2023-2024學(xué)年江蘇省無錫市惠山區(qū)中考試題猜想數(shù)學(xué)試卷含解析_第1頁
2023-2024學(xué)年江蘇省無錫市惠山區(qū)中考試題猜想數(shù)學(xué)試卷含解析_第2頁
2023-2024學(xué)年江蘇省無錫市惠山區(qū)中考試題猜想數(shù)學(xué)試卷含解析_第3頁
2023-2024學(xué)年江蘇省無錫市惠山區(qū)中考試題猜想數(shù)學(xué)試卷含解析_第4頁
2023-2024學(xué)年江蘇省無錫市惠山區(qū)中考試題猜想數(shù)學(xué)試卷含解析_第5頁
已閱讀5頁,還剩13頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)

文檔簡介

2023-2024學(xué)年江蘇省無錫市惠山區(qū)中考試題猜想數(shù)學(xué)試卷注意事項:1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應(yīng)題目的答案標(biāo)號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標(biāo)號。回答非選擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1.如圖,AB∥CD,直線EF與AB、CD分別相交于E、F,AM⊥EF于點M,若∠EAM=10°,那么∠CFE等于()A.80° B.85° C.100° D.170°2.古希臘著名的畢達哥拉斯學(xué)派把1,3,6,10…這樣的數(shù)稱為“三角形數(shù)”,而把1,4,9,16…這樣的數(shù)稱為“正方形數(shù)”.從圖中可以發(fā)現(xiàn),任何一個大于1的“正方形數(shù)”都可以看作兩個相鄰“三角形數(shù)”之和.下列等式中,符合這一規(guī)律的是()A.13=3+10 B.25=9+16 C.36=15+21 D.49=18+313.已知二次函數(shù)y=ax2+bx+c的圖象如圖所示,有以下結(jié)論:①a+b+c<0;②a﹣b+c>1;③abc>0;④4a﹣2b+c<0;⑤c﹣a>1,其中所有正確結(jié)論的序號是()A.①② B.①③④ C.①②③⑤ D.①②③④⑤4.如圖是我國南海地區(qū)圖,圖中的點分別代表三亞市,永興島,黃巖島,渚碧礁,彈丸礁和曾母暗沙,該地區(qū)圖上兩個點之間距離最短的是()A.三亞﹣﹣永興島 B.永興島﹣﹣黃巖島C.黃巖島﹣﹣彈丸礁 D.渚碧礁﹣﹣曾母暗山5.如圖,△ABC中,AB=4,BC=6,∠B=60°,將△ABC沿射線BC的方向平移,得到△A′B′C′,再將△A′B′C′繞點A′逆時針旋轉(zhuǎn)一定角度后,點B′恰好與點C重合,則平移的距離和旋轉(zhuǎn)角的度數(shù)分別為()A.4,30° B.2,60° C.1,30° D.3,60°6.的算術(shù)平方根是()A.4 B.±4 C.2 D.±27.如圖所示的幾何體,它的左視圖與俯視圖都正確的是()A. B. C. D.8.如圖,在四邊形ABCD中,∠A+∠D=α,∠ABC的平分線與∠BCD的平分線交于點P,則∠P=()A.90°-α B.90°+α C. D.360°-α9.如果三角形滿足一個角是另一個角的3倍,那么我們稱這個三角形為“智慧三角形”.下列各組數(shù)據(jù)中,能作為一個智慧三角形三邊長的一組是()A.1,2,3 B.1,1, C.1,1, D.1,2,10.下列計算正確的是()A.a(chǎn)2+a2=2a4 B.(﹣a2b)3=﹣a6b3 C.a(chǎn)2?a3=a6 D.a(chǎn)8÷a2=a4二、填空題(共7小題,每小題3分,滿分21分)11.