




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
重難點07五種數(shù)列求和方法(核心考點講與練)題型一:等差等比公式法一、單選題1.(2022·山西·模擬預測(理))已知等比數(shù)列SKIPIF1<0的首項為1,若SKIPIF1<0成等差數(shù)列,則SKIPIF1<0的前6項的和為(
)A.31 B.SKIPIF1<0 C.SKIPIF1<0 D.632.(2022·福建泉州·模擬預測)記等比數(shù)列{SKIPIF1<0}的前n項和為SKIPIF1<0.若SKIPIF1<0,則SKIPIF1<0=(
)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<03.(2022·山東菏澤·二模)已知數(shù)列SKIPIF1<0中,SKIPIF1<0,且對任意的m,SKIPIF1<0,都有SKIPIF1<0,則下列選項正確的是(
)A.SKIPIF1<0的值隨n的變化而變化 B.SKIPIF1<0C.若SKIPIF1<0,則SKIPIF1<0 D.SKIPIF1<0為遞增數(shù)列4.(2022·重慶一中高三階段練習)已知等差數(shù)列SKIPIF1<0(公差不為零)和等差數(shù)列SKIPIF1<0的前n項和分別為SKIPIF1<0,SKIPIF1<0,如果關(guān)于x的實系數(shù)方程SKIPIF1<0有實數(shù)解,那么以下2021個方程SKIPIF1<0中,無實數(shù)解的方程最多有(
)A.1008個 B.1009個 C.1010個 D.1011個二、多選題5.(2022·山東棗莊·三模)給出構(gòu)造數(shù)列的一種方法:在數(shù)列的每相鄰兩項之間插入此兩項的和,形成新的數(shù)列,再把所得數(shù)列按照同樣的方法不斷構(gòu)造出新的數(shù)列.現(xiàn)自1,1起進行構(gòu)造,第1次得到數(shù)列1,2,1,第2次得到數(shù)列1,3,2,3,1,…,第SKIPIF1<0次得到數(shù)列SKIPIF1<0,記SKIPIF1<0,數(shù)列SKIPIF1<0的前n項和為SKIPIF1<0,則(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0三、填空題6.(2022·河南·模擬預測(文))設(shè)數(shù)列SKIPIF1<0的前n項和為SKIPIF1<0,已知SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0等于___________.7.(2022·山東·肥城市教學研究中心模擬預測)記SKIPIF1<0為等差數(shù)列SKIPIF1<0的前SKIPIF1<0項和,若SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0=_______.8.(2022·陜西·模擬預測(理))已知等差數(shù)列SKIPIF1<0公差SKIPIF1<0,其前n項和為SKIPIF1<0,若記數(shù)據(jù)SKIPIF1<0的方差為SKIPIF1<0,數(shù)據(jù)SKIPIF1<0的方差為SKIPIF1<0,則SKIPIF1<0___________.9.(2022·河北保定·二模)現(xiàn)有10個圓的圓心都在同一條直線上,從左到右它們的半徑依次構(gòu)成首項為1,公比為2的等比數(shù)列,從第2個圓開始,每個圓都與前一個圓外切,前3個圓如圖所示,若P,Q分別為第1個圓與第10個圓上任意一點,則SKIPIF1<0的最大值為___________.(用數(shù)字作答)10.(2022·湖北·荊門市龍泉中學二模)已知數(shù)列SKIPIF1<0的通項公式SKIPIF1<0則SKIPIF1<0的前SKIPIF1<0項和SKIPIF1<0_____.四、解答題11.(2022·福建廈門·模擬預測)已知數(shù)列SKIPIF1<0的前SKIPIF1<0項和為SKIPIF1<0,滿足SKIPIF1<0,SKIPIF1<0,SKIPIF1<0.(1)證明:數(shù)列SKIPIF1<0是等比數(shù)列;(2)記SKIPIF1<0,設(shè)SKIPIF1<0,求數(shù)列SKIPIF1<0的前SKIPIF1<0項和SKIPIF1<0.13.