山西省朔州市懷仁第一中學(xué)2021-2022學(xué)年高三3月份第一次模擬考試數(shù)學(xué)試卷含解析_第1頁(yè)
山西省朔州市懷仁第一中學(xué)2021-2022學(xué)年高三3月份第一次模擬考試數(shù)學(xué)試卷含解析_第2頁(yè)
山西省朔州市懷仁第一中學(xué)2021-2022學(xué)年高三3月份第一次模擬考試數(shù)學(xué)試卷含解析_第3頁(yè)
山西省朔州市懷仁第一中學(xué)2021-2022學(xué)年高三3月份第一次模擬考試數(shù)學(xué)試卷含解析_第4頁(yè)
山西省朔州市懷仁第一中學(xué)2021-2022學(xué)年高三3月份第一次模擬考試數(shù)學(xué)試卷含解析_第5頁(yè)
已閱讀5頁(yè),還剩17頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

2021-2022高考數(shù)學(xué)模擬試卷注意事項(xiàng)1.考生要認(rèn)真填寫考場(chǎng)號(hào)和座位序號(hào)。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無(wú)效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.函數(shù)的大致圖象是A. B. C. D.2.已知函數(shù)是上的減函數(shù),當(dāng)最小時(shí),若函數(shù)恰有兩個(gè)零點(diǎn),則實(shí)數(shù)的取值范圍是()A. B.C. D.3.已知將函數(shù)(,)的圖象向右平移個(gè)單位長(zhǎng)度后得到函數(shù)的圖象,若和的圖象都關(guān)于對(duì)稱,則的值為()A.2 B.3 C.4 D.4.函數(shù)的圖象大致為A. B. C. D.5.已知定義在上的偶函數(shù),當(dāng)時(shí),,設(shè),則()A. B. C. D.6.已知函數(shù),,若總有恒成立.記的最小值為,則的最大值為()A.1 B. C. D.7.集合的子集的個(gè)數(shù)是()A.2 B.3 C.4 D.88.已知雙曲線的左、右焦點(diǎn)分別為,過(guò)作一條直線與雙曲線右支交于兩點(diǎn),坐標(biāo)原點(diǎn)為,若,則該雙曲線的離心率為()A. B. C. D.9.下列命題中,真命題的個(gè)數(shù)為()①命題“若,則”的否命題;②命題“若,則或”;③命題“若,則直線與直線平行”的逆命題.A.0 B.1 C.2 D.310.己知四棱錐中,四邊形為等腰梯形,,,是等邊三角形,且;若點(diǎn)在四棱錐的外接球面上運(yùn)動(dòng),記點(diǎn)到平面的距離為,若平面平面,則的最大值為()A. B.C. D.11.如圖,平面四邊形中,,,,,現(xiàn)將沿翻折,使點(diǎn)移動(dòng)至點(diǎn),且,則三棱錐的外接球的表面積為()A. B. C. D.12.已知為圓:上任意一點(diǎn),,若線段的垂直平分線交直線于點(diǎn),則點(diǎn)的軌跡方程為()A. B.C.() D.()二、填空題:本題共4小題,每小題5分,共20分。13.已知等比數(shù)列的前項(xiàng)和為,,且,則__________.14.已知圓C:經(jīng)過(guò)拋物線E:的焦點(diǎn),則拋物線E的準(zhǔn)線與圓C相交所得弦長(zhǎng)是__________.15.定義在封閉的平面區(qū)域內(nèi)任意兩點(diǎn)的距離的最大值稱為平面區(qū)域的“直徑”.已知銳角三角形的三個(gè)點(diǎn),,,在半徑為的圓上,且,分別以各邊為直徑向外作三個(gè)半圓,這三個(gè)半圓和構(gòu)成平面區(qū)域,則平面區(qū)域的“直徑”的最大值是__________.16.若,,則___________.三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)這次新冠肺炎疫情,是新中國(guó)成立以來(lái)在我國(guó)發(fā)生的傳播速度最快、感染范圍最廣、防控難度最大的一次重大突發(fā)公共衛(wèi)生事件.中華民族歷史上經(jīng)歷過(guò)很多磨難,但從來(lái)沒(méi)有被壓垮過(guò),而是愈挫愈勇,不斷在磨難中成長(zhǎng),從磨難中奮起.在這次疫情中,全國(guó)人民展現(xiàn)出既有責(zé)任擔(dān)當(dāng)之勇、又有科學(xué)防控之智.某校高三學(xué)生也展開了對(duì)這次疫情的研究,一名同學(xué)在數(shù)據(jù)統(tǒng)計(jì)中發(fā)現(xiàn),從2020年2月1日至2月7日期間,日期和全國(guó)累計(jì)報(bào)告確診病例數(shù)量(單位:萬(wàn)人)之間的關(guān)系如下表:日期1234567全國(guó)累計(jì)報(bào)告確診病例數(shù)量(萬(wàn)人)1.41.72.02.42.83.13.5(1)根據(jù)表中的數(shù)據(jù),運(yùn)用相關(guān)系數(shù)進(jìn)行分析說(shuō)明,是否可以用線性回歸模型擬合與的關(guān)系?(2)求出關(guān)于的線性回歸方程(系數(shù)精確到0.01).并預(yù)測(cè)2月10日全國(guó)累計(jì)報(bào)告確診病例數(shù).參考數(shù)據(jù):,,,.參考公式:相關(guān)系數(shù)回歸方程中斜率和截距的最小二乘估計(jì)公式分別為:,.18.(12分)已知矩陣的逆矩陣.若曲線:在矩陣A對(duì)應(yīng)的變換作用下得到另一曲線,求曲線的方程.19.(12分)在如圖所示的多面體中,四邊形是矩形,梯形為直角梯形,平面平面,且,,.(1)求證:平面.(2)求二面角的大小.20.(12分)△ABC的內(nèi)角的對(duì)邊分別為,已知△ABC的面積為(1)求;(2)若求△ABC的周長(zhǎng).21.(12分)已知橢圓E:()的離心率為,且短軸的一個(gè)端點(diǎn)B與兩焦點(diǎn)A,C組成的三角形面積為.(Ⅰ)求橢圓E的方程;(Ⅱ)若點(diǎn)P為橢圓E上的一點(diǎn),過(guò)點(diǎn)P作橢圓E的切線交圓O:于不同的兩點(diǎn)M,N(其中M在N的右側(cè)),求四邊形面積的最大值.22.(10分)已知函數(shù),曲線在點(diǎn)處的切線方程為.(Ⅰ)求,的值;(Ⅱ)若,求證:對(duì)于任意,.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.A【解析】

