版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
2021-2022學年寶雞市重點中學中考數(shù)學猜題卷注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題(共10小題,每小題3分,共30分)1.下列命題中,真命題是()A.如果第一個圓上的點都在第二個圓的外部,那么這兩個圓外離B.如果一個點即在第一個圓上,又在第二個圓上,那么這兩個圓外切C.如果一條直線上的點到圓心的距離等于半徑長,那么這條直線與這個圓相切D.如果一條直線上的點都在一個圓的外部,那么這條直線與這個圓相離2.在平面直角坐標系中,有兩條拋物線關于x軸對稱,且他們的頂點相距10個單位長度,若其中一條拋物線的函數(shù)表達式為y=+6x+m,則m的值是()A.-4或-14 B.-4或14 C.4或-14 D.4或143.《語文課程標準》規(guī)定:7﹣9年級學生,要求學會制訂自己的閱讀計劃,廣泛閱讀各種類型的讀物,課外閱讀總量不少于260萬字,每學年閱讀兩三部名著.那么260萬用科學記數(shù)法可表示為()A.26×105 B.2.6×102 C.2.6×106 D.260×1044.如圖,在Rt△ABC中,∠C=90°,以頂點A為圓心,適當長為半徑畫弧,分別交AC,AB于點M、N,再分別以點M、N為圓心,大于MN的長為半徑畫弧,兩弧交于點P,作射線AP交邊BC于點D,若CD=4,AB=18,則△ABD的面積是()A.18 B.36 C.54 D.725.如圖,把一塊直角三角板的直角頂點放在直尺的一邊上,若∠1=40°,則∠2的度數(shù)為()A.50° B.40° C.30° D.25°6.估算的運算結果應在(
)A.2到3之間 B.3到4之間C.4到5之間 D.5到6之間7.下列計算正確的是()A.(a2)3=a6 B.a(chǎn)2?a3=a6 C.a(chǎn)3+a4=a7 D.(ab)3=ab38.如圖,已知直線AB、CD被直線AC所截,AB∥CD,E是平面內(nèi)任意一點(點E不在直線AB、CD、AC上),設∠BAE=α,∠DCE=β.下列各式:①α+β,②α﹣β,③β﹣α,④360°﹣α﹣β,∠AEC的度數(shù)可能是()A.①②③ B.①②④ C.①③④ D.①②③④9.關于的一元二次方程有兩個不相等的實數(shù)根,則實數(shù)的取值范圍是A. B. C. D.10.如圖,在△ABC中,AB=AC=10,CB=16,分別以AB、AC為直徑作半圓,則圖中陰影部分面積是()A.50π﹣48 B.25π﹣48 C.50π﹣24 D.二、填空題(本大題共6個小題,每小題3分,共18分)11.如圖,小量角器的零度線在大量角器的零度線上,且小量角器的中心在大量角器的外緣邊上.如果它們外緣邊上的公共點P在小量角器上對應的度數(shù)為65°,那么在大量角器上對應的度數(shù)為_____度(只需寫出0°~90°的角度).12.如果一個三角形兩邊為3cm,7cm,且第三邊為奇數(shù),則三角形的周長是_________.13.矩形ABCD中,AB=8,AD=6,E為BC邊上一點,將△ABE沿著AE翻折,點B落在點F處,當△EFC為直角三角形時BE=_____.14.如圖,四邊形ABCD是⊙O的內(nèi)接四邊形,若∠BOD=88°,則∠BCD的度數(shù)是_________.15.