(2022·山東·肥城市教學研究中心模擬預測)“學習強國”學習平臺的答題競賽包括三項活動,分別為“四人賽”“雙人對戰(zhàn)”和“挑戰(zhàn)答題”.在一天內(nèi)參與“四人賽”活動,每局第一名積3分,第二、三名各積2分,第四名積1分,每局比賽相互獨立.在一天內(nèi)參與“雙人對戰(zhàn)”活動,每局比賽有積分,獲勝者得2分,失敗者得1分,每局比賽相互獨立.已知甲參加“四人賽”活動,每局比賽獲得第一名、第二名的概率均為SKIPIF1<0,獲得第四名的概率為SKIPIF1<0;甲參加“雙人對戰(zhàn)”活動,每局比賽獲勝的概率為SKIPIF1<0.(1)記甲在一天中參加“四人賽”和“雙人對戰(zhàn)”兩項活動(兩項活動均只參加一局)的總得分為SKIPIF1<0,求SKIPIF1<0的分布列與數(shù)學期望;(2)“挑戰(zhàn)答題”比賽規(guī)則如下:每位參賽者每次連續(xù)回答5道題,在答對的情況下可以持續(xù)答題,若第一次答錯時,答題結(jié)束,積分為0分,只有全部答對5道題可以獲得5個積分.某市某部門為了吸引更多職工參與答題,設(shè)置了一個“得積分進階”活動,從1階到SKIPIF1<0SKIPIF1<0階,規(guī)定每輪答題獲得5個積分進2階,沒有獲得積分進1階,按照獲得的階級給予相應的獎品,記乙每次獲得5個積分的概率互不影響,均為SKIPIF1<0,記乙進到SKIPIF1<0階的概率為SKIPIF1<0,求SKIPIF1<0.14.(2022·遼寧·東北育才學校二模)已知等比數(shù)列SKIPIF1<0和遞增的等差數(shù)列SKIPIF1<0滿足SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0.(1)求數(shù)列SKIPIF1<0和數(shù)列SKIPIF1<0的通項公式;(2)數(shù)列SKIPIF1<0和數(shù)列SKIPIF1<0中的所有項分別構(gòu)成集合SKIPIF1<0和SKIPIF1<0,將SKIPIF1<0的所有元素按從小到大依次排列構(gòu)成一個新數(shù)列SKIPIF1<0,求數(shù)列SKIPIF1<0前63項和SKIPIF1<0.15.(2022·山東菏澤·二模)已知數(shù)列SKIPIF1<0中SKIPIF1<0,它的前n項和SKIPIF1<0滿足SKIPIF1<0.(1)證明:數(shù)列SKIPIF1<0為等比數(shù)列;(2)求SKIPIF1<0.題型二:裂項相消法一、單選題1.(2022·四川省瀘縣第二中學模擬預測(文))已知等差數(shù)列SKIPIF1<0的前n項和為SKIPIF1<0,SKIPIF1<0,SKIPIF1<0.若對任意SKIPIF1<0且SKIPIF1<0,總有SKIPIF1<0恒成立,則實數(shù)SKIPIF1<0的最小值為(
)A.1 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0二、多選題2.(2022·山東·濟南一中高三階段練習)如圖所示,這是小朋友們喜歡玩的彩虹塔疊疊樂玩具,某數(shù)學興趣小組利用該玩具制定如下玩法:在2號桿中自下而上串有由大到小的SKIPIF1<0個彩虹圈,將2號桿中的彩虹圈全部移動到1號桿上,3號桿可以作為過渡使用;每次只能移動一個彩虹圈,且無論在哪個桿上,小的彩虹圈必須放置在大的上方;將一個彩虹圈從一個桿移動到另一桿上記為移動1次,記SKIPIF1<0為2號桿中n個彩虹圈全部移動到1號桿所需要的最少移動次數(shù),設(shè)SKIPIF1<0.下面結(jié)論正確的是(
)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<03.(2022·全國·模擬預測)已知數(shù)列SKIPIF1<0滿足SKIPIF1<0,SKIPIF1<0,且SKIPIF1<0,則(
