浙江省紹興市紹興一中2024-2025學(xué)年高三下學(xué)期高中等級考質(zhì)量抽測數(shù)學(xué)試題試卷含解析_第1頁
浙江省紹興市紹興一中2024-2025學(xué)年高三下學(xué)期高中等級考質(zhì)量抽測數(shù)學(xué)試題試卷含解析_第2頁
浙江省紹興市紹興一中2024-2025學(xué)年高三下學(xué)期高中等級考質(zhì)量抽測數(shù)學(xué)試題試卷含解析_第3頁
浙江省紹興市紹興一中2024-2025學(xué)年高三下學(xué)期高中等級考質(zhì)量抽測數(shù)學(xué)試題試卷含解析_第4頁
浙江省紹興市紹興一中2024-2025學(xué)年高三下學(xué)期高中等級考質(zhì)量抽測數(shù)學(xué)試題試卷含解析_第5頁
已閱讀5頁,還剩15頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

浙江省紹興市紹興一中2024-2025學(xué)年高三下學(xué)期高中等級考質(zhì)量抽測數(shù)學(xué)試題試卷考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔。考試結(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.正三棱柱中,,是的中點,則異面直線與所成的角為()A. B. C. D.2.已知i是虛數(shù)單位,則1+iiA.-12+32i3.已知實數(shù)滿足則的最大值為()A.2 B. C.1 D.04.若復(fù)數(shù)滿足,復(fù)數(shù)的共軛復(fù)數(shù)是,則()A.1 B.0 C. D.5.下列函數(shù)中,在區(qū)間上為減函數(shù)的是()A. B. C. D.6.若x∈(0,1),a=lnx,b=,c=elnx,則a,b,c的大小關(guān)系為()A.b>c>a B.c>b>a C.a(chǎn)>b>c D.b>a>c7.某四棱錐的三視圖如圖所示,則該四棱錐的表面積為()A.8 B. C. D.8.已知,,分別是三個內(nèi)角,,的對邊,,則()A. B. C. D.9.函數(shù)且的圖象是()A. B.C. D.10.已知函數(shù),,若對任意的總有恒成立,記的最小值為,則最大值為()A.1 B. C. D.11.若直線經(jīng)過拋物線的焦點,則()A. B. C.2 D.12.已知,,,則的最小值為()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知,若,則a的取值范圍是______.14.在中,角所對的邊分別為,為的面積,若,,則的形狀為__________,的大小為__________.15.已知多項式滿足,則_________,__________.16.過且斜率為的直線交拋物線于兩點,為的焦點若的面積等于的面積的2倍,則的值為___________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)如圖,在正三棱柱中,,,分別為,的中點.(1)求證:平面;(2)求平面與平面所成二面角銳角的余弦值.18.(12分)已知函數(shù)有兩個零點.(1)求的取值范圍;(2)是否存在實數(shù),對于符合題意的任意,當時均有?若存在,求出所有的值;若不存在,請說明理由.19.(12分)隨著現(xiàn)代社會的發(fā)展,我國對于環(huán)境保護越來越重視,企業(yè)的環(huán)保意識也越來越強.現(xiàn)某大型企業(yè)為此建立了5套環(huán)境監(jiān)測系統(tǒng),并制定如下方案:每年企業(yè)的環(huán)境監(jiān)測費用預(yù)算定為1200萬元,日常全天候開啟3套環(huán)境監(jiān)測系統(tǒng),若至少有2套系統(tǒng)監(jiān)測出排放超標,則立即檢查污染源處理系統(tǒng);若有且只有1套系統(tǒng)監(jiān)測出排放超標,則立即同時啟動另外2套系統(tǒng)進行1小時的監(jiān)測,且后啟動的這2套監(jiān)測系統(tǒng)中只要有1套系統(tǒng)監(jiān)測出排放超標,也立即檢查污染源處理系統(tǒng).設(shè)每個時間段(以1小時為計量單位)被每套系統(tǒng)監(jiān)測出排放超標的概率均為,且各個時間段每套系統(tǒng)監(jiān)測出排放超標情況相互獨立.(1)當時,求某個時間段需要檢查污染源處理系統(tǒng)的概率;(2)若每套環(huán)境監(jiān)測系統(tǒng)運行成本為300元/小時(不啟動則不產(chǎn)生運行費用),除運行費用外,所有的環(huán)境監(jiān)測系統(tǒng)每年的維修和保養(yǎng)費用需要100萬元.現(xiàn)以此方案實施,問該企業(yè)的環(huán)境監(jiān)測費用是否會超過預(yù)算(全年按9000小時計算)?并說明理由.20.(12分)已知橢圓的右焦點為,過作軸的垂線交橢圓于點(點在軸上方),斜率為的直線交橢圓于兩點,過點作直線交橢圓于點,且,直線交軸于點.(1)設(shè)橢圓的離心率為,當點為橢圓的右頂點時,的坐標為,求的值.(2)若橢圓的方程為,且,是否存在使得成立?如果存在,求出的值;如果不存在,請說明理由.21.(12分)在國家“大眾創(chuàng)業(yè),萬眾創(chuàng)新”戰(zhàn)略下,某企業(yè)決定加大對某種產(chǎn)品的研發(fā)投入.為了對新研發(fā)的產(chǎn)品進行合理定價,將該產(chǎn)品按事先擬定的價格試銷,得到一組檢測數(shù)據(jù)如表所示:試銷價格(元)產(chǎn)品銷量(件)已知變量且有線性負相關(guān)關(guān)系,現(xiàn)有甲、乙、丙三位同學(xué)通過計算求得回歸直線方程分別為:甲;乙;丙,其中有且僅有一位同學(xué)的計算結(jié)果是正確的.(1)試判斷誰的計算結(jié)果正確?(2)若由線性回歸方程得到的估計數(shù)據(jù)與檢測數(shù)據(jù)的誤差不超過,則稱該檢測數(shù)據(jù)是“理想數(shù)據(jù)”,現(xiàn)從檢測數(shù)據(jù)中隨機抽取個,求“理想數(shù)據(jù)”的個數(shù)的分布列和數(shù)學(xué)期望.22.(10分)已知正數(shù)x,y,z滿足xyzt(t為常數(shù)),且的最小值為,求實數(shù)t的值.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.C【解析】

