江西師大附中2022年高三下學期一模考試數(shù)學試題含解析_第1頁
江西師大附中2022年高三下學期一??荚嚁?shù)學試題含解析_第2頁
江西師大附中2022年高三下學期一??荚嚁?shù)學試題含解析_第3頁
江西師大附中2022年高三下學期一模考試數(shù)學試題含解析_第4頁
江西師大附中2022年高三下學期一??荚嚁?shù)學試題含解析_第5頁
已閱讀5頁,還剩15頁未讀 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2021-2022高考數(shù)學模擬試卷注意事項:1.答卷前,考生務必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號?;卮鸱沁x擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結束后,將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.某幾何體的三視圖如右圖所示,則該幾何體的外接球表面積為()A. B.C. D.2.如圖是函數(shù)在區(qū)間上的圖象,為了得到這個函數(shù)的圖象,只需將的圖象上的所有的點()A.向左平移個長度單位,再把所得各點的橫坐標變?yōu)樵瓉淼?,縱坐標不變B.向左平移個長度單位,再把所得各點的橫坐標變?yōu)樵瓉淼?倍,縱坐標不變C.向左平移個長度單位,再把所得各點的橫坐標變?yōu)樵瓉淼?,縱坐標不變D.向左平移個長度單位,再把所得各點的橫坐標變?yōu)樵瓉淼?倍,縱坐標不變3.已知圓:,圓:,點、分別是圓、圓上的動點,為軸上的動點,則的最大值是()A. B.9 C.7 D.4.數(shù)列滿足:,,,為其前n項和,則()A.0 B.1 C.3 D.45.偶函數(shù)關于點對稱,當時,,求()A. B. C. D.6.已知是虛數(shù)單位,若,則()A. B.2 C. D.37.已知為定義在上的奇函數(shù),且滿足當時,,則()A. B. C. D.8.阿基米德(公元前287年—公元前212年)是古希臘偉大的哲學家、數(shù)學家和物理學家,他和高斯、牛頓并列被稱為世界三大數(shù)學家.據說,他自己覺得最為滿意的一個數(shù)學發(fā)現(xiàn)就是“圓柱內切球體的體積是圓柱體積的三分之二,并且球的表面積也是圓柱表面積的三分之二”.他特別喜歡這個結論,要求后人在他的墓碑上刻著一個圓柱容器里放了一個球,如圖,該球頂天立地,四周碰邊,表面積為的圓柱的底面直徑與高都等于球的直徑,則該球的體積為()A. B. C. D.9.已知全集,函數(shù)的定義域為,集合,則下列結論正確的是A. B.C. D.10.高三珠海一模中,經抽樣分析,全市理科數(shù)學成績X近似服從正態(tài)分布,且.從中隨機抽取參加此次考試的學生500名,估計理科數(shù)學成績不低于110分的學生人數(shù)約為()A.40 B.60 C.80 D.10011.當時,函數(shù)的圖象大致是()A. B.C. D.12.在中,是的中點,,點在上且滿足,則等于()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知平面向量、的夾角為,且,則的最大值是_____.14.設f(x)=etx(t>0),過點P(t,0)且平行于y軸的直線與曲線C:y=f(x)的交點為Q,曲線C過點Q的切線交x軸于點R,若S(1,f(1)),則△PRS的面積的最小值是_____.15.在等差數(shù)列()中,若,,則的值是______.16.設點P在函數(shù)的圖象上,點Q在函數(shù)的圖象上,則線段PQ長度的最小值為_________三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)選修4-5:不等式選講已知函數(shù)(Ⅰ)解不等式;(Ⅱ)對及,不等式恒成立,求實數(shù)的取值范圍.18.(12分)以直角坐標系的原點為極坐標系的極點,軸的正半軸為極軸.已知曲線的極坐標方程為,是上一動點,,點的軌跡為.(1)求曲線的極坐標方程,并化為直角坐標方程;(2)若點,直線的參數(shù)方程(為參數(shù)),直線與曲線的交點為,當取最小值時,求直線的普通方程.19.(12分)已知函數(shù),.(1)當時,①求函數(shù)在點處的切線方程;②比較與的大小;(2)當時,若對時,,且有唯一零點,證明:.20.(12分)已知函數(shù).(1)求不等式的解集;(2)若不等式對恒成立,求實數(shù)的取值范圍.21.(12分)已知中,內角所對邊分別是其中.(1)若角為銳角,且,求的值;(2)設,求的取值范圍.22.(10分)已知實數(shù)x,y,z滿足,證明:.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.A【解析】

由三視圖知:幾何體為三棱錐,且三棱錐的一條側棱垂直于底面,結合直觀圖判斷外接球球心的位置,求出半徑,代入求得表面積公式計算.【詳解】由三視圖知:幾何體為三棱錐,且三棱錐的一條側棱垂直于底面,高為2,底面為等腰直角三角形,斜邊長為,如圖:的外接圓的圓心為斜邊的中點,,且平面,,的中點為外接球的球心,半徑,外接球表面積.故選:A【點睛】本題考查了由三視圖求幾何體的外接球的表面積,根據三視圖判斷幾何體的結構特征,利用幾何體的結構特征與數(shù)據求得外接球的半徑是解答本題的關鍵.2.A【解析】