)A.SKIPIF1<0 B.數(shù)列SKIPIF1<0是等差數(shù)列C.數(shù)列SKIPIF1<0是等差數(shù)列 D.數(shù)列SKIPIF1<0的前n項和為SKIPIF1<0三、填空題4.(2022·湖北·蘄春縣實驗高級中學高二期中)高斯函數(shù)SKIPIF1<0也稱為取整函數(shù),其中SKIPIF1<0表示不超過x的最大整數(shù),例如SKIPIF1<0.已知數(shù)列SKIPIF1<0滿足SKIPIF1<0,SKIPIF1<0,設(shè)數(shù)列SKIPIF1<0的前n項和為SKIPIF1<0,則SKIPIF1<0______.四、解答題5.(2022·重慶一中高三階段練習)已知數(shù)列SKIPIF1<0的前SKIPIF1<0項和為SKIPIF1<0,點SKIPIF1<0在直線SKIPIF1<0上SKIPIF1<0.(1)求數(shù)列SKIPIF1<0的通項公式;(2)記SKIPIF1<0,數(shù)列SKIPIF1<0的前SKIPIF1<0項和為SKIPIF1<0,求使得SKIPIF1<0成立的SKIPIF1<0的最大值.6.(2022·江西·模擬預測(理))各項都為正數(shù)的單調(diào)遞增數(shù)列{an}的前n項和為Sn,且滿足SKIPIF1<0(n∈N*).(1)求數(shù)列{an}的通項公式;(2)求SKIPIF1<0;(3)設(shè)SKIPIF1<0SKIPIF1<0,數(shù)列SKIPIF1<0的前n項和為Pn,求使Pn>46成立的n的最小值.7.(2022·江蘇鹽城·三模)已知正項等比數(shù)列SKIPIF1<0滿足SKIPIF1<0,請在①SKIPIF1<0,②SKIPIF1<0,③SKIPIF1<0,SKIPIF1<0,SKIPIF1<0中選擇一個填在橫線上并完成下面問題:(1)求SKIPIF1<0的通項公式;(2)設(shè)SKIPIF1<0,SKIPIF1<0的前SKIPIF1<0和為SKIPIF1<0,求證:SKIPIF1<0.8.(2022·江西九江·三模(文))已知數(shù)列SKIPIF1<0的前SKIPIF1<0項和為SKIPIF1<0,且滿足SKIPIF1<0,SKIPIF1<0.(1)求SKIPIF1<0;(2)求數(shù)列SKIPIF1<0的前SKIPIF1<0項和.9.(2022·山東棗莊·三模)已知正項數(shù)列SKIPIF1<0的前SKIPIF1<0項和為SKIPIF1<0,且SKIPIF1<0、SKIPIF1<0、SKIPIF1<0成等比數(shù)列,其中SKIPIF1<0.(1)求數(shù)列SKIPIF1<0的通項公式;(2)設(shè)SKIPIF1<0,求數(shù)列SKIPIF1<0的前SKIPIF1<0項和SKIPIF1<0.10.(2022·浙江·模擬預測)已知遞增的等差數(shù)列SKIPIF1<0滿足:SKIPIF1<0,且SKIPIF1<0成等比數(shù)列.數(shù)列SKIPIF1<0滿足:SKIPIF1<0,其中SKIPIF1<0為SKIPIF1<0的前n項和.(1)求數(shù)列SKIPIF1<0的通項公式;(2)設(shè)SKIPIF1<0為數(shù)列SKIPIF1<0的前n項和,是否存在實數(shù)SKIPIF1<0,使得不等式SKIPIF1<0對一切SKIPIF1<0恒成立?若存在,求出SKIPIF1<0的值;若不存在,說明理由.11.(2022·河南·高二期中(文))已知正項等比數(shù)列SKIPIF1<0的公比大于1,其前n項和為SKIPIF1<0,且SKIPIF1<0,SKIPIF1<0.(1)求數(shù)列SKIPIF1<0的通項公式;(2)設(shè)數(shù)列SKIPIF1<0,SKIPIF1<0滿足SKIPIF1<0,SKIPIF1<0,求數(shù)列SKIPIF1<0的前n項和SKIPIF1<0.12.(2022·天津和平·二模)已知數(shù)列SKIPIF1<0的前n項和為SKIPIF1<0滿足SKIPIF1<0.數(shù)列SKIPIF1<0滿足SKIPIF1<0,且満足SKIPIF1<0(1)求數(shù)列SKIPIF1<0,SKIPIF1<0的通項公式;(2)若數(shù)列SKIPIF1<0滿足SKIPIF1<0;求SKIPIF1<0(3)SKIPIF1<0,數(shù)列SKIPIF1<0的前SKIPIF1<0項和為SKIPIF1<0,求證:SKIPIF1<0.題型三:錯位相減法一、單選題1.(2022·江西鷹潭·二模(理))若正整數(shù)SKIPIF1<0、SKIPIF1<0只有SKIPIF1<0為公約數(shù),則稱SKIPIF1<0、SKIPIF1<0互質(zhì).對于正整數(shù)SKIPIF1<0,SKIPIF1<0是小于或等于SKIPIF1<0的正整數(shù)中與SKIPIF1<0互質(zhì)的數(shù)的個數(shù).函數(shù)SKIPIF1<0以其首名研究者歐拉命名,稱為歐拉函數(shù),例如:SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,則下列說法正確的是(