利用函數(shù)的對(duì)稱性及函數(shù)值的符號(hào)即可作出判斷.【詳解】由題意可知函數(shù)為奇函數(shù),可排除B選項(xiàng);當(dāng)時(shí),,可排除D選項(xiàng);當(dāng)時(shí),,當(dāng)時(shí),,即,可排除C選項(xiàng),故選:A【點(diǎn)睛】本題考查了函數(shù)圖象的判斷,函數(shù)對(duì)稱性的應(yīng)用,屬于中檔題.2.A【解析】

首先根據(jù)為上的減函數(shù),列出不等式組,求得,所以當(dāng)最小時(shí),,之后將函數(shù)零點(diǎn)個(gè)數(shù)轉(zhuǎn)化為函數(shù)圖象與直線交點(diǎn)的個(gè)數(shù)問(wèn)題,畫出圖形,數(shù)形結(jié)合得到結(jié)果.【詳解】由于為上的減函數(shù),則有,可得,所以當(dāng)最小時(shí),,函數(shù)恰有兩個(gè)零點(diǎn)等價(jià)于方程有兩個(gè)實(shí)根,等價(jià)于函數(shù)與的圖像有兩個(gè)交點(diǎn).畫出函數(shù)的簡(jiǎn)圖如下,而函數(shù)恒過(guò)定點(diǎn),數(shù)形結(jié)合可得的取值范圍為.故選:A.【點(diǎn)睛】該題考查的是有關(guān)函數(shù)的問(wèn)題,涉及到的知識(shí)點(diǎn)有分段函數(shù)在定義域上單調(diào)減求參數(shù)的取值范圍,根據(jù)函數(shù)零點(diǎn)個(gè)數(shù)求參數(shù)的取值范圍,數(shù)形結(jié)合思想的應(yīng)用,屬于中檔題目.3.B【解析】