由函數(shù)的最大值求出,根據周期求出,由五點畫法中的點坐標求出,進而求出的解析式,與對比結合坐標變換關系,即可求出結論.【詳解】由圖可知,,又,,又,,,為了得到這個函數(shù)的圖象,只需將的圖象上的所有向左平移個長度單位,得到的圖象,再將的圖象上各點的橫坐標變?yōu)樵瓉淼模v坐標不變)即可.故選:A【點睛】本題考查函數(shù)的圖象求解析式,考查函數(shù)圖象間的變換關系,屬于中檔題.3.B【解析】試題分析:圓的圓心,半徑為,圓的圓心,半徑是.要使最大,需最大,且最小,最大值為的最小值為,故最大值是;關于軸的對稱點,,故的最大值為,故選B.考點:圓與圓的位置關系及其判定.【思路點睛】先根據兩圓的方程求出圓心和半徑,要使最大,需最大,且最小,最大值為的最小值為,故最大值是,再利用對稱性,求出所求式子的最大值.4.D【解析】

用去換中的n,得,相加即可找到數(shù)列的周期,再利用計算.【詳解】由已知,①,所以②,①+②,得,從而,數(shù)列是以6為周期的周期數(shù)列,且前6項分別為1,2,1,-1,-2,-1,所以,.故選:D.【點睛】本題考查周期數(shù)列的應用,在求時,先算出一個周期的和即,再將表示成即可,本題是一道中檔題.5.D【解析】

推導出函數(shù)是以為周期的周期函數(shù),由此可得出,代值計算即可.【詳解】由于偶函數(shù)的圖象關于點對稱,則,,,則,所以,函數(shù)是以為周期的周期函數(shù),由于當時,,則.故選:D.【點睛】本題考查利用函數(shù)的對稱性和奇偶性求函數(shù)值,推導出函數(shù)的周期性是解答的關鍵,考查推理能力與計算能力,屬于中等題.6.A【解析】

直接將兩邊同時乘以求出復數(shù),再求其模即可.【詳解】解:將兩邊同時乘以,得故選:A【點睛】考查復數(shù)的運算及其模的求法,是基礎題.7.C【解析】

由題設條件,可得函數(shù)的周期是,再結合函數(shù)是奇函數(shù)的性質將轉化為函數(shù)值,即可得到結論.【詳解】由題意,,則函數(shù)的周期是,所以,,又函數(shù)為上的奇函數(shù),且當時,,所以,.故選:C.【點睛】本題考查函數(shù)的周期性,由題設得函數(shù)的周期是解答本題的關鍵,屬于基礎題.8.C【解析】

設球的半徑為R,根據組合體的關系,圓柱的表面積為,解得球的半徑,再代入球的體積公式求解.【詳解】設球的半徑為R,根據題意圓柱的表面積為,解得,所以該球的體積為.故選:C【點睛】本題主要考查組合體的表面積和體積,還考查了對數(shù)學史了解,屬于基礎題.9.A【解析】

求函數(shù)定義域得集合M,N后,再判斷.【詳解】由題意,,∴.故選A.【點睛】本題考查集合的運算,解題關鍵是確定集合中的元素.確定集合的元素時要注意代表元形式,集合是函數(shù)的定義域,還是函數(shù)的值域,是不等式的解集還是曲線上的點集,都由代表元決定.10.D【解析】

由正態(tài)分布的性質,根據題意,得到,求出概率,再由題中數(shù)據,即可求出結果.【詳解】由題意,成績X近似服從正態(tài)分布,則正態(tài)分布曲線的對稱軸為,根據正態(tài)分布曲線的對稱性,求得,所以該市某校有500人中,估計該校數(shù)學成績不低于110分的人數(shù)為人,故選:.【點睛】本題考查正態(tài)分布的圖象和性質,考查學生分析問題的能力,難度容易.11.B【解析】由,解得,即或,函數(shù)有兩個零點,,不正確,設,則,由,解得或,由,解得:,即是函數(shù)的一個極大值點,不成立,排除,故選B.【方法點晴】本題通過對多個圖象的選擇考察函數(shù)的解析式、定義域、值域、單調性,導數(shù)的應用以及數(shù)學化歸思想,屬于難題.這類題型也是近年高考常見的命題方向,該題型的特點是綜合性較強較強、考查知識點較多,但是并不是無路可循.解答這類題型可以從多方面入手,根據函數(shù)的定義域、值域、單調性、奇偶性、特殊點以及時函數(shù)圖象的變化趨勢,利用排除法,將不合題意選項一一排除.12.B【解析】

由M是BC的中點,知AM是BC邊上的中線,又由點P在AM上且滿足可得:P是三角形ABC的重心,根據重心的性質,即可求解.【詳解】解:∵M是BC的中點,知AM是BC邊上的中線,又由點P在AM上且滿足∴P是三角形ABC的重心∴又∵AM=1∴∴故選B.【點睛】判斷P點是否是三角形的重心有如下幾種辦法:①定義:三條中線的交點.②性質:或取得最小值③坐標法:P點坐標是三個頂點坐標的平均數(shù).二、填空題:本題共4小題,每小題5分,共20分。13.【解析】

