四川省華鎣一中高2025屆高三第二學(xué)期數(shù)學(xué)試題統(tǒng)練八試題含解析_第1頁
四川省華鎣一中高2025屆高三第二學(xué)期數(shù)學(xué)試題統(tǒng)練八試題含解析_第2頁
四川省華鎣一中高2025屆高三第二學(xué)期數(shù)學(xué)試題統(tǒng)練八試題含解析_第3頁
四川省華鎣一中高2025屆高三第二學(xué)期數(shù)學(xué)試題統(tǒng)練八試題含解析_第4頁
四川省華鎣一中高2025屆高三第二學(xué)期數(shù)學(xué)試題統(tǒng)練八試題含解析_第5頁
已閱讀5頁,還剩16頁未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

四川省華鎣一中高2025屆高三第二學(xué)期數(shù)學(xué)試題統(tǒng)練八試題注意事項(xiàng)1.考生要認(rèn)真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知將函數(shù)(,)的圖象向右平移個單位長度后得到函數(shù)的圖象,若和的圖象都關(guān)于對稱,則下述四個結(jié)論:①②③④點(diǎn)為函數(shù)的一個對稱中心其中所有正確結(jié)論的編號是()A.①②③ B.①③④ C.①②④ D.②③④2.已知,則下列說法中正確的是()A.是假命題 B.是真命題C.是真命題 D.是假命題3.已知命題:任意,都有;命題:,則有.則下列命題為真命題的是()A. B. C. D.4.下列不等式正確的是()A. B.C. D.5.在中,角、、的對邊分別為、、,若,,,則()A. B. C. D.6.已知等差數(shù)列的公差為-2,前項(xiàng)和為,若,,為某三角形的三邊長,且該三角形有一個內(nèi)角為,則的最大值為()A.5 B.11 C.20 D.257.已知為虛數(shù)單位,若復(fù)數(shù),,則A. B.C. D.8.已知函數(shù),,若對任意的,存在實(shí)數(shù)滿足,使得,則的最大值是()A.3 B.2 C.4 D.59.點(diǎn)是單位圓上不同的三點(diǎn),線段與線段交于圓內(nèi)一點(diǎn)M,若,則的最小值為()A. B. C. D.10.已知函數(shù),以下結(jié)論正確的個數(shù)為()①當(dāng)時,函數(shù)的圖象的對稱中心為;②當(dāng)時,函數(shù)在上為單調(diào)遞減函數(shù);③若函數(shù)在上不單調(diào),則;④當(dāng)時,在上的最大值為1.A.1 B.2 C.3 D.411.如圖,圓是邊長為的等邊三角形的內(nèi)切圓,其與邊相切于點(diǎn),點(diǎn)為圓上任意一點(diǎn),,則的最大值為()A. B. C.2 D.12.在中,D為的中點(diǎn),E為上靠近點(diǎn)B的三等分點(diǎn),且,相交于點(diǎn)P,則()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知的展開式中含有的項(xiàng)的系數(shù)是,則展開式中各項(xiàng)系數(shù)和為______.14.已知函數(shù)有且只有一個零點(diǎn),則實(shí)數(shù)的取值范圍為__________.15.在平面直角坐標(biāo)系中,若雙曲線經(jīng)過點(diǎn)(3,4),則該雙曲線的準(zhǔn)線方程為_____.16.若滿足,則目標(biāo)函數(shù)的最大值為______.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知函數(shù)(),且只有一個零點(diǎn).(1)求實(shí)數(shù)a的值;(2)若,且,證明:.18.(12分)在中,、、分別是角、、的對邊,且.(1)求角的值;(2)若,且為銳角三角形,求的取值范圍.19.(12分)已知矩陣的一個特征值為3,求另一個特征值及其對應(yīng)的一個特征向量.20.(12分)已知首項(xiàng)為2的數(shù)列滿足.(1)證明:數(shù)列是等差數(shù)列.(2)令,求數(shù)列的前項(xiàng)和.21.(12分)2019年是中華人民共和國成立70周年.為了讓人民了解建國70周年的風(fēng)雨歷程,某地的民調(diào)機(jī)構(gòu)隨機(jī)選取了該地的100名市民進(jìn)行調(diào)查,將他們的年齡分成6段:,,…,,并繪制了如圖所示的頻率分布直方圖.(1)現(xiàn)從年齡在,,內(nèi)的人員中按分層抽樣的方法抽取8人,再從這8人中隨機(jī)選取3人進(jìn)行座談,用表示年齡在)內(nèi)的人數(shù),求的分布列和數(shù)學(xué)期望;(2)若用樣本的頻率代替概率,用隨機(jī)抽樣的方法從該地抽取20名市民進(jìn)行調(diào)查,其中有名市民的年齡在的概率為.當(dāng)最大時,求的值.22.(10分)已知三棱錐P-ABC(如圖一)的平面展開圖(如圖二)中,四邊形ABCD為邊長等于的正方形,和均為正三角形,在三棱錐P-ABC中:(1)證明:平面平面ABC;(2)若點(diǎn)M在棱PA上運(yùn)動,當(dāng)直線BM與平面PAC所成的角最大時,求直線MA與平面MBC所成角的正弦值.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.B【解析】