)A.SKIPIF1<0B.數(shù)列SKIPIF1<0是等差數(shù)列C.SKIPIF1<0D.數(shù)列SKIPIF1<0的前SKIPIF1<0項和為SKIPIF1<0,則SKIPIF1<02.(2022·廣東·三模)在數(shù)學和許多分支中都能見到很多以瑞士數(shù)學家歐拉命名的常數(shù)?公式和定理,如:歐拉函數(shù)SKIPIF1<0(SKIPIF1<0)的函數(shù)值等于所有不超過正整數(shù)n且與n互素的正整數(shù)的個數(shù),(互素是指兩個整數(shù)的公約數(shù)只有1),例如:SKIPIF1<0;SKIPIF1<0(與3互素有1?2);SKIPIF1<0(與9互素有1?2?4?5?7?8).記SKIPIF1<0為數(shù)列SKIPIF1<0的前n項和,則SKIPIF1<0=(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<03.(2022·江西·二模(理))記數(shù)列SKIPIF1<0中不超過正整數(shù)n的項的個數(shù)為SKIPIF1<0,設(shè)數(shù)列SKIPIF1<0的前n項的和為SKIPIF1<0,則SKIPIF1<0SKIPIF1<0等于(
)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0二、多選題4.(2022·廣東·高三階段練習)已知數(shù)列SKIPIF1<0滿足SKIPIF1<0,SKIPIF1<0,數(shù)列SKIPIF1<0的前n項和為SKIPIF1<0,則(
)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<05.(2022·全國·模擬預測)記數(shù)列SKIPIF1<0的前SKIPIF1<0項和為SKIPIF1<0,數(shù)列SKIPIF1<0為SKIPIF1<0,….其構(gòu)造方法是:首先給出SKIPIF1<0,接著復制該項SKIPIF1<0后,再添加其后繼數(shù)SKIPIF1<0,于是,得SKIPIF1<0;然后再復制前面所有的項SKIPIF1<0,再添加SKIPIF1<0的后繼數(shù)SKIPIF1<0于是,得SKIPIF1<0;接下來再復制前面所有的項SKIPIF1<0,再添加SKIPIF1<0的后繼數(shù)SKIPIF1<0于是,得前SKIPIF1<0項為SKIPIF1<0.如此繼續(xù)下去,則使不等式SKIPIF1<0成立的SKIPIF1<0的值不可能為(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<06.(2021·江蘇·高三階段練習)設(shè)SKIPIF1<0和SKIPIF1<0分別為數(shù)列SKIPIF1<0和SKIPIF1<0的前n項和.已知SKIPIF1<0,SKIPIF1<0,則(
)A.SKIPIF1<0是等比數(shù)列 B.SKIPIF1<0是遞增數(shù)列C.SKIPIF1<0 D.SKIPIF1<0三、填空題7.(2022·山東聊城·二模)已知數(shù)列SKIPIF1<0,當SKIPIF1<0時,SKIPIF1<0,則數(shù)列SKIPIF1<0的前SKIPIF1<0項的和為______.8.(2022·內(nèi)蒙古赤峰·模擬預測(理))已知數(shù)列SKIPIF1<0滿足SKIPIF1<0,且SKIPIF1<0,則SKIPIF1<0______.9.(2022·天津市第四中學模擬預測)已知等比數(shù)列SKIPIF1<0的前SKIPIF1<0項和為SKIPIF1<0,公比SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,數(shù)列SKIPIF1<0滿足SKIPIF1<0且SKIPIF1<0,SKIPIF1<0.