分解因式:_______________.16.如圖,在梯形中,,,點、分別是邊、的中點.設,,那么向量用向量表示是________.三、解答題(共8題,共72分)17.(8分)問題提出(1)如圖1,正方形ABCD的對角線交于點O,△CDE是邊長為6的等邊三角形,則O、E之間的距離為;問題探究(2)如圖2,在邊長為6的正方形ABCD中,以CD為直徑作半圓O,點P為弧CD上一動點,求A、P之間的最大距離;問題解決(3)窯洞是我省陜北農(nóng)村的主要建筑,窯洞賓館更是一道靚麗的風景線,是因為窯洞除了它的堅固性及特有的外在美之外,還具有冬暖夏涼的天然優(yōu)點家住延安農(nóng)村的一對即將參加中考的雙胞胎小寶和小貝兩兄弟,發(fā)現(xiàn)自家的窯洞(如圖3所示)的門窗是由矩形ABCD及弓形AMD組成,AB=2m,BC=3.2m,弓高MN=1.2m(N為AD的中點,MN⊥AD),小寶說,門角B到門窗弓形弧AD的最大距離是B、M之間的距離.小貝說這不是最大的距離,你認為誰的說法正確?請通過計算求出門角B到門窗弓形弧AD的最大距離.18.(8分)拋物線:與軸交于,兩點(點在點左側),拋物線的頂點為.(1)拋物線的對稱軸是直線________;(2)當時,求拋物線的函數(shù)表達式;(3)在(2)的條件下,直線:經(jīng)過拋物線的頂點,直線與拋物線有兩個公共點,它們的橫坐標分別記為,,直線與直線的交點的橫坐標記為,若當時,總有,請結合函數(shù)的圖象,直接寫出的取值范圍.19.(8分)如圖,一次函數(shù)y=﹣12x+52的圖象與反比例函數(shù)y=(1)求反比例函數(shù)的解析式;(2)在y軸上求一點P,使PA+PB的值最小,并求出其最小值和P點坐標.20.(8分)如圖,∠ABC=∠BCD=90°,∠A=45°,∠D=30°,BC=1,AC,BD交于點O.求BODO21.(8分)有甲、乙兩個不透明的布袋,甲袋中有兩個完全相同的小球,分別標有數(shù)字1和-1;乙袋中有三個完全相同的小球,分別標有數(shù)字-1、0和1.小麗先從甲袋中隨機取出一個小球,記錄下小球上的數(shù)字為x;再從乙袋中隨機取出一個小球,記錄下小球上的數(shù)字為y,設點P的坐標為(x,y).(1)請用表格或樹狀圖列出點P所有可能的坐標;(1)求點P在一次函數(shù)y=x+1圖象上的概率.22.(10分)先化簡,再求值:,其中滿足.23.(12分)(1)計算:2﹣2﹣+(1﹣)0+2sin60°.(2)先化簡,再求值:()÷,其中x=﹣1.24.目前“微信”、“支付寶”、“共享單車”和“網(wǎng)購”給我們的生活帶來了很多便利,初二數(shù)學小組在校內(nèi)對“你最認可的四大新生事物”進行調(diào)查,隨機調(diào)查了m人(每名學生必選一種且只能從這四種中選擇一種)并將調(diào)查結果繪制成如下不完整的統(tǒng)計圖.根據(jù)圖中信息求出m=,n=;請你幫助他們將這兩個統(tǒng)計圖補全;根據(jù)抽樣調(diào)查的結果,請估算全校2000名學生中,大約有多少人最認可“微信”這一新生事物?已知A、B兩位同學都最認可“微信”,C同學最認可“支付寶”D同學最認可“網(wǎng)購”從這四名同學中抽取兩名同學,請你通過樹狀圖或表格,求出這兩位同學最認可的新生事物不一樣的概率.
