù)的單調(diào)性可得函數(shù)SKIPIF1<0在SKIPIF1<0上單調(diào)遞減.故選:A.15.(2024·全國(guó)·模擬預(yù)測(cè))已知函數(shù)SKIPIF1<0是偶函數(shù),則SKIPIF1<0(

)A.SKIPIF1<0 B.SKIPIF1<0 C.0 D.2【答案】C【分析】由偶函數(shù)定義域關(guān)于原點(diǎn)對(duì)稱,可得SKIPIF1<0,又由題可得SKIPIF1<0是奇函數(shù),后由奇函數(shù)定義可得答案.【詳解】由題易知SKIPIF1<0,即SKIPIF1<0SKIPIF1<0定義域?yàn)镾KIPIF1<0或SKIPIF1<0.又函數(shù)SKIPIF1<0是偶函數(shù),其定義域關(guān)于坐標(biāo)原點(diǎn)對(duì)稱,故SKIPIF1<0.SKIPIF1<0定義域?yàn)镾KIPIF1<0.令SKIPIF1<0,注意到SKIPIF1<0,即SKIPIF1<0是奇函數(shù).令SKIPIF1<0,因SKIPIF1<0為偶函數(shù),則SKIPIF1<0一定是奇函數(shù),則SKIPIF1<0所以SKIPIF1<0,所以SKIPIF1<0.故選:C.16.(2024·全國(guó)·模擬預(yù)測(cè))若SKIPIF1<0,則SKIPIF1<0的取值范圍為(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】A【分析】由SKIPIF1<0.構(gòu)造函數(shù)SKIPIF1<0,再結(jié)合SKIPIF1<0,利用函數(shù)SKIPIF1<0為增函數(shù)求解.【詳解】解:法一:因?yàn)镾KIPIF1<0,所以SKIPIF1<0.構(gòu)造函數(shù)SKIPIF1<0,SKIPIF1<0的定義域?yàn)镾KIPIF1<0,且SKIPIF1<0為增函數(shù).因?yàn)镾KIPIF1<0,所以SKIPIF1<0,即SKIPIF1<0,即SKIPIF1<0,所以SKIPIF1<0,即SKIPIF1<0的取值范圍為SKIPIF1<0.故選:A.法二:因?yàn)镾KIPIF1<0,所以SKIPIF1<0.構(gòu)造函數(shù)SKIPIF1<0,SKIPIF1<0的定義域?yàn)镾KIPIF1<0,且SKIPIF1<0為增函數(shù).因?yàn)镾KIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0,即SKIPIF1<0的取值范圍為SKIPIF1<0.故選:A.17.(2024·湖南岳陽·二模)設(shè)SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,則(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】A【分析】根據(jù)指數(shù)函數(shù)性質(zhì)得出SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,然后利用作差法比較SKIPIF1<0與SKIPIF1<0的大小關(guān)系即可.【詳解】因?yàn)镾KIPIF1<0,所以SKIPIF1<0,即SKIPIF1<0,所以SKIPIF1<0,即SKIPIF1<0;因?yàn)镾KIPIF1<0,所以SKIPIF1<0,即SKIPIF1<0,所以SKIPIF1<0,即SKIPIF1<0;因?yàn)镾KIPIF1<0,所以SKIPIF1<0,即SKIPIF1<0,所以SKIPIF1<0,即SKIPIF1<0;又因?yàn)镾KIPIF1<0,且SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0;綜上所述,SKIPIF1<0.故選:A.18.(2024·全國(guó)·二模)已知SKIPIF1<0,則(

)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【答案】A【分析】根據(jù)指數(shù)函數(shù)、對(duì)數(shù)函數(shù)的性質(zhì)及對(duì)數(shù)的運(yùn)算性質(zhì)判斷即可.【詳解】因?yàn)镾KIPIF1<0,SKIPIF1<0,又SKIPIF1<0,所以SKIPIF1<0,又SKIPIF1<0,所以SKIPIF1<0.故選:A19.(2024·全國(guó)·模擬預(yù)測(cè))已知SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0的大小關(guān)系為(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】A【分析】根據(jù)題意利用指、對(duì)數(shù)函數(shù)單調(diào)性以及指、對(duì)數(shù)運(yùn)算分析判斷.【詳解】因?yàn)镾KIPIF1<0,SKIPIF1<0,所以SKIPIF1<0;又因?yàn)镾KIPIF1<0,則SKIPIF1<0,即SKIPIF1<0,所以SKIPIF1<0,即SKIPIF1<0;所以SKIPIF1<0.故選:A.20.(2024·云南貴州·二模)若函數(shù)SKIPIF1<0的定義域?yàn)镾KIPIF1<0且圖象關(guān)于SKIPIF1<0軸對(duì)稱,在SKIPIF1<0上是增函數(shù),且SKIPIF1<0,則不等式SKIPIF1<0的解是(