因?yàn)閷⒑瘮?shù)(,)的圖象向右平移個(gè)單位長(zhǎng)度后得到函數(shù)的圖象,可得,結(jié)合已知,即可求得答案.【詳解】將函數(shù)(,)的圖象向右平移個(gè)單位長(zhǎng)度后得到函數(shù)的圖象,又和的圖象都關(guān)于對(duì)稱,由,得,,即,又,.故選:B.【點(diǎn)睛】本題主要考查了三角函數(shù)圖象平移和根據(jù)圖象對(duì)稱求參數(shù),解題關(guān)鍵是掌握三角函數(shù)圖象平移的解法和正弦函數(shù)圖象的特征,考查了分析能力和計(jì)算能力,屬于基礎(chǔ)題.4.D【解析】

由題可得函數(shù)的定義域?yàn)?,因?yàn)?,所以函?shù)為奇函數(shù),排除選項(xiàng)B;又,,所以排除選項(xiàng)A、C,故選D.5.B【解析】

根據(jù)偶函數(shù)性質(zhì),可判斷關(guān)系;由時(shí),,求得導(dǎo)函數(shù),并構(gòu)造函數(shù),由進(jìn)而判斷函數(shù)在時(shí)的單調(diào)性,即可比較大小.【詳解】為定義在上的偶函數(shù),所以所以;當(dāng)時(shí),,則,令則,當(dāng)時(shí),,則在時(shí)單調(diào)遞增,因?yàn)?,所以,即,則在時(shí)單調(diào)遞增,而,所以,綜上可知,即,故選:B.【點(diǎn)睛】本題考查了偶函數(shù)的性質(zhì)應(yīng)用,由導(dǎo)函數(shù)性質(zhì)判斷函數(shù)單調(diào)性的應(yīng)用,根據(jù)單調(diào)性比較大小,屬于中檔題.6.C【解析】

根據(jù)總有恒成立可構(gòu)造函數(shù),求導(dǎo)后分情況討論的最大值可得最大值最大值,即.根據(jù)題意化簡(jiǎn)可得,求得,再換元求導(dǎo)分析最大值即可.【詳解】由題,總有即恒成立.設(shè),則的最大值小于等于0.又,若則,在上單調(diào)遞增,無(wú)最大值.若,則當(dāng)時(shí),,在上單調(diào)遞減,當(dāng)時(shí),,在上單調(diào)遞增.故在處取得最大值.故,化簡(jiǎn)得.故,令,可令,故,當(dāng)時(shí),,在遞減;當(dāng)時(shí),,在遞增.故在處取得極大值,為.故的最大值為.故選:C【點(diǎn)睛】本題主要考查了根據(jù)導(dǎo)數(shù)求解函數(shù)的最值問(wèn)題,需要根據(jù)題意分析導(dǎo)數(shù)中參數(shù)的范圍,再分析函數(shù)的最值,進(jìn)而求導(dǎo)構(gòu)造函數(shù)求解的最大值.屬于難題.7.D【解析】

先確定集合中元素的個(gè)數(shù),再得子集個(gè)數(shù).【詳解】由題意,有三個(gè)元素,其子集有8個(gè).故選:D.【點(diǎn)睛】本題考查子集的個(gè)數(shù)問(wèn)題,含有個(gè)元素的集合其子集有個(gè),其中真子集有個(gè).8.B【解析】

由題可知,,再結(jié)合雙曲線第一定義,可得,對(duì)有,即,解得,再對(duì),由勾股定理可得,化簡(jiǎn)即可求解【詳解】如圖,因?yàn)?,所?因?yàn)樗?在中,,即,得,則.在中,由得.故選:B【點(diǎn)睛】本題考查雙曲線的離心率求法,幾何性質(zhì)的應(yīng)用,屬于中檔題9.C【解析】

否命題與逆命題是等價(jià)命題,寫出①的逆命題,舉反例排除;原命題與逆否命題是等價(jià)命題,寫出②的逆否命題后,利用指數(shù)函數(shù)單調(diào)性驗(yàn)證正確;寫出③的逆命題判,利用兩直線平行的條件容易判斷③正確.【詳解】①的逆命題為“若,則”,令,可知該命題為假命題,故否命題也為假命題;②的逆否命題為“若且,則”,該命題為真命題,故②為真命題;③的逆命題為“若直線與直線平行,則”,該命題為真命題.故選:C.【點(diǎn)睛】本題考查判斷命題真假.判斷命題真假的思路:(1)判斷一個(gè)命題的真假時(shí),首先要弄清命題的結(jié)構(gòu),即它的條件和結(jié)論分別是什么,然后聯(lián)系其他相關(guān)的知識(shí)進(jìn)行判斷.(2)當(dāng)一個(gè)命題改寫成“若,則”的形式之后,判斷這個(gè)命題真假的方法:①若由“”經(jīng)過(guò)邏輯推理,得出“”,則可判定“若,則”是真命題;②判定“若,則”是假命題,只需舉一反例即可.10.A【解析】