參考答案一、選擇題(共10小題,每小題3分,共30分)1、D【解析】
根據(jù)兩圓的位置關系、直線和圓的位置關系判斷即可.【詳解】A.如果第一個圓上的點都在第二個圓的外部,那么這兩個圓外離或內(nèi)含,A是假命題;B.如果一個點即在第一個圓上,又在第二個圓上,那么這兩個圓外切或內(nèi)切或相交,B是假命題;C.如果一條直線上的點到圓心的距離等于半徑長,那么這條直線與這個圓相切或相交,C是假命題;D.如果一條直線上的點都在一個圓的外部,那么這條直線與這個圓相離,D是真命題;故選:D.【點睛】本題考查了兩圓的位置關系:設兩圓半徑分別為R、r,兩圓圓心距為d,則當d>R+r時兩圓外離;當d=R+r時兩圓外切;當R-r<d<R+r(R≥r)時兩圓相交;當d=R-r(R>r)時兩圓內(nèi)切;當0≤d<R-r(R>r)時兩圓內(nèi)含.2、D【解析】
根據(jù)頂點公式求得已知拋物線的頂點坐標,然后根據(jù)軸對稱的性質(zhì)求得另一條拋物線的頂點,根據(jù)題意得出關于m的方程,解方程即可求得.【詳解】∵一條拋物線的函數(shù)表達式為y=x2+6x+m,∴這條拋物線的頂點為(-3,m-9),∴關于x軸對稱的拋物線的頂點(-3,9-m),∵它們的頂點相距10個單位長度.∴|m-9-(9-m)|=10,∴2m-18=±10,當2m-18=10時,m=1,當2m-18=-10時,m=4,∴m的值是4或1.故選D.【點睛】本題考查了二次函數(shù)圖象與幾何變換,解答本題的關鍵是掌握二次函數(shù)的頂點坐標公式,坐標和線段長度之間的轉換,關于x軸對稱的點和拋物線的關系.3、C【解析】
科學記數(shù)法的表示形式為的形式,其中,n為整數(shù)確定n的值時,要看把原數(shù)變成a時,小數(shù)點移動了多少位,n的絕對值與小數(shù)點移動的位數(shù)相同當原數(shù)絕對值時,n是正數(shù);當原數(shù)的絕對值時,n是負數(shù).【詳解】260萬=2600000=.故選C.【點睛】此題考查科學記數(shù)法的表示方法科學記數(shù)法的表示形式為的形式,其中,n為整數(shù),表示時關鍵要正確確定a的值以及n的值.4、B【解析】
根據(jù)題意可知AP為∠CAB的平分線,由角平分線的性質(zhì)得出CD=DH,再由三角形的面積公式可得出結論.【詳解】由題意可知AP為∠CAB的平分線,過點D作DH⊥AB于點H,∵∠C=90°,CD=1,∴CD=DH=1.∵AB=18,∴S△ABD=AB?DH=×18×1=36故選B.【點睛】本題考查的是作圖-基本作圖,熟知角平分線的作法是解答此題的關鍵.5、A【解析】
由兩直線平行,同位角相等,可求得∠3的度數(shù),然后求得∠2的度數(shù).【詳解】如圖,∵∠1=40°,∴∠3=∠1=40°,∴∠2=90°-40°=50°.故選A.【點睛】此題考查了平行線的性質(zhì).利用兩直線平行,同位角相等是解此題的關鍵.6、D【解析】
解:=,∵2<<3,∴在5到6之間.故選D.【點睛】此題主要考查了估算無理數(shù)的大小,正確進行計算是解題關鍵.7、A【解析】分析:根據(jù)冪的乘方、同底數(shù)冪的乘法、積的乘方公式即可得出答案.詳解:A、冪的乘方法則,底數(shù)不變,指數(shù)相乘,原式計算正確;B、同底數(shù)冪的乘法,底數(shù)不變,指數(shù)相加,原式=,故錯誤;C、不是同類項,無法進行加法計算;D、積的乘方等于乘方的積,原式=,計算錯誤;故選A.點睛:本題主要考查的是冪的乘方、同底數(shù)冪的乘法、積的乘方計算法則,屬于基礎題型.理解各種計算法則是解題的關鍵.8、D【解析】