如圖,△ABC中,點D、E分別在邊AB、BC上,DE∥AC,若DB=4,AB=6,BE=3,則EC的長是_____.12.如圖,在矩形ABCD中,AD=4,點P是直線AD上一動點,若滿足△PBC是等腰三角形的點P有且只有3個,則AB的長為.13.如圖,隨機閉合開關(guān),,中的兩個,能讓兩盞燈泡和同時發(fā)光的概率為___________.14.如圖,在圓O中,AB為直徑,AD為弦,過點B的切線與AD的延長線交于點C,AD=DC,則∠C=________度.15.已知二次函數(shù)中,函數(shù)y與x的部分對應(yīng)值如下:...-10123......105212...則當(dāng)時,x的取值范圍是_________.16.計算:的值是______________.17.如圖,在Rt△ABC中,∠C=90°,∠A=30°,BC=2,⊙C的半徑為1,點P是斜邊AB上的點,過點P作⊙C的一條切線PQ(點Q是切點),則線段PQ的最小值為_____.三、解答題(共7小題,滿分69分)18.(10分)如圖,△ABC和△ADE分別是以BC,DE為底邊且頂角相等的等腰三角形,點D在線段BC上,AF平分DE交BC于點F,連接BE,EF.CD與BE相等?若相等,請證明;若不相等,請說明理由;若∠BAC=90°,求證:BF1+CD1=FD1.19.(5分)計算:÷+8×2﹣1﹣(+1)0+2?sin60°.20.(8分)如圖,已知AB是⊙O的直徑,BC⊥AB,連結(jié)OC,弦AD∥OC,直線CD交BA的延長線于點E.(1)求證:直線CD是⊙O的切線;(2)若DE=2BC,AD=5,求OC的值.21.(10分)2018年湖南省進入高中學(xué)習(xí)的學(xué)生三年后將面對新高考,高考方案與高校招生政策都將有重大變化.某部門為了了解政策的宣傳情況,對某初級中學(xué)學(xué)生進行了隨機抽樣調(diào)查,根據(jù)學(xué)生對政策的了解程度由高到低分為A,B,C,D四個等級,并對調(diào)查結(jié)果分析后繪制了如下兩幅圖不完整的統(tǒng)計圖.請你根據(jù)圖中提供的信息完成下列問題:(1)求被調(diào)查學(xué)生的人數(shù),并將條形統(tǒng)計圖補充完整;(2)求扇形統(tǒng)計圖中的A等對應(yīng)的扇形圓心角的度數(shù);(3)已知該校有1500名學(xué)生,估計該校學(xué)生對政策內(nèi)容了解程度達到A等的學(xué)生有多少人?22.(10分)計算:|﹣1|﹣2sin45°+﹣23.(12分)截至2018年5月4日,中歐班列(鄭州)去回程開行共計1191班,我省與歐洲各國經(jīng)貿(mào)往來日益頻繁,某歐洲客商準(zhǔn)備在河南采購一批特色商品,經(jīng)調(diào)查,用1600元采購A型商品的件數(shù)是用1000元采購B型商品的件數(shù)的2倍,一件A型商品的進價比一件B型商品的進價少20元,已知A型商品的售價為160元,B型商品的售價為240元,已知該客商購進甲乙兩種商品共200件,設(shè)其中甲種商品購進x件,該客商售完這200件商品的總利潤為y元(1)求A、B型商品的進價;(2)該客商計劃最多投入18000元用于購買這兩種商品,則至少要購進多少件甲商品?若售完這些商品,則商場可獲得的最大利潤是多少元?(3)在(2)的基礎(chǔ)上,實際進貨時,生產(chǎn)廠家對甲種商品的出廠價下調(diào)a元(50<a<70)出售,且限定商場最多購進120件,若客商保持同種商品的售價不變,請你根據(jù)以上信息及(2)中的條件,設(shè)計出使該客商獲得最大利潤的進貨方案.24.(14分)先化簡,再求值:,其中,.

