版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
惠州市實(shí)驗(yàn)中學(xué)高三3月份模擬考試新高考數(shù)學(xué)試題
注意事項(xiàng)
1.考試結(jié)束后,請(qǐng)將本試卷和答題卡一并交回.
2.答題前,請(qǐng)務(wù)必將自己的姓名、準(zhǔn)考證號(hào)用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.
3.請(qǐng)認(rèn)真核對(duì)監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準(zhǔn)考證號(hào)與本人是否相符.
4.作答選擇題,必須用2B鉛筆將答題卡上對(duì)應(yīng)選項(xiàng)的方框涂滿、涂黑;如需改動(dòng),請(qǐng)用橡皮擦干凈后,再選涂其他
答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.
5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號(hào)等須加黑、加粗.
一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。
1.已知等差數(shù)列伍“}的前13項(xiàng)和為52,則(-2/+%=()
A.256B.-256C.32D.-32
2.將函數(shù)/(x)=sin2x的圖象向左平移。0三。<(個(gè)單位長度,得到的函數(shù)為偶函數(shù),則9的值為()
3.下列函數(shù)中,值域?yàn)镽的偶函數(shù)是()
A.y=x2+iB.y^ex-e-xC.y=lg|%|D.丁=斤
4.已知集合A=[xeZ|囁三。1,則集合4真子集的個(gè)數(shù)為()
A.3B.4C.7D.8
5.雙曲線C:二—與=1(?!?,b>0)的離心率是3,焦點(diǎn)到漸近線的距離為0,則雙曲線C的焦距為()
ab
A.3B.372C.6D.672
6.已知二—=o+2i(aeR),i為虛數(shù)單位,則。=()
l-2i
A.&B,3C.1D.5
7.學(xué)業(yè)水平測試成績按照考生原始成績從高到低分為A、B、C、D、E五個(gè)等級(jí).某班共有36名學(xué)生且全部選考
物理、化學(xué)兩科,這兩科的學(xué)業(yè)水平測試成績?nèi)鐖D所示.該班學(xué)生中,這兩科等級(jí)均為4的學(xué)生有5人,這兩科中僅
有一科等級(jí)為A的學(xué)生,其另外一科等級(jí)為3,則該班()
7級(jí)
ABCDE
科N
物理1016910
化學(xué)819720
A.物理化學(xué)等級(jí)都是B的學(xué)生至多有12人
B.物理化學(xué)等級(jí)都是3的學(xué)生至少有5人
C.這兩科只有一科等級(jí)為3且最高等級(jí)為3的學(xué)生至多有18人
D.這兩科只有一科等級(jí)為3且最高等級(jí)為3的學(xué)生至少有1人
8.如圖,四面體ABC。中,面版和面5CD都是等腰直角三角形,AB=0NBAD=NCBD=—,且二面角
2
A-血-C的大小為:,若四面體ABC。的頂點(diǎn)都在球。上,則球。的表面積為()
3
A
22K28萬7127r
A.B.C.—D?—
3323
9.已知某幾何體的三視圖如圖所示,則該幾何體外接球的表面積為()
工[
正視圖記視圖
俯視圖
A.24萬B.287rC.32萬D.36"
10.秦九韶是我國南宋時(shí)期的數(shù)學(xué)家,普州(現(xiàn)四川省安岳縣)人,他在所著的《數(shù)書九章》中提出的多項(xiàng)式求值的
秦九韶算法,至今仍是比較先進(jìn)的算法.如圖的程序框圖給出了利用秦九韶算法求某多項(xiàng)式值的一個(gè)實(shí)例,若輸入x的
值為2,則輸出的n值為(
開始
.