根據(jù)E點有4中情況,分四種情況討論分別畫出圖形,根據(jù)平行線的性質(zhì)與三角形外角定理求解.【詳解】E點有4中情況,分四種情況討論如下:由AB∥CD,可得∠AOC=∠DCE1=β∵∠AOC=∠BAE1+∠AE1C,∴∠AE1C=β-α過點E2作AB的平行線,由AB∥CD,可得∠1=∠BAE2=α,∠2=∠DCE2=β∴∠AE2C=α+β由AB∥CD,可得∠BOE3=∠DCE3=β∵∠BAE3=∠BOE3+∠AE3C,∴∠AE3C=α-β由AB∥CD,可得∠BAE4+∠AE4C+∠DCE4=360°,∴∠AE4C=360°-α-β∴∠AEC的度數(shù)可能是①α+β,②α﹣β,③β-α,④360°﹣α﹣β,故選D.【點睛】此題主要考查平行線的性質(zhì)與外角定理,解題的關鍵是根據(jù)題意分情況討論.9、A【解析】
根據(jù)一元二次方程的根的判別式,建立關于m的不等式,求出m的取值范圍即可.【詳解】∵關于x的一元二次方程x2﹣3x+m=0有兩個不相等的實數(shù)根,∴△=b2﹣4ac=(﹣3)2﹣4×1×m>0,∴m<,故選A.【點睛】本題考查了根的判別式,解題的關鍵在于熟練掌握一元二次方程根的情況與判別式△的關系,即:(1)△>0?方程有兩個不相等的實數(shù)根;(2)△=0?方程有兩個相等的實數(shù)根;(3)△<0?方程沒有實數(shù)根.10、B【解析】
設以AB、AC為直徑作半圓交BC于D點,連AD,如圖,∴AD⊥BC,∴BD=DC=BC=8,而AB=AC=10,CB=16,∴AD===6,∴陰影部分面積=半圓AC的面積+半圓AB的面積﹣△ABC的面積,=π?52﹣?16?6,=25π﹣1.故選B.二、填空題(本大題共6個小題,每小題3分,共18分)11、1.【解析】
設大量角器的左端點是A,小量角器的圓心是B,連接AP,BP,則∠APB=90°,∠ABP=65°,因而∠PAB=90°﹣65°=25°,在大量角器中弧PB所對的圓心角是1°,因而P在大量角器上對應的度數(shù)為1°.故答案為1.12、15cm、17cm、19cm.【解析】試題解析:設三角形的第三邊長為xcm,由題意得:7-3<x<7+3,即4<x<10,則x=5,7,9,三角形的周長:3+7+5=15(cm),3+7+7=17(cm),3+7+9=19(cm).考點:三角形三邊關系.13、3或1【解析】
分當點F落在矩形內(nèi)部時和當點F落在AD邊上時兩種情況求BE得長即可.【詳解】當△CEF為直角三角形時,有兩種情況:當點F落在矩形內(nèi)部時,如圖1所示.連結AC,在Rt△ABC中,AB=1,BC=8,∴AC==10,∵∠B沿AE折疊,使點B落在點F處,∴∠AFE=∠B=90°,當△CEF為直角三角形時,只能得到∠EFC=90°,∴點A、F、C共線,即∠B沿AE折疊,使點B落在對角線AC上的點F處,如圖,∴EB=EF,AB=AF=1,∴CF=10﹣1=4,設BE=x,則EF=x,CE=8﹣x,在Rt△CEF中,∵EF2+CF2=CE2,∴x2+42=(8﹣x)2,解得x=3,∴BE=3;②當點F落在AD邊上時,如圖2所示.此時ABEF為正方形,∴BE=AB=1.綜上所述,BE的長為3或1.故答案為3或1.【點睛】本題考查了矩形的性質(zhì)、圖形的折疊變換、勾股定理的應用等知識點,解題時要注意分情況討論.14、136°.【解析】