取中點,連接,,根據(jù)正棱柱的結(jié)構(gòu)性質(zhì),得出//,則即為異面直線與所成角,求出,即可得出結(jié)果.【詳解】解:如圖,取中點,連接,,由于正三棱柱,則底面,而底面,所以,由正三棱柱的性質(zhì)可知,為等邊三角形,所以,且,所以平面,而平面,則,則//,,∴即為異面直線與所成角,設(shè),則,,,則,∴.故選:C.本題考查通過幾何法求異面直線的夾角,考查計算能力.2.D【解析】

利用復(fù)數(shù)的運算法則即可化簡得出結(jié)果【詳解】1+i故選D本題考查了復(fù)數(shù)代數(shù)形式的乘除運算,屬于基礎(chǔ)題。3.B【解析】

作出可行域,平移目標直線即可求解.【詳解】解:作出可行域:由得,由圖形知,經(jīng)過點時,其截距最大,此時最大得,當時,故選:B考查線性規(guī)劃,是基礎(chǔ)題.4.C【解析】

根據(jù)復(fù)數(shù)代數(shù)形式的運算法則求出,再根據(jù)共軛復(fù)數(shù)的概念求解即可.【詳解】解:∵,∴,則,∴,故選:C.本題主要考查復(fù)數(shù)代數(shù)形式的運算法則,考查共軛復(fù)數(shù)的概念,屬于基礎(chǔ)題.5.C【解析】

利用基本初等函數(shù)的單調(diào)性判斷各選項中函數(shù)在區(qū)間上的單調(diào)性,進而可得出結(jié)果.【詳解】對于A選項,函數(shù)在區(qū)間上為增函數(shù);對于B選項,函數(shù)在區(qū)間上為增函數(shù);對于C選項,函數(shù)在區(qū)間上為減函數(shù);對于D選項,函數(shù)在區(qū)間上為增函數(shù).故選:C.本題考查函數(shù)在區(qū)間上單調(diào)性的判斷,熟悉一些常見的基本初等函數(shù)的單調(diào)性是判斷的關(guān)鍵,屬于基礎(chǔ)題.6.A【解析】

利用指數(shù)函數(shù)、對數(shù)函數(shù)的單調(diào)性直接求解.【詳解】∵x∈(0,1),∴a=lnx<0,b=()lnx>()0=1,0<c=elnx<e0=1,∴a,b,c的大小關(guān)系為b>c>a.故選:A.本題考查三個數(shù)的大小的判斷,考查指數(shù)函數(shù)、對數(shù)函數(shù)的單調(diào)性等基礎(chǔ)知識,考查運算求解能力,是基礎(chǔ)題.7.D【解析】