/輸/
v
v=10>k=9
A.9x210-2B.9x210+2C.9x2"+2D.9x2u-2
11.設(shè)x、y、z是空間中不同的直線或平面,對(duì)下列四種情形:①x、y、z均為直線;②x、y是直線,z是平面;③z
是直線,x、y是平面;④無、y、z均為平面.其中使“x_Lz且、,2=>%〃丁”為真命題的是()
A.③④B.①③C.②③D.①②
12.閱讀名著,品味人生,是中華民族的優(yōu)良傳統(tǒng).學(xué)生李華計(jì)劃在高一年級(jí)每周星期一至星期五的每天閱讀半個(gè)小時(shí)
中國四大名著:《紅樓夢》、《三國演義》、《水滸傳》及《西游記》,其中每天閱讀一種,每種至少閱讀一次,則每周不
同的閱讀計(jì)劃共有()
A.120種B.240種C.480種D.600種
二、填空題:本題共4小題,每小題5分,共20分。
13.設(shè)/(尤)是定義在(0,+。)上的函數(shù),且對(duì)任意。>0力>0,若經(jīng)過點(diǎn)的一次函
數(shù)與x軸的交點(diǎn)為(c,0),且a、b、c互不相等,則稱。為a*關(guān)于函數(shù)的平均數(shù),記為監(jiān)(。力).當(dāng)
f(x)=(%>0)時(shí),場(。力)為a,b的幾何平均數(shù)J法.(只需寫出一個(gè)符合要求的函數(shù)即可)
14.已知兩點(diǎn)4-1,0),8(1,0),若直線x—y+a=0上存在點(diǎn)P(x,y)滿足AP3P=0,則實(shí)數(shù)。滿足的取值范圍
是.
15.如圖,直線/是曲線y=/(x)在x=3處的切線,貝!I八3)=.
16.已知函數(shù)/(x)=alnx—圖象上一點(diǎn)(2J(2)處的切線方程為y=—3x+21n2+2,則。+匕=.
三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。
17.(12分)已知函數(shù);'(xblnx-g以2+法,函數(shù)〃尤)在點(diǎn)(I"⑴)處的切線斜率為o.
(1)試用含有"的式子表示沙,并討論/(£)的單調(diào)性;
⑵對(duì)于函數(shù)/(X)圖象上的不同兩點(diǎn)A(WK),6(%,%),如果在函數(shù)/(X)圖象上存在點(diǎn)
加(%,%乂/?%,七)),使得在點(diǎn)M處的切線〃/A6,則稱存在“跟隨切線”.特別地,當(dāng)/=電工時(shí),又稱
AB存在“中值跟隨切線”.試問:函數(shù)/(%)上是否存在兩點(diǎn)A,3使得它存在“中值跟隨切線”,若存在,求出A,3的坐
標(biāo),若不存在,說明理由.
22](八
18.(12分)已知橢圓C:^-+4=1(?>^>0)的左、右焦點(diǎn)分別為《,工,離心率為一,且過點(diǎn)1,/.
ab21z)
(1)求橢圓C的方程;
TT
(2)過左焦點(diǎn)耳的直線/與橢圓。交于不同的A,8兩點(diǎn),若44工3=5,求直線/的斜率上
19.(12分)一酒企為擴(kuò)大生產(chǎn)規(guī)模,決定新建一個(gè)底面為長方形MNPQ的室內(nèi)發(fā)酵館,發(fā)酵館內(nèi)有一個(gè)無蓋長方體
發(fā)酵池,其底面為長方形如圖所示),其中ADAA5.結(jié)合現(xiàn)有的生產(chǎn)規(guī)模,設(shè)定修建的發(fā)酵池容積為450米3,
深2米.若池底和池壁每平方米的造價(jià)分別為200元和150元,發(fā)酵池造價(jià)總費(fèi)用不超過65400元
(1)求發(fā)酵池AD邊長的范圍;
(2)在建發(fā)酵館時(shí),發(fā)酵池的四周要分別留出兩條寬為4米和力米的走道(b為常數(shù)).問:發(fā)酵池的邊長如何設(shè)計(jì),
可使得發(fā)酵館占地面積最小.
20.(12分)已知圓M:(x+26)+y2=64及定點(diǎn)N(2百,0),點(diǎn)A是圓M上的動(dòng)點(diǎn),點(diǎn)3在ML上,點(diǎn)G在
上,且滿足Mi=2N3,GBNA=b,點(diǎn)G的軌跡為曲線C.
(1)求曲線C的方程;
111
(2)設(shè)斜率為k的動(dòng)直線/與曲線C有且只有一個(gè)公共點(diǎn),與直線y=/》和y=—彳x分別交于P、Q兩點(diǎn).當(dāng)陽〉-
時(shí),求AOPQ(。為坐標(biāo)原點(diǎn))面積的取值范圍.
21.(12分)設(shè)函數(shù)/(%)=。加+%2-(。+2)為其中aeR
(I)若曲線y=/(x)在點(diǎn)(2,”2))處切線的傾斜角為?,求。的值;
(II)已知導(dǎo)函數(shù)廣⑺在區(qū)間(1,e)上存在零點(diǎn),證明:當(dāng)尤e(l,e)時(shí),f(x)>-e2.
