版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
2021-2022高考數(shù)學模擬試卷注意事項:1.答卷前,考生務(wù)必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應(yīng)位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應(yīng)題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應(yīng)位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.在正方體中,點、分別為、的中點,過點作平面使平面,平面若直線平面,則的值為()A. B. C. D.2.已知隨機變量服從正態(tài)分布,,()A. B. C. D.3.記為數(shù)列的前項和數(shù)列對任意的滿足.若,則當取最小值時,等于()A.6 B.7 C.8 D.94.下圖中的圖案是我國古代建筑中的一種裝飾圖案,形若銅錢,寓意富貴吉祥.在圓內(nèi)隨機取一點,則該點取自陰影區(qū)域內(nèi)(陰影部分由四條四分之一圓弧圍成)的概率是()A. B. C. D.5.設(shè)集合,則()A. B. C. D.6.設(shè)等比數(shù)列的前項和為,則“”是“”的()A.充分不必要 B.必要不充分C.充要 D.既不充分也不必要7.橢圓的焦點為,點在橢圓上,若,則的大小為()A. B. C. D.8.函數(shù)(其中是自然對數(shù)的底數(shù))的大致圖像為()A. B. C. D.9.的展開式中有理項有()A.項 B.項 C.項 D.項10.已知雙曲線x2a2-y2b2=1(a>0,b>0),其右焦點F的坐標為(c,0),點A是第一象限內(nèi)雙曲線漸近線上的一點,O為坐標原點,滿足|OA|=A.2 B.2 C.23311.復(fù)數(shù)(為虛數(shù)單位),則等于()A.3 B.C.2 D.12.已知等差數(shù)列中,則()A.10 B.16 C.20 D.24二、填空題:本題共4小題,每小題5分,共20分。13.已知實數(shù)、滿足,且可行域表示的區(qū)域為三角形,則實數(shù)的取值范圍為______,若目標函數(shù)的最小值為-1,則實數(shù)等于______.14.已知平面向量、的夾角為,且,則的最大值是_____.15.已知a,b均為正數(shù),且,的最小值為________.16.設(shè)、滿足約束條件,若的最小值是,則的值為__________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)設(shè)前項積為的數(shù)列,(為常數(shù)),且是等差數(shù)列.(I)求的值及數(shù)列的通項公式;(Ⅱ)設(shè)是數(shù)列的前項和,且,求的最小值.18.(12分)的內(nèi)角、、所對的邊長分別為、、,已知.(1)求的值;(2)若,點是線段的中點,,求的面積.19.(12分)已知函數(shù).(1)若函數(shù)的圖象與軸有且只有一個公共點,求實數(shù)的取值范圍;(2)若對任意成立,求實數(shù)的取值范圍.20.(12分)已知等比數(shù)列中,,是和的等差中項.(1)求數(shù)列的通項公式;(2)記,求數(shù)列的前項和.21.(12分)2018年9月,臺風“山竹”在我國多個省市登陸,造成直接經(jīng)濟損失達52億元.某青年志愿者組織調(diào)查了某地區(qū)的50個農(nóng)戶在該次臺風中造成的直接經(jīng)濟損失,將收集的數(shù)據(jù)分成五組:,,,,(單位:元),得到如圖所示的頻率分布直方圖.