由圓周角定理得,∠A=∠BOD=44°,由圓內(nèi)接四邊形的性質(zhì)得,∠BCD=180°-∠A=136°【點睛】本題考查了1.圓周角定理;2.圓內(nèi)接四邊形的性質(zhì).15、(x+y)(x-y)【解析】直接利用平方差公式因式分解即可,即原式=(x+y)(x-y),故答案為(x+y)(x-y).16、【解析】分析:根據(jù)梯形的中位線等于上底與下底和的一半表示出EF,然后根據(jù)向量的三角形法則解答即可.詳解:∵點E、F分別是邊AB、CD的中點,∴EF是梯形ABCD的中位線,F(xiàn)C=DC,∴EF=(AD+BC).∵BC=3AD,∴EF=(AD+3AD)=2AD,由三角形法則得,=+=2+===2+.故答案為:2+.點睛:本題考查了平面向量,平面向量的問題,熟練掌握三角形法則和平行四邊形法則是解題的關鍵,本題還考查了梯形的中位線等于上底與下底和的一半.三、解答題(共8題,共72分)17、(1);(2);(2)小貝的說法正確,理由見解析,.【解析】
(1)連接AC,BD,由OE垂直平分DC可得DH長,易知OH、HE長,相加即可;(2)補全⊙O,連接AO并延長交⊙O右半側于點P,則此時A、P之間的距離最大,在Rt△AOD中,由勾股定理可得AO長,易求AP長;(1)小貝的說法正確,補全弓形弧AD所在的⊙O,連接ON,OA,OD,過點O作OE⊥AB于點E,連接BO并延長交⊙O上端于點P,則此時B、P之間的距離即為門角B到門窗弓形弧AD的最大距離,在Rt△ANO中,設AO=r,由勾股定理可求出r,在Rt△OEB中,由勾股定理可得BO長,易知BP長.【詳解】解:(1)如圖1,連接AC,BD,對角線交點為O,連接OE交CD于H,則OD=OC.∵△DCE為等邊三角形,∴ED=EC,∵OD=OC∴OE垂直平分DC,∴DHDC=1.∵四邊形ABCD為正方形,∴△OHD為等腰直角三角形,∴OH=DH=1,在Rt△DHE中,HEDH=1,∴OE=HE+OH=11;(2)如圖2,補全⊙O,連接AO并延長交⊙O右半側于點P,則此時A、P之間的距離最大,在Rt△AOD中,AD=6,DO=1,∴AO1,∴AP=AO+OP=11;(1)小貝的說法正確.理由如下,如圖1,補全弓形弧AD所在的⊙O,連接ON,OA,OD,過點O作OE⊥AB于點E,連接BO并延長交⊙O上端于點P,則此時B、P之間的距離即為門角B到門窗弓形弧AD的最大距離,由題意知,點N為AD的中點,,∴ANAD=1.6,ON⊥AD,在Rt△ANO中,設AO=r,則ON=r﹣1.2.∵AN2+ON2=AO2,∴1.62+(r﹣1.2)2=r2,解得:r,∴AE=ON1.2,在Rt△OEB中,OE=AN=1.6,BE=AB﹣AE,∴BO,∴BP=BO+PO,∴門角B到門窗弓形弧AD的最大距離為.【點睛】本題考查了圓與多邊形的綜合,涉及了圓的有關概念及性質(zhì)、等邊三角形的性質(zhì)、正方形和長方形的性質(zhì)、勾股定理等,靈活的利用兩點之間線段最短,添加輔助線將題中所求最大距離轉化為圓外一點到圓上的最大距離是解題的關鍵.18、(1);(2);(3)【解析】
(1)根據(jù)拋物線的函數(shù)表達式,利用二次函數(shù)的性質(zhì)即可找出拋物線的對稱軸;(2)根據(jù)拋物線的對稱軸及即可得出點、的坐標,根據(jù)點的坐標,利用待定系數(shù)法即可求出拋物線的函數(shù)表達式;(3)利用配方法求出拋物線頂點的坐標,依照題意畫出圖形,觀察圖形可得出,再利用一次函數(shù)圖象上點的坐標特征可得出,結合的取值范圍即可得出的取值范圍.【詳解】(1)∵拋物線的表達式為,∴拋物線的對稱軸為直線.故答案為:.(2)∵拋物線的對稱軸為直線,,∴點的坐標為,點的坐標為.將代入,得:,解得:,∴拋物線的函數(shù)表達式為.(3)∵,∴點的坐標為.∵直線y=n與直線的交點的橫坐標記為,且當時,總有,∴x2<x3<x1,∵x3>0,∴直線與軸的交點在下方,∴.∵直線:經(jīng)過拋物線的頂點,∴,∴.【點睛】本題考查了二次函數(shù)的性質(zhì)、待定系數(shù)法求二次函數(shù)解析式以及一次函數(shù)圖象上點的坐標特征,解題的關鍵是:(1)利用二次函數(shù)的性質(zhì)找出拋物線的對稱軸;(2)根據(jù)點的坐標,利用待定系數(shù)法求出二次函數(shù)表達式;(3)依照題意畫出圖形,利用數(shù)形結合找出.19、(1)y=2x(2)(0,【解析】