參考答案一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1、C【解析】

根據(jù)題意,求出∠AEM,再根據(jù)AB∥CD,得出∠AEM與∠CFE互補,求出∠CFE.【詳解】∵AM⊥EF,∠EAM=10°∴∠AEM=80°又∵AB∥CD∴∠AEM+∠CFE=180°∴∠CFE=100°.故選C.【點睛】本題考查三角形內(nèi)角和與兩條直線平行內(nèi)錯角相等.2、C【解析】

本題考查探究、歸納的數(shù)學(xué)思想方法.題中明確指出:任何一個大于1的“正方形數(shù)”都可以看作兩個相鄰“三角形數(shù)”之和.由于“正方形數(shù)”為兩個“三角形數(shù)”之和,正方形數(shù)可以用代數(shù)式表示為:(n+1)2,兩個三角形數(shù)分別表示為n(n+1)和(n+1)(n+2),所以由正方形數(shù)可以推得n的值,然后求得三角形數(shù)的值.【詳解】∵A中13不是“正方形數(shù)”;選項B、D中等式右側(cè)并不是兩個相鄰“三角形數(shù)”之和.故選:C.【點睛】此題是一道找規(guī)律的題目,這類題型在中考中經(jīng)常出現(xiàn).對于找規(guī)律的題目首先應(yīng)找出哪些部分發(fā)生了變化,是按照什么規(guī)律變化的.3、C【解析】

根據(jù)二次函數(shù)的性質(zhì)逐項分析可得解.【詳解】解:由函數(shù)圖象可得各系數(shù)的關(guān)系:a<0,b<0,c>0,則①當(dāng)x=1時,y=a+b+c<0,正確;②當(dāng)x=-1時,y=a-b+c>1,正確;③abc>0,正確;④對稱軸x=-1,則x=-2和x=0時取值相同,則4a-2b+c=1>0,錯誤;⑤對稱軸x=-=-1,b=2a,又x=-1時,y=a-b+c>1,代入b=2a,則c-a>1,正確.故所有正確結(jié)論的序號是①②③⑤.故選C4、A【解析】

根據(jù)兩點直線距離最短可在圖中看出三亞-永興島之間距離最短.【詳解】由圖可得,兩個點之間距離最短的是三亞-永興島.故答案選A.【點睛】本題考查的知識點是兩點之間直線距離最短,解題的關(guān)鍵是熟練的掌握兩點之間直線距離最短.5、B【解析】試題分析:∵∠B=60°,將△ABC沿射線BC的方向平移,得到△A′B′C′,再將△A′B′C′繞點A′逆時針旋轉(zhuǎn)一定角度后,點B′恰好與點C重合,∴∠A′B′C=60°,AB=A′B′=A′C=4,∴△A′B′C是等邊三角形,∴B′C=4,∠B′A′C=60°,∴BB′=6﹣4=2,∴平移的距離和旋轉(zhuǎn)角的度數(shù)分別為:2,60°故選B.考點:1、平移的性質(zhì);2、旋轉(zhuǎn)的性質(zhì);3、等邊三角形的判定6、C【解析】

先求出的值,然后再利用算術(shù)平方根定義計算即可得到結(jié)果.【詳解】=4,4的算術(shù)平方根是2,所以的算術(shù)平方根是2,故選C.【點睛】本題考查了算術(shù)平方根,熟練掌握算術(shù)平方根的定義是解本題的關(guān)鍵.7、D【解析】試題分析:該幾何體的左視圖是邊長分別為圓的半徑和直徑的矩形,俯視圖是邊長分別為圓的直徑和半徑的矩形,故答案選D.考點:D.8、C【解析】試題分析:∵四邊形ABCD中,∠ABC+∠BCD=360°﹣(∠A+∠D)=360°﹣α,∵PB和PC分別為∠ABC、∠BCD的平分線,∴∠PBC+∠PCB=(∠ABC+∠BCD)=(360°﹣α)=180°﹣α,則∠P=180°﹣(∠PBC+∠PCB)=180°﹣(180°﹣α)=α.故選C.考點:1.多邊形內(nèi)角與外角2.三角形內(nèi)角和定理.9、D【解析】