(1)則SKIPIF1<0___________;SKIPIF1<0___________;(2)將SKIPIF1<0和SKIPIF1<0中的所有項按從小到大的順序排列組成新數(shù)列SKIPIF1<0,則數(shù)列SKIPIF1<0的前50項和SKIPIF1<0___________;(3)設(shè)數(shù)列SKIPIF1<0的通項公式為:SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0___________.四、解答題10.(2022·浙江·效實中學模擬預測)已知等差數(shù)列SKIPIF1<0中,公差SKIPIF1<0,SKIPIF1<0,SKIPIF1<0是SKIPIF1<0與SKIPIF1<0的等比中項,設(shè)數(shù)列SKIPIF1<0的前SKIPIF1<0項和為SKIPIF1<0,滿足SKIPIF1<0.(1)求數(shù)列SKIPIF1<0與SKIPIF1<0的通項公式;(2)設(shè)SKIPIF1<0,數(shù)列SKIPIF1<0的前SKIPIF1<0項和為SKIPIF1<0,若SKIPIF1<0對任意的SKIPIF1<0恒成立,求實數(shù)SKIPIF1<0的取值范圍.11.(2022·全國·高三階段練習(理))已知數(shù)列SKIPIF1<0的前SKIPIF1<0項和為SKIPIF1<0,SKIPIF1<0,且SKIPIF1<0,SKIPIF1<0,SKIPIF1<0成等差數(shù)列.(1)求數(shù)列SKIPIF1<0的通項公式;(2)設(shè)SKIPIF1<0,求數(shù)列SKIPIF1<0的前SKIPIF1<0項和SKIPIF1<0.12.(2022·山東臨沂·二模)已知數(shù)列SKIPIF1<0的前n項和為SKIPIF1<0,SKIPIF1<0,SKIPIF1<0.(1)求SKIPIF1<0的通項公式;(2)記SKIPIF1<0,求數(shù)列SKIPIF1<0的前n項和SKIPIF1<0.13.(2022·山西·模擬預測(文))已知數(shù)列SKIPIF1<0的前SKIPIF1<0項和為SKIPIF1<0,且SKIPIF1<0.(1)證明SKIPIF1<0是等比數(shù)列;(2)求SKIPIF1<0的前SKIPIF1<0項和SKIPIF1<0.14.(2022·天津·一模)已知數(shù)列SKIPIF1<0是等差數(shù)列,其前n項和為SKIPIF1<0,SKIPIF1<0,SKIPIF1<0;數(shù)列SKIPIF1<0的前n項和為SKIPIF1<0,SKIPIF1<0.(1)求數(shù)列SKIPIF1<0,SKIPIF1<0的通項公式;(2)求數(shù)列SKIPIF1<0的前n項和SKIPIF1<0;(3)求證:SKIPIF1<0.題型四:分組(幷項)求和法一、單選題1.(2022·全國·高三專題練習)已知數(shù)列SKIPIF1<0是以1為首項,2為公差的等差數(shù)列,數(shù)列SKIPIF1<0是以1為首項,2為公比的等比數(shù)列,設(shè)SKIPIF1<0,SKIPIF1<0,則當SKIPIF1<0時,SKIPIF1<0的最大值是(
).A.9 B.10 C.11 D.122.(2022·江蘇南京·高三開學考試)若(2x+1)(22x+1)(23x+1)…(2nx+1)=a0+a1x+a2x2+…+anxn(n∈N*),則下列說法正確的是(
)A.a(chǎn)n=2SKIPIF1<0(n∈N*)B.{SKIPIF1<0-1}(n∈N*)為等差數(shù)列C.設(shè)bn=a1,則數(shù)列SKIPIF1<0為等差數(shù)列D.設(shè)bn=a1,則數(shù)列{bn}的前n項的和為SKIPIF1<03.(2022·河北·模擬預測)已知數(shù)列SKIPIF1<0滿足SKIPIF1<0,SKIPIF1<0(SKIPIF1<0,SKIPIF1<0),SKIPIF1<0是數(shù)列SKIPIF1<0的前SKIPIF1<0項和,則SKIPIF1<0(