(1)試根據(jù)頻率分布直方圖估計該地區(qū)每個農(nóng)戶的平均損失(同一組中的數(shù)據(jù)用該組區(qū)間的中點值代表);(2)臺風后該青年志愿者與當?shù)卣蛏鐣l(fā)出倡議,為該地區(qū)的農(nóng)戶捐款幫扶,現(xiàn)從這50戶并且損失超過4000元的農(nóng)戶中隨機抽取2戶進行重點幫扶,設(shè)抽出損失超過8000元的農(nóng)戶數(shù)為,求的分布列和數(shù)學期望.22.(10分)等差數(shù)列的前項和為,已知,.(Ⅰ)求數(shù)列的通項公式及前項和為;(Ⅱ)設(shè)為數(shù)列的前項的和,求證:.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.B【解析】
作出圖形,設(shè)平面分別交、于點、,連接、、,取的中點,連接、,連接交于點,推導(dǎo)出,由線面平行的性質(zhì)定理可得出,可得出點為的中點,同理可得出點為的中點,結(jié)合中位線的性質(zhì)可求得的值.【詳解】如下圖所示:設(shè)平面分別交、于點、,連接、、,取的中點,連接、,連接交于點,四邊形為正方形,、分別為、的中點,則且,四邊形為平行四邊形,且,且,且,則四邊形為平行四邊形,,平面,則存在直線平面,使得,若平面,則平面,又平面,則平面,此時,平面為平面,直線不可能與平面平行,所以,平面,,平面,平面,平面平面,,,所以,四邊形為平行四邊形,可得,為的中點,同理可證為的中點,,,因此,.故選:B.【點睛】本題考查線段長度比值的計算,涉及線面平行性質(zhì)的應(yīng)用,解答的關(guān)鍵就是找出平面與正方體各棱的交點位置,考查推理能力與計算能力,屬于中等題.2.B【解析】
利用正態(tài)分布密度曲線的對稱性可得出,進而可得出結(jié)果.【詳解】,所以,.故選:B.【點睛】本題考查利用正態(tài)分布密度曲線的對稱性求概率,屬于基礎(chǔ)題.3.A【解析】
先令,找出的關(guān)系,再令,得到的關(guān)系,從而可求出,然后令,可得,得出數(shù)列為等差數(shù)列,得,可求出取最小值.【詳解】解法一:由,所以,由條件可得,對任意的,所以是等差數(shù)列,,要使最小,由解得,則.解法二:由賦值法易求得,可知當時,取最小值.故選:A【點睛】此題考查的是由數(shù)列的遞推式求數(shù)列的通項,采用了賦值法,屬于中檔題.4.C【解析】令圓的半徑為1,則,故選C.5.C【解析】
解對數(shù)不等式求得集合,由此求得兩個集合的交集.【詳解】由,解得,故.依題意,所以.故選:C【點睛】本小題主要考查對數(shù)不等式的解法,考查集合交集的概念和運算,屬于基礎(chǔ)題.6.A【解析】
首先根據(jù)等比數(shù)列分別求出滿足,的基本量,根據(jù)基本量的范圍即可確定答案.【詳解】為等比數(shù)列,若成立,有,因為恒成立,故可以推出且,若成立,當時,有,當時,有,因為恒成立,所以有,故可以推出,,所以“”是“”的充分不必要條件.故選:A.【點睛】本題主要考查了等比數(shù)列基本量的求解,充分必要條件的集合關(guān)系,屬于基礎(chǔ)題.7.C【解析】
根據(jù)橢圓的定義可得,,再利用余弦定理即可得到結(jié)論.【詳解】由題意,,,又,則,由余弦定理可得.故.故選:C.【點睛】本題考查橢圓的定義,考查余弦定理,考查運算能力,屬于基礎(chǔ)題.8.D【解析】由題意得,函數(shù)點定義域為且,所以定義域關(guān)于原點對稱,且,所以函數(shù)為奇函數(shù),圖象關(guān)于原點對稱,故選D.9.B【解析】
由二項展開式定理求出通項,求出的指數(shù)為整數(shù)時的個數(shù),即可求解.【詳解】,,當,,,時,為有理項,共項.故選:B.【點睛】本題考查二項展開式項的特征,熟練掌握二項展開式的通項公式是解題的關(guān)鍵,屬于基礎(chǔ)題.10.C【解析】
計算得到Ac,bca【詳解】雙曲線的一條漸近線方程為y=bax,A故Ac,bca,F(xiàn)c,0,故Mc,故選:C.【點睛】本題考查了雙曲線離心率,意在考查學生的計算能力和綜合應(yīng)用能力.11.D【解析】