)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【答案】C【分析】先分析不等式在SKIPIF1<0上的解,再根據(jù)對(duì)稱性得出不等式在上SKIPIF1<0的解即可.【詳解】因?yàn)镾KIPIF1<0在SKIPIF1<0上是增函數(shù)且SKIPIF1<0,所以SKIPIF1<0在SKIPIF1<0范圍內(nèi)的解為SKIPIF1<0.因?yàn)楹瘮?shù)SKIPIF1<0在定義域SKIPIF1<0上圖象關(guān)于SKIPIF1<0軸對(duì)稱,所以SKIPIF1<0在SKIPIF1<0內(nèi)的解為SKIPIF1<0,所以不等式SKIPIF1<0在R內(nèi)的解為SKIPIF1<0.故選:C21.(2024·河北·模擬預(yù)測(cè))定義在SKIPIF1<0上的函數(shù)SKIPIF1<0周期為SKIPIF1<0,且SKIPIF1<0為奇函數(shù),則(

)A.SKIPIF1<0為偶函數(shù) B.SKIPIF1<0為偶函數(shù)C.SKIPIF1<0為奇函數(shù) D.SKIPIF1<0為奇函數(shù)【答案】D【分析】根據(jù)周期性與奇偶性的定義推導(dǎo)B、D,利用反例說明A、C.【詳解】定義在SKIPIF1<0上的函數(shù)SKIPIF1<0周期為SKIPIF1<0,所以SKIPIF1<0,又SKIPIF1<0為奇函數(shù),所以SKIPIF1<0,即SKIPIF1<0,所以SKIPIF1<0為奇函數(shù),故B錯(cuò)誤;所以SKIPIF1<0,則SKIPIF1<0,所以SKIPIF1<0,則SKIPIF1<0為奇函數(shù),故D正確;由SKIPIF1<0,所以SKIPIF1<0,則SKIPIF1<0關(guān)于SKIPIF1<0對(duì)稱,令SKIPIF1<0,則SKIPIF1<0,滿足函數(shù)SKIPIF1<0周期為SKIPIF1<0,且SKIPIF1<0滿足SKIPIF1<0為奇函數(shù),但是SKIPIF1<0為奇函數(shù),故A錯(cuò)誤;令SKIPIF1<0,則SKIPIF1<0,滿足函數(shù)SKIPIF1<0周期為SKIPIF1<0,又SKIPIF1<0滿足SKIPIF1<0為奇函數(shù),但是SKIPIF1<0為偶函數(shù),故C錯(cuò)誤.故選:D22.(2024·安徽淮北·一模)已知定義在SKIPIF1<0上奇函數(shù)SKIPIF1<0滿足SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,則SKIPIF1<0(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】B【分析】根據(jù)已知推導(dǎo)出函數(shù)的周期,SKIPIF1<0的范圍,利用已知和推導(dǎo)出的關(guān)系將所求轉(zhuǎn)化為SKIPIF1<0內(nèi)求解.【詳解】因?yàn)镾KIPIF1<0為奇函數(shù)且滿足SKIPIF1<0.所以SKIPIF1<0,即SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0是周期為4的周期函數(shù).因?yàn)镾KIPIF1<0,所以SKIPIF1<0所以SKIPIF1<0SKIPIF1<0.故選:B23.(2024·遼寧大連·一模)設(shè)函數(shù)SKIPIF1<0則滿足SKIPIF1<0的x的取值范圍是(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】C【分析】觀察題設(shè)條件與所求不等式,構(gòu)造函數(shù)SKIPIF1<0,利用奇偶性的定義與導(dǎo)數(shù)說明其奇偶性和單調(diào)性,從而將所求轉(zhuǎn)化為SKIPIF1<0,進(jìn)而得解.【詳解】因?yàn)镾KIPIF1<0,所以SKIPIF1<0SKIPIF1<0,設(shè)SKIPIF1<0,顯然定義域?yàn)镾KIPIF1<0,SKIPIF1<0,又SKIPIF1<0,所以SKIPIF1<0為SKIPIF1<0上的奇函數(shù),又SKIPIF1<0,所以SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,又SKIPIF1<0,則SKIPIF1<0,所以SKIPIF1<0,即SKIPIF1<0,所以SKIPIF1<0,解得SKIPIF1<0,則滿足SKIPIF1<0的SKIPIF1<0的取值范圍是SKIPIF1<0.故選:C.24.(2024·遼寧·模擬預(yù)測(cè))已知SKIPIF1<0是定義在SKIPIF1<0上的奇函數(shù),SKIPIF1<0也是定義在SKIPIF1<0上的奇函數(shù),則關(guān)于SKIPIF1<0的不等式SKIPIF1<0的解集為(