(1)根據(jù)反比例函數(shù)比例系數(shù)k的幾何意義得出12【詳解】(1)∵反比例函數(shù)y==kx∴12∵k>0,∴k=2,故反比例函數(shù)的解析式為:y=2x(2)作點A關于y軸的對稱點A′,連接A′B,交y軸于點P,則PA+PB最小.由y=-12x+52∴A(1,2),B(4,12∴A′(﹣1,2),最小值A′B=4+12+1設直線A′B的解析式為y=mx+n,則-m+n=24m+n=12∴直線A′B的解析式為y=-3∴x=0時,y=1710∴P點坐標為(0,1710【點睛】本題考查的是反比例函數(shù)圖象與一次函數(shù)圖象的交點問題以及最短路線問題,解題的關鍵是確定PA+PB最小時,點P的位置,靈活運用數(shù)形結合思想求出有關點的坐標和圖象的解析式是解題的關鍵.20、3【解析】試題分析:本題考查了相似三角形的判定與性質(zhì),解直角三角形.由∠A=∠ACD,∠AOB=∠COD可證△ABO∽△CDO,從而BOCO=ABCD;再在Rt△ABC和Rt△BCD中分別求出解:∵∠ABC=∠BCD=90°,∴AB∥CD,∴∠A=∠ACD,∴△ABO∽△CDO,∴BOCO在Rt△ABC中,∠ABC=90°,∠A=45°,BC=1,∴AB=1.在Rt△BCD中,∠BCD=90°,∠D=30°,BC=1,∴CD=3,∴BOCO21、(1)見解析;(1)13【解析】試題分析:(1)畫出樹狀圖(或列表),根據(jù)樹狀圖(或表格)列出點P所有可能的坐標即可;(1)根據(jù)(1)的所有結果,計算出這些結果中點P在一次函數(shù)圖像上的個數(shù),即可求得點P在一次函數(shù)圖像上的概率.試題解析:(1)畫樹狀圖:或列表如下:∴點P所有可能的坐標為(1,-1),(1,0)(1,1)(-1,-1),(-1,0)(-1,1).∵只有(1,1)與(-1,-1)這兩個點在一次函數(shù)圖像上,∴P(點P在一次函數(shù)圖像上)=.考點:用(樹
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 二零二五版團膳供應合同書標準范本2篇
- 個人貨車租賃合同2024版
- 二零二五版養(yǎng)老服務機構合作運營與管理協(xié)議3篇
- 咸寧職業(yè)技術學院《草食動物飼養(yǎng)學》2023-2024學年第一學期期末試卷
- 西安信息職業(yè)大學《水環(huán)境監(jiān)測與評價》2023-2024學年第一學期期末試卷
- 二零二五年度汽車零部件運輸與供應鏈管理合同2篇
- 新疆財經(jīng)大學《田徑教學與實踐》2023-2024學年第一學期期末試卷
- 2024技術開發(fā)合同服務內(nèi)容與標的
- 二零二五年度工業(yè)地產(chǎn)代理銷售合同補充協(xié)議3篇
- 二零二五年度電梯設備改造、安裝、租賃與維護合同3篇
- 【大學課件】微型計算機系統(tǒng)
- (主城一診)重慶市2025年高2025屆高三學業(yè)質(zhì)量調(diào)研抽測 (第一次)英語試卷(含答案)
- 2025關于標準房屋裝修合同的范本
- 中國建材集團有限公司招聘筆試沖刺題2025
- 2024年馬克思主義基本原理知識競賽試題70題(附答案)
- 2024年湖北省中考物理真題含解析
- 荔枝病蟲害防治技術規(guī)程
- 資金借貸還款協(xié)議
- 《實驗性研究》課件
- 中國革命戰(zhàn)爭的戰(zhàn)略問題(全文)
- 2024-2025學年高考英語語法第一輪復習:定語從句(講義)(原卷版+解析)
評論
0/150
提交評論