)A.508 B.506 C.1011 D.1009二、多選題4.(2022·河北滄州·模擬預測)已知數(shù)列SKIPIF1<0的通項公式為SKIPIF1<0,SKIPIF1<0是數(shù)列SKIPIF1<0的前n項和,若SKIPIF1<0,使SKIPIF1<0,則SKIPIF1<0(
)A.1 B.2 C.3 D.45.(2021·廣東·新會陳經(jīng)綸中學高三階段練習)已知數(shù)列SKIPIF1<0滿足SKIPIF1<0,SKIPIF1<0,SKIPIF1<0是數(shù)列SKIPIF1<0的前SKIPIF1<0項和,則(
)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.數(shù)列SKIPIF1<0是等比數(shù)列6.(2022·江蘇·蘇州中學高三開學考試)在數(shù)列SKIPIF1<0中,SKIPIF1<0,前n項的和為Sn,則(
)A.SKIPIF1<0的最大值為1 B.數(shù)列SKIPIF1<0是等差數(shù)列C.數(shù)列SKIPIF1<0是等差數(shù)列 D.SKIPIF1<0三、填空題7.(2022·云南昆明·模擬預測(理))記數(shù)列SKIPIF1<0的前SKIPIF1<0項和為SKIPIF1<0,則SKIPIF1<0__________.8.(2022·新疆·三模(理))設(shè)SKIPIF1<0為數(shù)列SKIPIF1<0的前n項和,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0___________.9.(2022·云南昆明·模擬預測(文))數(shù)列SKIPIF1<0的前10項和等于___________.四、解答題10.(2022·河北滄州·模擬預測)已知數(shù)列SKIPIF1<0,滿足SKIPIF1<0.(1)證明SKIPIF1<0是等比數(shù)列,并求SKIPIF1<0的通項公式;(2)設(shè)數(shù)列SKIPIF1<0的前n項和為SKIPIF1<0,證明:SKIPIF1<0.11.(2023·福建漳州·三模)已知等差數(shù)列{SKIPIF1<0}的前n項和為SKIPIF1<0,且SKIPIF1<0(1)求{SKIPIF1<0}的通項公式:(2)若數(shù)列SKIPIF1<0滿足SKIPIF1<0,求SKIPIF1<0的前10項和.12.(2022·江蘇連云港·模擬預測)已知數(shù)列SKIPIF1<0是遞增的等差數(shù)列,SKIPIF1<0是各項均為正數(shù)的等比數(shù)列SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0.(1)求數(shù)列SKIPIF1<0和SKIPIF1<0的通項公式;(2)設(shè)SKIPIF1<0,求數(shù)列SKIPIF1<0的前9項的和SKIPIF1<0.(注:SKIPIF1<0表示不超過x的最大整數(shù))13.(2022·河南洛陽·三模(理))已知正項數(shù)列SKIPIF1<0的前SKIPIF1<0項和為SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,數(shù)列SKIPIF1<0滿足SKIPIF1<0且SKIPIF1<0.(1)求數(shù)列SKIPIF1<0,SKIPIF1<0的通項公式;(2)求數(shù)列SKIPIF1<0的前SKIPIF1<0項和SKIPIF1<0.14.(2022·湖北·荊門市龍泉中學二模)已知數(shù)列SKIPIF1<0的前SKIPIF1<0項和為SKIPIF1<0,且SKIPIF1<0(1)求數(shù)列SKIPIF1<0的通項公式;(2)SKIPIF1<0,求數(shù)列SKIPIF1<0的前SKIPIF1<0項和SKIPIF1<0;15.(2022·山東濱州·二模)已知公差為d的等差數(shù)列SKIPIF1<0和公比SKIPIF1<0的等比數(shù)列SKIPIF1<0中,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0.(1)求數(shù)列SKIPIF1<0和SKIPIF1<0的通項公式;(2)令SKIPIF1<0,抽去數(shù)列SKIPIF1<0的第3項、第6項、第9項、……、第3n項、……余下的項的順序不變,構(gòu)成一個新數(shù)列SKIPIF1<0,求數(shù)列SKIPIF1<0的前n項和SKIPIF1<0.