根據(jù)平面平面,四邊形為等腰梯形,則球心在過(guò)的中點(diǎn)的面的垂線上,又是等邊三角形,所以球心也在過(guò)的外心面的垂線上,從而找到球心,再根據(jù)已知量求解即可.【詳解】依題意如圖所示:取的中點(diǎn),則是等腰梯形外接圓的圓心,取是的外心,作平面平面,則是四棱錐的外接球球心,且,設(shè)四棱錐的外接球半徑為,則,而,所以,故選:A.【點(diǎn)睛】本題考查組合體、球,還考查空間想象能力以及數(shù)形結(jié)合的思想,屬于難題.11.C【解析】

由題意可得面,可知,因?yàn)?,則面,于是.由此推出三棱錐外接球球心是的中點(diǎn),進(jìn)而算出,外接球半徑為1,得出結(jié)果.【詳解】解:由,翻折后得到,又,則面,可知.又因?yàn)?,則面,于是,因此三棱錐外接球球心是的中點(diǎn).計(jì)算可知,則外接球半徑為1,從而外接球表面積為.故選:C.【點(diǎn)睛】本題主要考查簡(jiǎn)單的幾何體、球的表面積等基礎(chǔ)知識(shí);考查空間想象能力、推理論證能力、運(yùn)算求解能力及創(chuàng)新意識(shí),屬于中檔題.12.B【解析】

如圖所示:連接,根據(jù)垂直平分線知,,故軌跡為雙曲線,計(jì)算得到答案.【詳解】如圖所示:連接,根據(jù)垂直平分線知,故,故軌跡為雙曲線,,,,故,故軌跡方程為.故選:.【點(diǎn)睛】本題考查了軌跡方程,確定軌跡方程為雙曲線是解題的關(guān)鍵.二、填空題:本題共4小題,每小題5分,共20分。13.【解析】

由題意知,繼而利用等比數(shù)列的前項(xiàng)和為的公式代入求值即可.【詳解】解:由題意知,所以.故答案為:.【點(diǎn)睛】本題考查了等比數(shù)列的通項(xiàng)公式和求和公式,屬于中檔題.14.【解析】

求出拋物線的焦點(diǎn)坐標(biāo),代入圓的方程,求出的值,再求出準(zhǔn)線方程,利用點(diǎn)到直線的距離公式,求出弦心距,利用勾股定理可以求出弦長(zhǎng)的一半,進(jìn)而求出弦長(zhǎng).【詳解】拋物線E:的準(zhǔn)線為,焦點(diǎn)為(0,1),把焦點(diǎn)的坐標(biāo)代入圓的方程中,得,所以圓心的坐標(biāo)為,半徑為5,則圓心到準(zhǔn)線的距離為1,所以弦長(zhǎng).【點(diǎn)睛】本題考查了拋物線的準(zhǔn)線、圓的弦長(zhǎng)公式.15.【解析】

先找到平面區(qū)域內(nèi)任意兩點(diǎn)的最大值為,再利用三角恒等變換化簡(jiǎn)即可得到最大值.【詳解】由已知及正弦定理,得,所以,,取AB中點(diǎn)E,AC中點(diǎn)F,BC中點(diǎn)G,如圖所示顯然平面區(qū)域任意兩點(diǎn)距離最大值為,而,當(dāng)且僅當(dāng)時(shí),等號(hào)成立.故答案為:.【點(diǎn)睛】本題考查正弦定理在平面幾何中的應(yīng)用問(wèn)題,涉及到距離的最值問(wèn)題,在處理這類問(wèn)題時(shí),一定要數(shù)形結(jié)合,本題屬于中檔題.16.【解析】

因?yàn)椋?,又,所以,則,所以.三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17.(1)可以用線性回歸模型擬合與的關(guān)系;(2),預(yù)測(cè)2月10日全國(guó)累計(jì)報(bào)告確診病例數(shù)約有4.5萬(wàn)人.【解析】