22.(10分)已知拋物線G:y2=2px,焦點(diǎn)為p,直線/交拋物線G于A,8兩點(diǎn),交拋物線G的準(zhǔn)線于點(diǎn)C,如圖
Q
所示,當(dāng)直線/經(jīng)過焦點(diǎn)口時(shí),點(diǎn)尸恰好是AC的中點(diǎn),且忸[=
CJ
I
——]
DLF\
(1)求拋物線G的方程;
(2)點(diǎn)。是原點(diǎn),設(shè)直線。4,08的斜率分別是勺狀2,當(dāng)直線/的縱截距為1時(shí),有數(shù)列{4}滿足
2
q=1,左=—=4(4+2),設(shè)數(shù)歹U,念->的前n項(xiàng)和為Sn,已知存在正整數(shù)m使得m<S2020<m+l,
求m的值.
參考答案
一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。
1、A
【解析】
利用等差數(shù)列的求和公式及等差數(shù)列的性質(zhì)可以求得結(jié)果.
【詳解】
由%=13%=52,%=4,得(—2)%+%=(—2『=256.選A.
【點(diǎn)睛】
本題主要考查等差數(shù)列的求和公式及等差數(shù)列的性質(zhì),等差數(shù)列的等和性應(yīng)用能快速求得結(jié)果.
2、D
【解析】
利用三角函數(shù)的圖象變換求得函數(shù)的解析式,再根據(jù)三角函數(shù)的性質(zhì),即可求解,得到答案.
【詳解】
將將函數(shù)=sin2x的圖象向左平移。個(gè)單位長度,
可得函數(shù)g(x)=sin[2(尤+0)]=sin(2尤+2夕)
/rr^rr〃<77"
又由函數(shù)g(x)為偶函數(shù),所以20=耳+癡/eZ,解得9=i+光-/eZ,
7TJT
因?yàn)?K°<一,當(dāng)k=0時(shí),(p=-,故選D.
24
【點(diǎn)睛】
本題主要考查了三角函數(shù)的圖象變換,以及三角函數(shù)的性質(zhì)的應(yīng)用,其中解答中熟記三角函數(shù)的圖象變換,合理應(yīng)用
三角函數(shù)的圖象與性質(zhì)是解答的關(guān)鍵,著重考查了推理與運(yùn)算能力,屬于基礎(chǔ)題.
3、C
【解析】
試題分析:A中,函數(shù)為偶函數(shù),但不滿足條件;B中,函數(shù)為奇函數(shù),不滿足條件;C中,函數(shù)為偶函數(shù)且
yeR,滿足條件;D中,函數(shù)為偶函數(shù),但>20,不滿足條件,故選C.
考點(diǎn):1、函數(shù)的奇偶性;2、函數(shù)的值域.
4、C
【解析】
解出集合A,再由含有幾個(gè)元素的集合,其真子集的個(gè)數(shù)為2"-1個(gè)可得答案.
【詳解】
解:由得4={%€2|—3<xWO}={—2,—1,0}
所以集合A的真子集個(gè)數(shù)為23-1=7個(gè).
故選:C
【點(diǎn)睛】
此題考查利用集合子集個(gè)數(shù)判斷集合元素個(gè)數(shù)的應(yīng)用,含有九個(gè)元素的集合,其真子集的個(gè)數(shù)為2"-1個(gè),屬于基礎(chǔ)
題.
5、A
【解析】
根據(jù)焦點(diǎn)到漸近線的距離,可得人,然后根據(jù)尸=。2-/"=£,可得結(jié)果.
a
【詳解】
由題可知:雙曲線的漸近線方程為法土分=0
取右焦點(diǎn)尸(c,0),一條漸近線/:法—4=0
則點(diǎn)R至心的距離為"上=3,由^+a2=c2
揚(yáng)+?
所以匕=0,則,2—/=2
▽ca/2c2
又一二3n—=9n〃———
aa9
X3
所以c?----=2=>。=一
92
所以焦距為:2c=3
故選:A
【點(diǎn)睛】
本題考查雙曲線漸近線方程,以及。力,之間的關(guān)系,識(shí)記常用的結(jié)論:焦點(diǎn)到漸近線的距離為人,屬基礎(chǔ)題.
6、C
【解析】
利用復(fù)數(shù)代數(shù)形式的乘法運(yùn)算化簡得答案.
【詳解】
由一--=a+2i,得l+2i=a+2i,解得a=1.
l-2i
故選:C.