)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【答案】A【分析】根據(jù)SKIPIF1<0為奇函數(shù)及SKIPIF1<0為偶函數(shù)可求SKIPIF1<0,利用導(dǎo)數(shù)可判斷SKIPIF1<0為SKIPIF1<0上的減函數(shù),從而可求不等式的解.【詳解】因?yàn)镾KIPIF1<0,故SKIPIF1<0,故SKIPIF1<0,因?yàn)镾KIPIF1<0是定義在SKIPIF1<0上的奇函數(shù),故SKIPIF1<0,故SKIPIF1<0,故SKIPIF1<0,故SKIPIF1<0,此時(shí)SKIPIF1<0,故SKIPIF1<0為SKIPIF1<0上的減函數(shù),而SKIPIF1<0等價(jià)于SKIPIF1<0,即SKIPIF1<0即SKIPIF1<0,故SKIPIF1<0或SKIPIF1<0故選:A.25.(2024·廣東·一模)已知函數(shù)SKIPIF1<0的定義域?yàn)镾KIPIF1<0,且滿足SKIPIF1<0是偶函數(shù),SKIPIF1<0,若SKIPIF1<0,則SKIPIF1<0(

)A.202 B.204 C.206 D.208【答案】C【分析】根據(jù)條件得到函數(shù)SKIPIF1<0是周期為SKIPIF1<0的偶函數(shù),再根據(jù)條件得出SKIPIF1<0,SKIPIF1<0,即可求出結(jié)果.【詳解】因?yàn)镾KIPIF1<0,所以SKIPIF1<0①,即有SKIPIF1<0②,由①②得到SKIPIF1<0,所以函數(shù)SKIPIF1<0的周期為SKIPIF1<0,又SKIPIF1<0是偶函數(shù),所以SKIPIF1<0,得到SKIPIF1<0,即函數(shù)SKIPIF1<0為偶函數(shù),又由SKIPIF1<0,得到SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,又SKIPIF1<0,所以SKIPIF1<0,故SKIPIF1<0,故選:C.26.(2024·河南新鄉(xiāng)·二模)已知函數(shù)SKIPIF1<0滿足SKIPIF1<0,則下列結(jié)論一定正確的是(

)A.SKIPIF1<0是奇函數(shù) B.SKIPIF1<0是奇函數(shù)C.SKIPIF1<0是奇函數(shù) D.SKIPIF1<0是奇函數(shù)【答案】B【分析】利用賦值法推得SKIPIF1<0,從而得到SKIPIF1<0的對(duì)稱性,再利用函數(shù)圖象平移的性質(zhì)可判斷B,舉反例排除ACD,由此得解.【詳解】因?yàn)镾KIPIF1<0,令SKIPIF1<0,可得SKIPIF1<0,則SKIPIF1<0;令SKIPIF1<0,則SKIPIF1<0,故SKIPIF1<0的圖象關(guān)于點(diǎn)SKIPIF1<0對(duì)稱,則SKIPIF1<0的圖象關(guān)于點(diǎn)SKIPIF1<0對(duì)稱,即SKIPIF1<0是奇函數(shù),故B正確;對(duì)于C,令SKIPIF1<0,可得SKIPIF1<0,則SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,此時(shí)SKIPIF1<0不可能是奇函數(shù),由于無法確定SKIPIF1<0的值,故SKIPIF1<0不一定是奇函數(shù),故C錯(cuò)誤;對(duì)于AD,取SKIPIF1<0,滿足題意

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論