首先根據(jù)三角函數(shù)的平移規(guī)則表示出,再根據(jù)對稱性求出、,即可求出的解析式,從而驗(yàn)證可得;【詳解】解:由題意可得,又∵和的圖象都關(guān)于對稱,∴,∴解得,即,又∵,∴,,∴,∴,,∴①③④正確,②錯誤.故選:B本題考查三角函數(shù)的性質(zhì)的應(yīng)用,三角函數(shù)的變換規(guī)則,屬于基礎(chǔ)題.2.D【解析】

舉例判斷命題p與q的真假,再由復(fù)合命題的真假判斷得答案.【詳解】當(dāng)時,故命題為假命題;記f(x)=ex﹣x的導(dǎo)數(shù)為f′(x)=ex,易知f(x)=ex﹣x(﹣∞,0)上遞減,在(0,+∞)上遞增,∴f(x)>f(0)=1>0,即,故命題為真命題;∴是假命題故選D本題考查復(fù)合命題的真假判斷,考查全稱命題與特稱命題的真假,考查指對函數(shù)的圖象與性質(zhì),是基礎(chǔ)題.3.B【解析】

先分別判斷命題真假,再由復(fù)合命題的真假性,即可得出結(jié)論.【詳解】為真命題;命題是假命題,比如當(dāng),或時,則不成立.則,,均為假.故選:B本題考查復(fù)合命題的真假性,判斷簡單命題的真假是解題的關(guān)鍵,屬于基礎(chǔ)題.4.D【解析】

根據(jù),利用排除法,即可求解.【詳解】由,可排除A、B、C選項(xiàng),又由,所以.故選D.本題主要考查了三角函數(shù)的圖象與性質(zhì),以及對數(shù)的比較大小問題,其中解答熟記三角函數(shù)與對數(shù)函數(shù)的性質(zhì)是解答的關(guān)鍵,著重考查了推理與運(yùn)算能力,屬于基礎(chǔ)題.5.B【解析】

利用兩角差的正弦公式和邊角互化思想可求得,可得出,然后利用余弦定理求出的值,最后利用正弦定理可求出的值.【詳解】,即,即,,,得,,.由余弦定理得,由正弦定理,因此,.故選:B.本題考查三角形中角的正弦值的計算,考查兩角差的正弦公式、邊角互化思想、余弦定理與正弦定理的應(yīng)用,考查運(yùn)算求解能力,屬于中等題.6.D【解析】

由公差d=-2可知數(shù)列單調(diào)遞減,再由余弦定理結(jié)合通項(xiàng)可求得首項(xiàng),即可求出前n項(xiàng)和,從而得到最值.【詳解】等差數(shù)列的公差為-2,可知數(shù)列單調(diào)遞減,則,,中最大,最小,又,,為三角形的三邊長,且最大內(nèi)角為,由余弦定理得,設(shè)首項(xiàng)為,即得,所以或,又即,舍去,,d=-2前項(xiàng)和.故的最大值為.故選:D本題考查等差數(shù)列的通項(xiàng)公式和前n項(xiàng)和公式的應(yīng)用,考查求前n項(xiàng)和的最值問題,同時還考查了余弦定理的應(yīng)用.7.B【解析】

由可得,所以,故選B.8.A【解析】

根據(jù)條件將問題轉(zhuǎn)化為,對于恒成立,然后構(gòu)造函數(shù),然后求出的范圍,進(jìn)一步得到的最大值.【詳解】,,對任意的,存在實(shí)數(shù)滿足,使得,易得,即恒成立,,對于恒成立,設(shè),則,令,在恒成立,,故存在,使得,即,當(dāng)時,,單調(diào)遞減;當(dāng)時,,單調(diào)遞增.,將代入得:,,且,故選:A本題考查了利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,零點(diǎn)存在定理和不等式恒成立問題,考查了轉(zhuǎn)化思想,屬于難題.9.D【解析】

由題意得,再利用基本不等式即可求解.【詳解】將平方得,(當(dāng)且僅當(dāng)時等號成立),,的最小值為,故選:D.本題主要考查平面向量數(shù)量積的應(yīng)用,考查基本不等式的應(yīng)用,屬于中檔題.10.C【解析】