根據(jù)三角形三邊關(guān)系可知,不能構(gòu)成三角形,依此即可作出判定;

B、根據(jù)勾股定理的逆定理可知是等腰直角三角形,依此即可作出判定;

C、解直角三角形可知是頂角120°,底角30°的等腰三角形,依此即可作出判定;D、解直角三角形可知是三個角分別是90°,60°,30°的直角三角形,依此即可作出判定.【詳解】∵1+2=3,不能構(gòu)成三角形,故選項錯誤;

B、∵12+12=()2,是等腰直角三角形,故選項錯誤;

C、底邊上的高是=,可知是頂角120°,底角30°的等腰三角形,故選項錯誤;

D、解直角三角形可知是三個角分別是90°,60°,30°的直角三角形,其中90°÷30°=3,符合“智慧三角形”的定義,故選項正確.

故選D.10、B【解析】

解:A.a(chǎn)2+a2=2a2,故A錯誤;C、a2a3=a5,故C錯誤;D、a8÷a2=a6,故D錯誤;本題選B.考點:合同類型、同底數(shù)冪的乘法、同底數(shù)冪的除法、積的乘方二、填空題(共7小題,每小題3分,滿分21分)11、【解析】

由△ABC中,點D、E分別在邊AB、BC上,DE∥AC,根據(jù)平行線分線段成比例定理,可得DB:AB=BE:BC,又由DB=4,AB=6,BE=3,即可求得答案.【詳解】解:∵DE∥AC,∴DB:AB=BE:BC,∵DB=4,AB=6,BE=3,∴4:6=3:BC,解得:BC=,∴EC=BC﹣BE=﹣3=.故答案為.【點睛】考查了平行線分線段成比例定理,解題時注意:平行于三角形的一邊,并且和其他兩邊(或兩邊的延長線)相交的直線,所截得的三角形的三邊與原三角形的三邊對應(yīng)成比例.12、1.【解析】試題分析:如圖,當(dāng)AB=AD時,滿足△PBC是等腰三角形的點P有且只有3個,△P1BC,△P2BC是等腰直角三角形,△P3BC是等腰直角三角形(P3B=P3C),則AB=AD=1,故答案為1.考點:矩形的性質(zhì);等腰三角形的性質(zhì);勾股定理;分類討論.13、【解析】

首先根據(jù)題意畫出樹狀圖,然后由樹狀圖求得所有等可能的結(jié)果與能讓兩盞燈泡同時發(fā)光的情況,再利用概率公式求解即可求得答案.【詳解】解:畫樹狀圖得:由樹狀圖得:共有6種結(jié)果,且每種結(jié)果的可能性相同,其中能讓兩盞燈泡同時發(fā)光的是閉合開關(guān)為:K1、K3與K3、K1共兩種結(jié)果,∴能讓兩盞燈泡同時發(fā)光的概率,故答案為:.【點睛】本題考查的是用列表法或畫樹狀圖法求概率.列表法或畫樹狀圖法可以不重復(fù)不遺漏的列出所有可能的結(jié)果,列表法適合于兩步完成的事件,樹狀圖法適合兩步或兩步以上完成的事件.注意概率=所求情況數(shù)與總情況數(shù)之比.14、1【解析】

利用圓周角定理得到∠ADB=90°,再根據(jù)切線的性質(zhì)得∠ABC=90°,然后根據(jù)等腰三角形的判定方法得到△ABC為等腰直角三角形,從而得到∠C的度數(shù).【詳解】解:∵AB為直徑,∴∠ADB=90°,∵BC為切線,∴AB⊥BC,∴∠ABC=90°,∵AD=CD,∴△ABC為等腰直角三角形,∴∠C=1°.故答案為1.【點睛】本題考查了切線的性質(zhì):圓的切線垂直于經(jīng)過切點的半徑.也考查了等腰直角三角形的判定與性質(zhì).15、0<x<4【解析】