利用復(fù)數(shù)代數(shù)形式的乘除運算化簡,從而求得,然后直接利用復(fù)數(shù)模的公式求解.【詳解】,所以,,故選:D.【點睛】該題考查的是有關(guān)復(fù)數(shù)的問題,涉及到的知識點有復(fù)數(shù)的乘除運算,復(fù)數(shù)的共軛復(fù)數(shù),復(fù)數(shù)的模,屬于基礎(chǔ)題目.12.C【解析】
根據(jù)等差數(shù)列性質(zhì)得到,再計算得到答案.【詳解】已知等差數(shù)列中,故答案選C【點睛】本題考查了等差數(shù)列的性質(zhì),是數(shù)列的??碱}型.二、填空題:本題共4小題,每小題5分,共20分。13.【解析】
作出不等式組對應(yīng)的平面區(qū)域,利用目標函數(shù)的幾何意義,結(jié)合目標函數(shù)的最小值,利用數(shù)形結(jié)合即可得到結(jié)論.【詳解】作出可行域如圖,則要為三角形需滿足在直線下方,即,;目標函數(shù)可視為,則為斜率為1的直線縱截距的相反數(shù),該直線截距最大在過點時,此時,直線:,與:的交點為,該點也在直線:上,故,故答案為:;.【點睛】本題主要考查線性規(guī)劃的應(yīng)用,利用目標函數(shù)的幾何意義,結(jié)合數(shù)形結(jié)合的數(shù)學思想是解決此類問題的基本方法,屬于基礎(chǔ)題.14.【解析】
建立平面直角坐標系,設(shè),可得,進而可得出,,由此將轉(zhuǎn)化為以為自變量的三角函數(shù),利用三角恒等變換思想以及正弦函數(shù)的有界性可得出結(jié)果.【詳解】根據(jù)題意建立平面直角坐標系如圖所示,設(shè),,以、為鄰邊作平行四邊形,則,設(shè),則,,且,在中,由正弦定理,得,即,在中,由正弦定理,得,即.,,則,當時,取最大值.故答案為:.【點睛】本題考查了向量的數(shù)量積最值的計算,將問題轉(zhuǎn)化為角的三角函數(shù)的最值問題是解答的關(guān)鍵,考查計算能力,屬于難題.15.【解析】
本題首先可以根據(jù)將化簡為,然后根據(jù)基本不等式即可求出最小值.【詳解】因為,所以,當且僅當,即、時取等號,故答案為:.【點睛】本題考查根據(jù)基本不等式求最值,基本不等式公式為,在使用基本不等式的時候要注意“”成立的情況,考查化歸與轉(zhuǎn)化思想,是中檔題.16.【解析】
畫出滿足條件的平面區(qū)域,求出交點的坐標,由得,顯然直線過時,最小,代入求出的值即可.【詳解】作出不等式組所表示的可行域如下圖所示:聯(lián)立,解得,則點.由得,顯然當直線過時,該直線軸上的截距最小,此時最小,,解得.故答案為:.【點睛】本題考查了簡單的線性規(guī)劃問題,考查數(shù)形結(jié)合思想,是一道中檔題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(Ⅰ),;(Ⅱ)【解析】
(Ⅰ)當時,由,得到,兩邊同除以,得到.再根據(jù)是等差數(shù)列.求解.(Ⅱ),根據(jù)前n項和的定義得到,令,研究其增減性即可.【詳解】(Ⅰ)當時,,所以,即,所以.因為是等差數(shù)列.,所以,,令,,,所以,即;(Ⅱ),所以,,令,所以,,即,所以數(shù)列是遞增數(shù)列,所以,即.【點睛】本題主要考查等差數(shù)列的定義,前n項和以及數(shù)列的增減性,還考查了轉(zhuǎn)化化歸的思想和運算求解的能力,屬于中檔題.18.(1)(2)【解析】
(1)利用正弦定理的邊化角公式,結(jié)合兩角和的正弦公式,即可得出的值;(2)由題意得出,兩邊平方,化簡得出,根據(jù)三角形面積公式,即可得出結(jié)論.【詳解】(1)由正弦定理得即即在中,,所以(2)因為點是線段的中點,所以兩邊平方得由得整理得,解得或(舍)所以的面積【點睛】本題主要考查了正弦定理的邊化角公式,三角形的面積公式,屬于中檔題.19.(1)(2)【解析】