(1)根據(jù)已知數(shù)據(jù),利用公式求得,再根據(jù)的值越大說(shuō)明它們的線性相關(guān)性越高來(lái)判斷.(2)由(1)的相關(guān)數(shù)據(jù),求得,,寫出回歸方程,然后將代入回歸方程求解.【詳解】(1)由已知數(shù)據(jù)得,,,所以,,所以.因?yàn)榕c的相關(guān)近似為0.99,說(shuō)明它們的線性相關(guān)性相當(dāng)高,從而可以用線性回歸模型擬合與的關(guān)系.(2)由(1)得,,,所以,關(guān)于的回歸方程為:,2月10日,即代入回歸方程得:.所以預(yù)測(cè)2月10日全國(guó)累計(jì)報(bào)告確診病例數(shù)約有4.5萬(wàn)人.【點(diǎn)睛】本題主要考查線性回歸分析和回歸方程的求解及應(yīng)用,還考查了運(yùn)算求解的能力,屬于中檔題.18.【解析】

根據(jù),可解得,設(shè)為曲線任一點(diǎn),在矩陣對(duì)應(yīng)的變換作用下得到點(diǎn),則點(diǎn)在曲線上,根據(jù)變換的定義寫出相應(yīng)的矩陣等式,再用表示出,代入曲線的方程中,即得.【詳解】,,即.,解得,.設(shè)為曲線任一點(diǎn),則,又設(shè)在矩陣A變換作用得到點(diǎn),則,即,所以即代入,得,所以曲線的方程為.【點(diǎn)睛】本題考查逆矩陣,矩陣與變換等,是基礎(chǔ)題.19.(1)見解析;(2)【解析】

(1)根據(jù)面面垂直性質(zhì)及線面垂直性質(zhì),可證明;由所給線段關(guān)系,結(jié)合勾股定理逆定理,可證明,進(jìn)而由線面垂直的判定定理證明平面.(2)建立空間直角坐標(biāo)系,寫出各個(gè)點(diǎn)的坐標(biāo),并求得平面和平面的法向量,由空間向量法求得兩個(gè)平面夾角的余弦值,結(jié)合圖形即可求得二面角的大小.【詳解】(1)證明:∵平面平面ABEG,且,∴平面,∴,由題意可得,∴,∵,且,∴平面.(2)如圖所示,建立空間直角坐標(biāo)系,則,,,,,,.設(shè)平面的法向量是,則,令,,由(1)可知平面的法向量是,∴,由圖可知,二面角為鈍二面角,所以二面角的大小為.【點(diǎn)睛】本題考查了線面垂直的判定,面面垂直及線面垂直的性質(zhì)應(yīng)用,空間向量法求二面角的大小,屬于中檔題.20.(1)(2).【解析】試題分析:(1)由三角形面積公式建立等式,再利用正弦定理將邊化成角,從而得出的值;(2)由和計(jì)算出,從而求出角,根據(jù)題設(shè)和余弦定理可以求出和的值,從而求出的周長(zhǎng)為.試題解析:(1)由題設(shè)得,即.由正弦定理得.故.(2)由題設(shè)及(1)得,即.所以,故.由題設(shè)得,即.由余弦定理得,即,得.故的周長(zhǎng)為.點(diǎn)睛:在處理解三角形問(wèn)題時(shí),要注意抓住題目所給的條件,當(dāng)題設(shè)中給定三角形的面積,可以使用面積公式建立等式,再將所有邊的關(guān)系轉(zhuǎn)化為角的關(guān)系,有時(shí)需將角的關(guān)系轉(zhuǎn)化為邊的關(guān)系;解三角形問(wèn)題常見的一種考題是“已知一條邊的長(zhǎng)度和它所對(duì)的角,求面積或周長(zhǎng)的取值范圍”或者“已知一條邊的長(zhǎng)度和它所對(duì)的角,再有另外一個(gè)條件,求面積或周長(zhǎng)的值”,這類問(wèn)題的通法思路是:全部轉(zhuǎn)化為角的關(guān)系,建立函數(shù)關(guān)系式,如,從而求出范圍,或利用余弦定理以及基本不等式求范圍;求具體的值直接利用余弦定理和給定條件即可

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論