根據(jù)二次函數(shù)的對稱性及已知數(shù)據(jù)可知該二次函數(shù)的對稱軸為x=2,結(jié)合表格中所給數(shù)據(jù)可得出答案.【詳解】由表可知,二次函數(shù)的對稱軸為直線x=2,所以,x=4時,y=5,所以,y<5時,x的取值范圍為0<x<4.故答案為0<x<4.【點睛】此題主要考查了二次函數(shù)的性質(zhì),利用圖表得出二次函數(shù)的圖象即可得出函數(shù)值得取值范圍,同學(xué)們應(yīng)熟練掌握.16、-1【解析】解:=-1.故答案為:-1.17、.【解析】

當(dāng)PC⊥AB時,線段PQ最短;連接CP、CQ,根據(jù)勾股定理知PQ2=CP2﹣CQ2,先求出CP的長,然后由勾股定理即可求得答案.【詳解】連接CP、CQ;如圖所示:∵PQ是⊙C的切線,∴CQ⊥PQ,∠CQP=90°,根據(jù)勾股定理得:PQ2=CP2﹣CQ2,∴當(dāng)PC⊥AB時,線段PQ最短.∵在Rt△ACB中,∠A=30°,BC=2,∴AB=2BC=4,AC=2,∴CP===,∴PQ==,∴PQ的最小值是.故答案為:.【點睛】本題考查了切線的性質(zhì)以及勾股定理的運用;注意掌握輔助線的作法,注意當(dāng)PC⊥AB時,線段PQ最短是關(guān)鍵.三、解答題(共7小題,滿分69分)18、(1)CD=BE,理由見解析;(1)證明見解析.【解析】

(1)由兩個三角形為等腰三角形可得AB=AC,AE=AD,由∠BAC=∠EAD可得∠EAB=∠CAD,根據(jù)“SAS”可證得△EAB≌△CAD,即可得出結(jié)論;(1)根據(jù)(1)中結(jié)論和等腰直角三角形的性質(zhì)得出∠EBF=90°,在Rt△EBF中由勾股定理得出BF1+BE1=EF1,然后證得EF=FD,BE=CD,等量代換即可得出結(jié)論.【詳解】解:(1)CD=BE,理由如下:∵△ABC和△ADE為等腰三角形,∴AB=AC,AD=AE,∵∠EAD=∠BAC,∴∠EAD﹣∠BAD=∠BAC﹣∠BAD,即∠EAB=∠CAD,在△EAB與△CAD中,∴△EAB≌△CAD,∴BE=CD;(1)∵∠BAC=90°,∴△ABC和△ADE都是等腰直角三角形,∴∠ABF=∠C=45°,∵△EAB≌△CAD,∴∠EBA=∠C,∴∠EBA=45°,∴∠EBF=90°,在Rt△BFE中,BF1+BE1=EF1,∵AF平分DE,AE=AD,∴AF垂直平分DE,∴EF=FD,由(1)可知,BE=CD,∴BF1+CD1=FD1.【點睛】本題考查了全等三角形的判定和性質(zhì),等腰直角三角形的性質(zhì),勾股定理等知識,結(jié)合題意尋找出三角形全等的條件是解決此題的關(guān)鍵.19、6+.【解析】