逐一分析選項(xiàng),①根據(jù)函數(shù)的對稱中心判斷;②利用導(dǎo)數(shù)判斷函數(shù)的單調(diào)性;③先求函數(shù)的導(dǎo)數(shù),若滿足條件,則極值點(diǎn)必在區(qū)間;④利用導(dǎo)數(shù)求函數(shù)在給定區(qū)間的最值.【詳解】①為奇函數(shù),其圖象的對稱中心為原點(diǎn),根據(jù)平移知識,函數(shù)的圖象的對稱中心為,正確.②由題意知.因?yàn)楫?dāng)時,,又,所以在上恒成立,所以函數(shù)在上為單調(diào)遞減函數(shù),正確.③由題意知,當(dāng)時,,此時在上為增函數(shù),不合題意,故.令,解得.因?yàn)樵谏喜粏握{(diào),所以在上有解,需,解得,正確.④令,得.根據(jù)函數(shù)的單調(diào)性,在上的最大值只可能為或.因?yàn)?,,所以最大值?4,結(jié)論錯誤.故選:C本題考查利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,極值,最值,意在考查基本的判斷方法,屬于基礎(chǔ)題型.11.C【解析】

建立坐標(biāo)系,寫出相應(yīng)的點(diǎn)坐標(biāo),得到的表達(dá)式,進(jìn)而得到最大值.【詳解】以D點(diǎn)為原點(diǎn),BC所在直線為x軸,AD所在直線為y軸,建立坐標(biāo)系,設(shè)內(nèi)切圓的半徑為1,以(0,1)為圓心,1為半徑的圓;根據(jù)三角形面積公式得到,可得到內(nèi)切圓的半徑為可得到點(diǎn)的坐標(biāo)為:故得到故得到,故最大值為:2.故答案為C.這個題目考查了向量標(biāo)化的應(yīng)用,以及參數(shù)方程的應(yīng)用,以向量為載體求相關(guān)變量的取值范圍,是向量與函數(shù)、不等式、三角函數(shù)等相結(jié)合的一類綜合問題.通過向量的運(yùn)算,將問題轉(zhuǎn)化為解不等式或求函數(shù)值域,是解決這類問題的一般方法.12.B【解析】

設(shè),則,,由B,P,D三點(diǎn)共線,C,P,E三點(diǎn)共線,可知,,解得即可得出結(jié)果.【詳解】設(shè),則,,因?yàn)锽,P,D三點(diǎn)共線,C,P,E三點(diǎn)共線,所以,,所以,.故選:B.本題考查了平面向量基本定理和向量共線定理的簡單應(yīng)用,屬于基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13.1【解析】

由二項(xiàng)式定理及展開式通項(xiàng)公式得:,解得,令得:展開式中各項(xiàng)系數(shù)和,得解.【詳解】解:由的展開式的通項(xiàng),令,得含有的項(xiàng)的系數(shù)是,解得,令得:展開式中各項(xiàng)系數(shù)和為,故答案為:1.本題考查了二項(xiàng)式定理及展開式通項(xiàng)公式,屬于中檔題.14.【解析】

當(dāng)時,轉(zhuǎn)化條件得有唯一實(shí)數(shù)根,令,通過求導(dǎo)得到的單調(diào)性后數(shù)形結(jié)合即可得解.【詳解】當(dāng)時,,故不是函數(shù)的零點(diǎn);當(dāng)時,即,令,,,當(dāng)時,;當(dāng)時,,的單調(diào)減區(qū)間為,增區(qū)間為,又,可作出的草圖,如圖:則要使有唯一實(shí)數(shù)根,則.故答案為:.本題考查了導(dǎo)數(shù)的應(yīng)用,考查了轉(zhuǎn)化化歸思想和數(shù)形結(jié)合思想,屬于難題.15.【解析】

代入求解得,再求準(zhǔn)線方程即可.【詳解】解:雙曲線經(jīng)過點(diǎn),,解得,即.又,故該雙曲線的準(zhǔn)線方程為:.故答案為:.本題主要考查了雙曲線的準(zhǔn)線方程求解,屬于基礎(chǔ)題.16.-1【解析】

由約束條件作出可行域,化目標(biāo)函數(shù)為直線方程的斜截式,數(shù)形結(jié)合得到最優(yōu)解,把最優(yōu)解的坐標(biāo)代入目標(biāo)函數(shù)得答案.【詳解】由約束條件作出可行域如圖,化目標(biāo)函數(shù)為,由圖可得,當(dāng)直線過點(diǎn)時,直線在軸上的截距最大,由得即,則有最大值,故答案為.本題主要考查線性規(guī)劃中利用可行域求目標(biāo)函數(shù)的最值,屬簡單題.求目標(biāo)函數(shù)最值的一般步驟是“一畫、二移、三求”:(1)作出可行域(一定要注意是實(shí)線還是虛線);(2)找到目標(biāo)函數(shù)對應(yīng)的最優(yōu)解對應(yīng)點(diǎn)(在可行域內(nèi)平移變形后的目標(biāo)函數(shù),最先通過或最后通過的頂點(diǎn)就是最優(yōu)解);(3)將最優(yōu)解坐標(biāo)代入目標(biāo)函數(shù)求出最值.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(1)(2)證明見解析【解析】