【點(diǎn)睛】
本題考查復(fù)數(shù)代數(shù)形式的乘法運(yùn)算,是基礎(chǔ)題.
7、D
【解析】
根據(jù)題意分別計(jì)算出物理等級(jí)為4,化學(xué)等級(jí)為5的學(xué)生人數(shù)以及物理等級(jí)為3,化學(xué)等級(jí)為A的學(xué)生人數(shù),結(jié)合表
格中的數(shù)據(jù)進(jìn)行分析,可得出合適的選項(xiàng).
【詳解】
根據(jù)題意可知,36名學(xué)生減去5名全4和一科為A另一科為3的學(xué)生10-5+8-5=8人(其中物理4化學(xué)3的有5
人,物理3化學(xué)4的有3人),
表格變?yōu)椋?/p>
ABCDE
物理10—5—5=016-3=13910
化學(xué)8—5—3=019-5=14720
對(duì)于A選項(xiàng),物理化學(xué)等級(jí)都是3的學(xué)生至多有13人,A選項(xiàng)錯(cuò)誤;
對(duì)于B選項(xiàng),當(dāng)物理。和。,化學(xué)都是3時(shí),或化學(xué)C和D,物理都是B時(shí),物理、化學(xué)都是3的人數(shù)最少,至少
為13—7—2=4(人),B選項(xiàng)錯(cuò)誤;
對(duì)于C選項(xiàng),在表格中,除去物理化學(xué)都是3的學(xué)生,剩下的都是一科為3且最高等級(jí)為3的學(xué)生,
因?yàn)槎际?的學(xué)生最少4人,所以一科為3且最高等級(jí)為3的學(xué)生最多為13+9+1—4=19(人),
C選項(xiàng)錯(cuò)誤;
對(duì)于D選項(xiàng),物理化學(xué)都是3的最多13人,所以兩科只有一科等級(jí)為3且最高等級(jí)為3的學(xué)生最少14-13=1(人),
D選項(xiàng)正確.
故選:D.
【點(diǎn)睛】
本題考查合情推理,考查推理能力,屬于中等題.
8、B
【解析】
分別取3D、的中點(diǎn)M、N,連接AM、MN、AN,利用二面角的定義轉(zhuǎn)化二面角A—的平面角為
ZAMN=—,然后分別過點(diǎn)〃作平面曲的垂線與過點(diǎn)N作平面5C。的垂線交于點(diǎn)。,在WAOAW中計(jì)算出
OM,再利用勾股定理計(jì)算出Q4,即可得出球。的半徑,最后利用球體的表面積公式可得出答案.
【詳解】
如下圖所示,
分別取6。、CD的中點(diǎn)M、N,連接40、MN、AN,
由于AABD是以N&4O為直角等腰直角三角形,4為5。的中點(diǎn),
jr
ZCBD=-,且加、N分別為BD、CD的中點(diǎn),所以,MNHBC,所以,MN±BD,所以二面角A—C
2
97T
的平面角為NAMN=—,
3
AB=AD=V2>則BD=4AB?+AD?'=2,且BC=2,所以,AM=^BD=1,MN=3BC=1,
AABD是以NS4D為直角的等腰直角三角形,所以,AABZ)的外心為點(diǎn)",同理可知,A3CD的外心為點(diǎn)N,
分別過點(diǎn)M作平面ABD的垂線與過點(diǎn)N作平面5CD的垂線交于點(diǎn)。,則點(diǎn)。在平面內(nèi),如下圖所示,
27r7171
由圖形可知,ZOMN=ZAMN-ZAMO=-------=-,
326
I—ivny473
在RtAOMN中,四匚cosNOMN上,:)[,
OM2型
2
所以,0A=y]OM2+AM2=^~
3
所以,球。的半徑為R=亙,因此,球。的表面積為4〃R2=4〃X(^]=空工.
33
3IJ
故選:B.
【點(diǎn)睛】
本題考查球體的表面積,考查二面角的定義,解決本題的關(guān)鍵在于找出球心的位置,同時(shí)考查了計(jì)算能力,屬于中等
題.
9、C
【解析】
由三視圖可知,幾何體是一個(gè)三棱柱,三棱柱的底面是底邊為2/,高為1的等腰三角形,側(cè)棱長為4,利用正弦定
理求出底面三角形外接圓的半徑,根據(jù)三棱柱的兩底面中心連線的中點(diǎn)就是三棱柱的外接球的球心,求出球的半徑,
即可求解球的表面積.