利用負(fù)整數(shù)指數(shù)冪、零指數(shù)冪的意義和特殊角的三角函數(shù)值進行計算.【詳解】解:原式=+8×﹣1+2×=3+4﹣1+=6+.【點睛】本題考查了二次根式的混合運算:先把各二次根式化簡為最簡二次根式,然后進行二次根式的乘除運算,再合并即可.在二次根式的混合運算中,如能結(jié)合題目特點,靈活運用二次根式的性質(zhì),選擇恰當(dāng)?shù)慕忸}途徑,往往能事半功倍.20、(1)證明見解析;(2)OC=15【解析】試題分析:(1)首選連接OD,易證得△COD≌△COB(SAS),然后由全等三角形的對應(yīng)角相等,求得∠CDO=90°,即可證得直線CD是⊙O的切線;(2)由△COD≌△COB.可得CD=CB,即可得DE=2CD,易證得△EDA∽△ECO,然后由相似三角形的對應(yīng)邊成比例,求得AD:OC的值.試題解析:(1)連結(jié)DO.∵AD∥OC,∴∠DAO=∠COB,∠ADO=∠COD.又∵OA=OD,∴∠DAO=∠ADO,∴∠COD=∠COB.3分又∵CO=CO,OD=OB∴△COD≌△COB(SAS)4分∴∠CDO=∠CBO=90°.又∵點D在⊙O上,∴CD是⊙O的切線.(2)∵△COD≌△COB.∴CD=CB.∵DE=2BC,∴ED=2CD.∵AD∥OC,∴△EDA∽△ECO.∴,∴.考點:1.切線的判定2.全等三角形的判定與性質(zhì)3.相似三角形的判定與性質(zhì).21、(1)圖見解析;(2)126°;(3)1.【解析】

(1)利用被調(diào)查學(xué)生的人數(shù)=了解程度達到B等的學(xué)生數(shù)÷所占比例,即可得出被調(diào)查學(xué)生的人數(shù),由了解程度達到C等占到的比例可求出了解程度達到C等的學(xué)生數(shù),再利用了解程度達到A等的學(xué)生數(shù)=被調(diào)查學(xué)生的人數(shù)-了解程度達到B等的學(xué)生數(shù)-了解程度達到C等的學(xué)生數(shù)-了解程度達到D等的學(xué)生數(shù)可求出了解程度達到A等的學(xué)生數(shù),依此數(shù)據(jù)即可將條形統(tǒng)計圖補充完整;(2)根據(jù)A等對應(yīng)的扇形圓心角的度數(shù)=了解程度達到A等的學(xué)生數(shù)÷被調(diào)查學(xué)生的人數(shù)×360°,即可求出結(jié)論;(3)利用該?,F(xiàn)有學(xué)生數(shù)×了解程度達到A等的學(xué)生所占比例,即可得出結(jié)論.【詳解】(1)48÷40%=120(人),120×15%=18(人),120-48-18-12=42(人).將條形統(tǒng)計圖補充完整,如圖所示.(2)42÷120×100%×360°=126°.答:扇形統(tǒng)計圖中的A等對應(yīng)的扇形圓心角為126°.(3)1500×=1(人).答:該校學(xué)生對政策內(nèi)容了解程度達到A等的學(xué)生有1人.【點睛】本題考查了條形統(tǒng)計圖、扇形統(tǒng)計圖以及用樣本估計總體,觀察條形統(tǒng)計圖及扇形統(tǒng)計圖,找出各數(shù)據(jù),再利用各數(shù)量間的關(guān)系列式計算是解題的關(guān)鍵.22、﹣1【解析】

直接利用負(fù)指數(shù)冪的性質(zhì)以及絕對值的性質(zhì)、特殊角的三角函數(shù)值分別化簡得出答案.【詳解】原式=(﹣1)﹣2×+2﹣4=﹣1﹣+2﹣4=﹣1.【點睛】此題主要考查了實數(shù)運算,正確化簡各數(shù)是解題關(guān)鍵.23、(1)80,100;(2)100件,22000元;(3)答案見解析.【解析】

(1)先設(shè)A型商品的進價為a元/件,求得B型商品的進價為(a+20)元/件,由題意得等式,解得a=80,再檢驗a是否符合條件,得到答案.(2

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論