建立平面直角坐標系,設,可得,進而可得出,,由此將轉化為以為自變量的三角函數(shù),利用三角恒等變換思想以及正弦函數(shù)的有界性可得出結果.【詳解】根據題意建立平面直角坐標系如圖所示,設,,以、為鄰邊作平行四邊形,則,設,則,,且,在中,由正弦定理,得,即,在中,由正弦定理,得,即.,,則,當時,取最大值.故答案為:.【點睛】本題考查了向量的數(shù)量積最值的計算,將問題轉化為角的三角函數(shù)的最值問題是解答的關鍵,考查計算能力,屬于難題.14.【解析】

計算R(t,0),PR=t﹣(t),△PRS的面積為S,導數(shù)S′,由S′=0得t=1,根據函數(shù)的單調性得到最值.【詳解】∵PQ∥y軸,P(t,0),∴Q(t,f(t))即Q(t,),又f(x)=etx(t>0)的導數(shù)f′(x)=tetx,∴過Q的切線斜率k=t,設R(r,0),則k,∴r=t,即R(t,0),PR=t﹣(t),又S(1,f(1))即S(1,et),∴△PRS的面積為S,導數(shù)S′,由S′=0得t=1,當t>1時,S′>0,當0<t<1時,S′<0,∴t=1為極小值點,也為最小值點,∴△PRS的面積的最小值為.故答案為:.【點睛】本題考查了利用導數(shù)求面積的最值問題,意在考查學生的計算能力和應用能力.15.-15【解析】

是等差數(shù)列,則有,可得的值,再由可得,計算即得.【詳解】數(shù)列是等差數(shù)列,,又,,,故.故答案為:【點睛】本題考查等差數(shù)列的性質,也可以由已知條件求出和公差,再計算.16.【解析】

由解析式可分析兩函數(shù)互為反函數(shù),則圖象關于對稱,則點到的距離的最小值的二倍即為所求,利用導函數(shù)即可求得最值.【詳解】由題,因為與互為反函數(shù),則圖象關于對稱,設點為,則到直線的距離為,設,則,令,即,所以當時,,即單調遞減;當時,,即單調遞增,所以,則,所以的最小值為,故答案為:【點睛】本題考查反函數(shù)的性質的應用,考查利用導函數(shù)研究函數(shù)的最值問題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(Ⅰ).(Ⅱ).【解析】

詳解:(Ⅰ)當時,由,解得;當時,不成立;當時,由,解得.所以不等式的解集為.(Ⅱ)因為,所以.由題意知對,,即,因為,所以,解得.【點睛】⑴絕對值不等式解法的基本思路是:去掉絕對值號,把它轉化為一般的不等式求解,轉化的方法一般有:①絕對值定義法;②平方法;③零點區(qū)域法.⑵不等式的恒成立可用分離變量法.若所給的不等式能通過恒等變形使參數(shù)與主元分離于不等式兩端,從而問題轉化為求主元函數(shù)的最值,進而求出參數(shù)范圍.這種方法本質也是求最值.一般有:①為參數(shù))恒成立②為參數(shù))恒成立.18.(1),;(2).【解析】

(1)設點極坐標分別為,,由可得,整理即可得到極坐標方程,進而求得直角坐標方程;(2)設點對應的參數(shù)分別為,則,,將直線的參數(shù)方程代入的直角坐標方程中,再利用韋達定理可得,,則,求得取最小值時符合的條件,進而求得直線的普通方程.【詳解】(1)設點極坐標分別為,,因為,則,所以曲線的極坐標方程為,兩邊同乘,得,所以的直角坐標方程為,即.(2)設點對應的參數(shù)分別為,則,,將直線的參數(shù)方程(參數(shù)),代入的直角坐標方程中,整理得.由韋達定理得,,所以,當且僅當時,等號成立,則,所以當取得最小值時,直線的普通方程為.【點睛】本題考查極坐標與直角坐標方程的轉化,考查利用直線的參數(shù)方程研究直線與圓的位置關系.19.(1)①見解析,②見解析;(2)見解析【解析】

(1)①把代入函數(shù)解析式,求出函數(shù)的導函數(shù)得到,再求出,利用直線方程的點斜式求函數(shù)在點處的切線方程;②令,利用導數(shù)研究函數(shù)的單調性,可得當時,;當時,;當時,.(2)由題意,,在上有唯一零點.利用導數(shù)可得當時,在上單調遞減,當,時,在,上單調遞增,得到.由在恒成立,且有唯一解,可得,得,即.令,則,再由在上恒成立,得在上單調遞減,進一步得到在上單調遞增,由此可得.【詳解】解:(1)①當時,,,,又,切線方程為,即;②令,則,在上單調遞減.又,當時,,即;當時,,即;當時,,即.證明:(2)由題意,,而,令,解得.,,在上有唯一零點.當時,,在上單調遞減,當,

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論