題型五:倒序相加法一、單選題1.(2022·湖南岳陽·二模)德國數(shù)學家高斯是近代數(shù)學奠基者之一,有“數(shù)學王子”之稱,在歷史上有很大的影響.他幼年時就表現(xiàn)出超人的數(shù)學天賦,10歲時,他在進行SKIPIF1<0的求和運算時,就提出了倒序相加法的原理,該原理基于所給數(shù)據(jù)前后對應項的和呈現(xiàn)一定的規(guī)律生成,因此,此方法也稱之為高斯算法.已知某數(shù)列通項SKIPIF1<0,則SKIPIF1<0(
)A.98 B.99 C.100 D.1012.(2022·浙江·高三專題練習)已知數(shù)列SKIPIF1<0滿足對SKIPIF1<0、SKIPIF1<0,都有SKIPIF1<0成立,SKIPIF1<0,函數(shù)SKIPIF1<0,記SKIPIF1<0,則數(shù)列SKIPIF1<0的前SKIPIF1<0項和為(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<03.(2022·全國·高三專題練習)對于函數(shù)SKIPIF1<0,SKIPIF1<0時,SKIPIF1<0,則函數(shù)SKIPIF1<0的圖象關(guān)于點SKIPIF1<0成中心對稱.探究函數(shù)SKIPIF1<0圖象的對稱中心,并利用它求SKIPIF1<0的值為(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<04.(2022·全國·高三專題練習)在進行SKIPIF1<0的求和運算時,德國大數(shù)學家高斯提出了倒序相加法的原理,該原理基于所給數(shù)據(jù)前后對應項的和呈現(xiàn)一定的規(guī)律生成,因此,此方法也稱之為高斯算法.已知數(shù)列SKIPIF1<0滿足SKIPIF1<0SKIPIF1<0,則SKIPIF1<0(
)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0二、多選題5.(2022·全國·高三專題練習)定義SKIPIF1<0是SKIPIF1<0的導函數(shù)SKIPIF1<0的導函數(shù),若方程SKIPIF1<0有實數(shù)解SKIPIF1<0,則稱點SKIPIF1<0為函數(shù)SKIPIF1<0的“拐點”.可以證明,任意三次函數(shù)SKIPIF1<0都有“拐點”和對稱中心,且“拐點”就是其對稱中心,請你根據(jù)這一結(jié)論判斷下列命題,其中正確命題是(
)A.存在有兩個及兩個以上對稱中心的三次函數(shù)B.函數(shù)SKIPIF1<0的對稱中心也是函數(shù)SKIPIF1<0的一個對稱中心C.存在三次函數(shù)SKIPIF1<0,方程SKIPIF1<0有實數(shù)解SKIPIF1<0,且點SKIPIF1<0
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 事業(yè)單位工會活動方案
- 稅務顧問服務協(xié)議書
- 云計算服務平臺建設(shè)合同
- 樁基工程施工專業(yè)分包規(guī)定合同
- 合同付款補充協(xié)議書
- 煙草產(chǎn)品購銷合同
- 公司商鋪租賃合同書
- 獨家代理銷售合同
- 辦公效率提升解決方案實踐
- 旅游行業(yè)線上營銷推廣協(xié)議
- 2025年上半年東莞望牛墩鎮(zhèn)事業(yè)單位招考(10人)易考易錯模擬試題(共500題)試卷后附參考答案
- 2025年度茶葉品牌加盟店加盟合同及售后服務協(xié)議
- 2025年江蘇連云港市贛榆城市建設(shè)發(fā)展集團有限公司招聘筆試參考題庫附帶答案詳解
- 氧氣、乙炔工安全操作規(guī)程(3篇)
- 砥礪前行決心譜寫華章
- 建筑廢棄混凝土處置和再生建材利用措施計劃
- 2025年開學教導處發(fā)言稿(5篇)
- 集裝箱知識培訓課件
- 某縣城區(qū)地下綜合管廊建設(shè)工程項目可行性實施報告
- 機電設(shè)備安裝旁站監(jiān)理方案
- 2025年度民政局離婚協(xié)議書范本模板官方修訂2篇
評論
0/150
提交評論