根據(jù)三視圖還原幾何體為四棱錐,即可求出幾何體的表面積.【詳解】由三視圖知幾何體是四棱錐,如圖,且四棱錐的一條側(cè)棱與底面垂直,四棱錐的底面是正方形,邊長為2,棱錐的高為2,所以,故選:本題主要考查了由三視圖還原幾何體,棱錐表面積的計算,考查了學(xué)生的運算能力,屬于中檔題.8.C【解析】

原式由正弦定理化簡得,由于,可求的值.【詳解】解:由及正弦定理得.因為,所以代入上式化簡得.由于,所以.又,故.故選:C.本題主要考查正弦定理解三角形,三角函數(shù)恒等變換等基礎(chǔ)知識;考查運算求解能力,推理論證能力,屬于中檔題.9.B【解析】

先判斷函數(shù)的奇偶性,再取特殊值,利用零點存在性定理判斷函數(shù)零點分布情況,即可得解.【詳解】由題可知定義域為,,是偶函數(shù),關(guān)于軸對稱,排除C,D.又,,在必有零點,排除A.故選:B.本題考查了函數(shù)圖象的判斷,考查了函數(shù)的性質(zhì),屬于中檔題.10.C【解析】

對任意的總有恒成立,因為,對恒成立,可得,令,可得,結(jié)合已知,即可求得答案.【詳解】對任意的總有恒成立,對恒成立,令,可得令,得當,當,,故令,得當時,當,當時,故選:C.本題主要考查了根據(jù)不等式恒成立求最值問題,解題關(guān)鍵是掌握不等式恒成立的解法和導(dǎo)數(shù)求函數(shù)單調(diào)性的解法,考查了分析能力和計算能力,屬于難題.11.B【解析】

計算拋物線的交點為,代入計算得到答案.【詳解】可化為,焦點坐標為,故.故選:.本題考查了拋物線的焦點,屬于簡單題.12.B【解析】,選B二、填空題:本題共4小題,每小題5分,共20分。13.【解析】

函數(shù)等價為,由二次函數(shù)的單調(diào)性可得在R上遞增,即為,可得a的不等式,解不等式即可得到所求范圍.【詳解】,等價為,且時,遞增,時,遞增,且,在處函數(shù)連續(xù),可得在R上遞增,即為,可得,解得,即a的取值范圍是.故答案為:.本題考查分段函數(shù)的單調(diào)性的判斷和運用:解不等式,考查轉(zhuǎn)化思想和運算能力,屬于中檔題.14.等腰三角形【解析】∵∴根據(jù)正弦定理可得,即∴∴∴的形狀為等腰三角形∵∴∴由余弦定理可得∴,即∵∴故答案為等腰三角形,15.【解析】∵多項式滿足∴令,得,則∴∴該多項式的一次項系數(shù)為∴∴∴令,得故答案為5,7216.2【解析】

聯(lián)立直線與拋物線的方程,根據(jù)一元二次方程的根與系數(shù)的關(guān)系以及面積關(guān)系求解即可.【詳解】如圖,設(shè),由,則,由可得,由,則,所以,得.故答案為:2此題考查了拋物線的性質(zhì),屬于中檔題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(1)證明見詳解;(2).【解析】

(1)取中點為,通過證明//,進而證明線面平行;(2)取中點為,以為坐標原點建立直角坐標系,求得兩個平面的法向量,用向量法解得二面角的大小.【詳解】(1)證明:取的中點,連結(jié),,如下圖所示:在中,因為為的中點,,且,又為的中點,,,且,,且,四邊形為平行四邊形,又平面,平面,平面,即證.(2)取中點,連結(jié),,則,平面,以為原點,分別以,,為,,軸,建立空間直角坐標系,如下圖所示:則,,,,,,,,設(shè)平面的一個法向量,則,則,令.則,同理得平面的一個法向量為,則,故平面與平面所成二面角(銳角)的余弦值為.本題考查由線線平行推證線面平行,以及利用向量法求解二面角的大小,屬綜合中檔題.18.(1);(2).【解析】