(1)求導(dǎo)可得在上,在上,所以函數(shù)在時,取最小值,由函數(shù)只有一個零點(diǎn),觀察可知則有,即可求得結(jié)果.(2)由(1)可知為最小值,則構(gòu)造函數(shù)(),求導(dǎo)借助基本不等式可判斷為減函數(shù),即可得,即則有,由已知可得,由,可知,因?yàn)闀r,為增函數(shù),即可得證得結(jié)論.【詳解】(1)().因?yàn)?,所以,令得,,且,,在上;在上;所以函?shù)在時,取最小值,當(dāng)最小值為0時,函數(shù)只有一個零點(diǎn),易得,所以,解得.(2)由(1)得,函數(shù),設(shè)(),則,設(shè)(),則,,所以為減函數(shù),所以,即,所以,即,又,所以,又當(dāng)時,為增函數(shù),所以,即.本題考查借助導(dǎo)數(shù)研究函數(shù)的單調(diào)性及最值,考查學(xué)生分析問題的能力,及邏輯推理能力,難度困難.18.(1).(2).【解析】

(1)根據(jù)題意,由余弦定理求得,即可求解C角的值;(2)由正弦定理和三角恒等變換的公式,化簡得到,再根據(jù)為銳角三角形,求得,利用三角函數(shù)的圖象與性質(zhì),即可求解.【詳解】(1)由題意知,∴,由余弦定理可知,,又∵,∴.(2)由正弦定理可知,,即∴,又∵為銳角三角形,∴,即,則,所以,綜上的取值范圍為.本題主要考查了利用正弦定理和三角函數(shù)的恒等變換求解三角形問題,對于解三角形問題,通常利用正弦定理進(jìn)行“邊轉(zhuǎn)角”尋求角的關(guān)系,利用“角轉(zhuǎn)邊”尋求邊的關(guān)系,利用余弦定理借助三邊關(guān)系求角,利用兩角和差公式及二倍角公式求三角函數(shù)值.利用正、余弦定理解三角形問題是高考高頻考點(diǎn),經(jīng)常利用三角形內(nèi)角和定理,三角形面積公式,結(jié)合正、余弦定理解題.19.另一個特征值為,對應(yīng)的一個特征向量【解析】

根據(jù)特征多項(xiàng)式的一個零點(diǎn)為3,可得,再回代到方程即可解出另一個特征值為,最后利用求特征向量的一般步驟,可求出其對應(yīng)的一個特征向量.【詳解】矩陣的特征多項(xiàng)式為:,是方程的一個根,,解得,即方程即,,可得另一個特征值為:,設(shè)對應(yīng)的一個特征向量為:則由,得得,令,則,所以矩陣另一個特征值為,對應(yīng)的一個特征向量本題考查了矩陣的特征值以及特征向量,需掌握特征多項(xiàng)式的計算形式,屬于基礎(chǔ)題.20.(1)見解析;(2)【解析】

(1)由原式可得,等式兩端同時除以,可得到,即可證明結(jié)論;(2)由(1)可求得的表達(dá)式,進(jìn)而可求得的表達(dá)式,然后求出的前項(xiàng)和即可.【詳解】(1)證明:因?yàn)?所以,所以,從而,因?yàn)?所以,故數(shù)列是首項(xiàng)為1,公差為1的等差數(shù)列.(2)由(1)可知,則,因?yàn)?所以,則.本題考查了等差數(shù)列的證明,考查了等差數(shù)列及等比數(shù)列的前項(xiàng)和公式的應(yīng)用,考查了學(xué)生的計算求解能力,屬于中檔題.21.(1)分布列見解析,(1)【解析】

(1)根據(jù)頻率分布直方圖及抽取總?cè)藬?shù),結(jié)合各組頻率值即可求得各組抽取的人數(shù);的可能取值為0,1,1,由離散型隨機(jī)變量概率求法即可求得各概率值,即可得分布列;由數(shù)學(xué)期望公式即可求得其數(shù)學(xué)期望.(1)先求得年齡在內(nèi)的頻率,視為概率.結(jié)合二項(xiàng)分布的性質(zhì),表示出,令,化簡后可證明其單調(diào)性及取得最大值時的值.【詳解】(1)按分層抽樣的方法拉

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論