(1)求出及其導(dǎo)函數(shù),利用研究的單調(diào)性和最值,根據(jù)零點存在定理和零點定義可得的范圍.(2)令,題意說明時,恒成立.同樣求出導(dǎo)函數(shù),由研究的單調(diào)性,通過分類討論可得的單調(diào)性得出結(jié)論.【詳解】解(1)函數(shù)所以討論:①當時,無零點;②當時,,所以在上單調(diào)遞增.取,則又,所以,此時函數(shù)有且只有一個零點;③當時,令,解得(舍)或當時,,所以在上單調(diào)遞減;當時,所以在上單調(diào)遞增.據(jù)題意,得,所以(舍)或綜上,所求實數(shù)的取值范圍為.(2)令,根據(jù)題意知,當時,恒成立.又討論:①若,則當時,恒成立,所以在上是增函數(shù).又函數(shù)在上單調(diào)遞增,在上單調(diào)遞增,所以存在使,不符合題意.②若,則當時,恒成立,所以在上是增函數(shù),據(jù)①求解知,不符合題意.③若,則當時,恒有,故在上是減函數(shù),于是“對任意成立”的充分條件是“”,即,解得,故綜上,所求實數(shù)的取值范圍是.【點睛】本題考查函數(shù)零點問題,考查不等式恒成立問題,考查用導(dǎo)數(shù)研究函數(shù)的單調(diào)性.解題關(guān)鍵是通過分類討論研究函數(shù)的單調(diào)性.本題難度較大,考查掌握轉(zhuǎn)化與化歸思想,考查學生分析問題解決問題的能力.20.(1)(2)【解析】
(1)用等比數(shù)列的首項和公比分別表示出已知條件,解方程組即可求得公比,代入等比數(shù)列的通項公式即可求得結(jié)果;(2)把(1)中求得的結(jié)果代入bn=an?log2an,求出bn,利用錯位相減法求出Tn.【詳解】(1)設(shè)數(shù)列的公比為,由題意知:,∴,即.∴,即.(2),∴.①.②①-②得∴.【點睛】本題考查等比數(shù)列的通項公式和等差中項的概念以及錯位相減法求和,考查運算能力,屬中檔題.21.(1)3360元;(2)見解析【解析】
(1)根據(jù)頻率分布直方圖計算每個農(nóng)戶的平均損失;(2)根據(jù)頻率分布直方圖計算隨機變量X的可能取值,再求X的分布列和數(shù)學期望值.【詳解】(1)記每個農(nóng)戶的平均損失為元,則;(2)由頻率分布直方圖,可得損失超過1000元的農(nóng)戶共有(0.00009+0.00003+0.00003)×2000×50=15(戶),損失超過8000元的農(nóng)戶共有0.00003×2000×50=3(戶
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 低碳環(huán)保建議書倡導(dǎo)書
- 二十四孝讀后感
- 個人實習總結(jié)15篇
- 下半年個人工作總結(jié)15篇
- 個人違反廉潔紀律檢討書(6篇)
- 課件轉(zhuǎn)盤游戲教學課件
- 2023年藥品流通行業(yè)運行統(tǒng)計分析報告
- 清華園學校八年級上學期第一次月考語文試題(A4版、B4版含答案)
- 九年級上學期語文期中考試試卷
- 南京航空航天大學《電磁無損檢測新技術(shù)》2021-2022學年期末試卷
- 提升員工服務(wù)意識培訓課件
- 大學生職業(yè)生涯規(guī)劃書環(huán)境設(shè)計
- 園林專業(yè)大學生職業(yè)生涯規(guī)劃
- 第四章 學前兒童記憶的發(fā)展
- 國家開放大學兒童發(fā)展問題的咨詢與輔導(dǎo)形考周測驗三周-周參考答案
- 就業(yè)引航筑夢未來
- 班會議題探索未來職業(yè)的發(fā)展趨勢
- 跨境電商營銷(第2版 慕課版)教案 項目五 社會化媒體營銷
- 食堂員工培訓內(nèi)容-食堂從業(yè)人員培訓資料
- 諾如病毒幼兒園知識講座
- 電子商務(wù)平臺2024年電子商務(wù)平臺選擇與搭建指南
評論
0/150
提交評論