(1)對求導(dǎo),對參數(shù)進行分類討論,根據(jù)函數(shù)單調(diào)性即可求得.(2)先根據(jù),得,再根據(jù)零點解得,轉(zhuǎn)化不等式得,令,化簡得,因此,,最后根據(jù)導(dǎo)數(shù)研究對應(yīng)函數(shù)單調(diào)性,確定對應(yīng)函數(shù)最值,即得取值集合.【詳解】(1),當時,對恒成立,與題意不符,當,,∴時,即函數(shù)在單調(diào)遞增,在單調(diào)遞減,∵和時均有,∴,解得:,綜上可知:的取值范圍;(2)由(1)可知,則,由的任意性及知,,且,∴,故,又∵,令,則,且恒成立,令,而,∴時,時,∴,令,若,則時,,即函數(shù)在單調(diào)遞減,∴,與不符;若,則時,,即函數(shù)在單調(diào)遞減,∴,與式不符;若,解得,此時恒成立,,即函數(shù)在單調(diào)遞增,又,∴時,;時,符合式,綜上,存在唯一實數(shù)符合題意.利用導(dǎo)數(shù)研究不等式恒成立或存在型問題,首先要構(gòu)造函數(shù),利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,求出最值,進而得出相應(yīng)的含參不等式,從而求出參數(shù)的取值范圍;也可分離變量,構(gòu)造函數(shù),直接把問題轉(zhuǎn)化為函數(shù)的最值問題.19.(1);(2)不會超過預(yù)算,理由見解析【解析】

(1)求出某個時間段在開啟3套系統(tǒng)就被確定需要檢查污染源處理系統(tǒng)的概率為,某個時間段在需要開啟另外2套系統(tǒng)才能確定需要檢查污染源處理系統(tǒng)的概率為,可得某個時間段需要檢查污染源處理系統(tǒng)的概率;(2)設(shè)某個時間段環(huán)境監(jiān)測系統(tǒng)的運行費用為元,則的可能取值為900,1500.求得,,求得其分布列和期望,對其求導(dǎo),研究函數(shù)的單調(diào)性,可得期望的最大值,從而得出結(jié)論.【詳解】(1)某個時間段在開啟3套系統(tǒng)就被確定需要檢查污染源處理系統(tǒng)的概率為,某個時間段在需要開啟另外2套系統(tǒng)才能確定需要檢查污染源處理系統(tǒng)的概率為某個時間段需要檢查污染源處理系統(tǒng)的概率為.(2)設(shè)某個時間段環(huán)境監(jiān)測系統(tǒng)的運行費用為元,則的可能取值為900,1500.,令,則當時,,在上單調(diào)遞增;當時,,在上單調(diào)遞減,的最大值為,實施此方案,最高費用為(萬元),,故不會超過預(yù)算.本題考查獨立重復(fù)事件發(fā)生的概率、期望,及運用求導(dǎo)函數(shù)研究期望的最值,由根據(jù)期望值確定方案,此類題目解決的關(guān)鍵在于將生活中的量轉(zhuǎn)化為數(shù)學(xué)中和量,屬于中檔題.20.(1);(2)不存在,理由見解析【解析】

(1)寫出,根據(jù),斜率乘積為-1,建立等量關(guān)系求解離心率;(2)寫出直線AB的方程,根據(jù)韋達定理求出點B的坐標,計算出弦長,根據(jù)垂直關(guān)系同理可得,利用等式即可得解.【詳解】(1)由題可得,過點作直線交橢圓于點,且,直線交軸于點.點為橢圓的右頂點時,的坐標為,即,,化簡得:,即,解得或(舍去),所以;(2)橢圓的方程為,由(1)可得,聯(lián)立得:,設(shè)B的橫坐標,根據(jù)韋達定理,即,,所以,同理可得若存在使得成立,則,化簡得:,,此方程無解,所以不存在使得成立.此題考查求橢圓離心率,根據(jù)直線與橢圓的位置關(guān)系解決弦長問題,關(guān)鍵在于熟練掌握解析幾何常用方法,尤其是韋達定理在解決解析幾何問題中的應(yīng)用.21.(1)乙同學(xué)正確(2)分布列見解析,【解析】

(1)由已知可得甲不正確,求出樣本中心點代入驗證,即可得出結(jié)論;(2)根據(jù)(1)中得到的回歸方程,求出估值,得到“理想數(shù)據(jù)”的個數(shù),確定“理想數(shù)據(jù)”的個數(shù)的可能值,并求出概率,得到分布列,即可求解.【詳解】(1)已知變量具有線性負相關(guān)關(guān)系,故甲不正確,,代入兩個回

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論