【詳解】
由三視圖可知,
幾何體是一個(gè)三棱柱,三棱柱的底面是底邊為2/,高為1的等腰三角形,
側(cè)棱長為4,如圖:
A
由底面邊長可知,底面三角形的頂角為120,
由正弦定理可得2A。=--—=4,解得AD=2,
sin120
三棱柱的兩底面中心連線的中點(diǎn)就是三棱柱的外接球的球心,
所以=A/22+22=2夜,
該幾何體外接球的表面積為:S=4??(2@2=32〃.
故選:C
【點(diǎn)睛】
本題考查了多面體的內(nèi)切球與外接球問題,由三視圖求幾何體的表面積,考查了學(xué)生的空間想象能力,屬于基礎(chǔ)題.
10、C
【解析】
由題意,模擬程序的運(yùn)行,依次寫出每次循環(huán)得到的左,V的值,當(dāng)左=-1時(shí),不滿足條件左..0,跳出循環(huán),輸出V
的值.
【詳解】
解:初始值V=l。,x=2,程序運(yùn)行過程如下表所示:
k=9,
v=10x2+9,左=8,
V=10X22+9X2+8>左=7,
v=10x23+9x2^+8x2+7?k=6,
v=10x24+9x23+8x22+7x2+6?k=5,
v=10x25+9x24+8x23+7x22+6x2+5,左=4,
v=10x26+9x25+8x24+7x23+6x23+5x2+4,左=3,
V=10X27+9X26+8X25+7X24+6X23+5X22+4X2+3>k=2,
v=10x28+9x27+8x26+7x25+6x24+5x23+4x22+3x2+2,k=l,
v=10x29+9x28+8x27+7x26+6x25+5x24+4x23+3x22+2x2+1,左=0,
v=10x210+9x29+8x28+7x27+6x2s+5x25+4x24+3x23+2x22+1x2+0,k=-1,
跳出循環(huán),輸出n的值為
1098765432
^^V=10X2+9X2+8X2+7X2+6X2+5X2+4X2+3X2+2X2+1x2+0@
2V=10X2"+9X210+8X29+7X28+6X27+5X26+4X25+3X24+2X23+1X22+0?
①Y)得
-v=-10x2n+1X210+1X29+1X28+1X27+1X26+1X25+1X24+1X23+1X22+1X2
v=9x2n+2.
故選:c.
【點(diǎn)睛】
本題主要考查了循環(huán)結(jié)構(gòu)的程序框圖的應(yīng)用,正確依次寫出每次循環(huán)得到左,V的值是解題的關(guān)鍵,屬于基礎(chǔ)題.
11、C
【解析】
①舉反例,如直線X、y、z位于正方體的三條共點(diǎn)棱時(shí)②用垂直于同一平面的兩直線平行判斷.③用垂直于同一直線的
兩平面平行判斷.④舉例,如*、y、z位于正方體的三個(gè)共點(diǎn)側(cè)面時(shí).
【詳解】
①當(dāng)直線X、y、z位于正方體的三條共點(diǎn)棱時(shí),不正確;
②因?yàn)榇怪庇谕黄矫娴膬芍本€平行,正確;
③因?yàn)榇怪庇谕恢本€的兩平面平行,正確;
④如X、了、Z位于正方體的三個(gè)共點(diǎn)側(cè)面時(shí),不正確.
故選:C.
【點(diǎn)睛】
此題考查立體幾何中線面關(guān)系,選擇題一般可通過特殊值法進(jìn)行排除,屬于簡單題目.
12、B
【解析】
首先將五天進(jìn)行分組,再對(duì)名著進(jìn)行分配,根據(jù)分步乘法計(jì)數(shù)原理求得結(jié)果.
【詳解】
?=種分組方法;
將周一至周五分為4組,每組至少1天,共有:
將四大名著安排到4組中,每組1種名著,共有:禺=24種分配方法;
由分步乘法計(jì)數(shù)原理可得不同的閱讀計(jì)劃共有:10x24=240種
本題正確選項(xiàng):B
【點(diǎn)睛】
本題考查排列組合中的分組分配問題,涉及到分步乘法計(jì)數(shù)原理的應(yīng)用,易錯(cuò)點(diǎn)是忽略分組中涉及到的平均分組問題.
二、填空題:本題共4小題,每小題5分,共20分。
13、?
【解析】
由定義可知3〃。)),(。,—〃。)),(。,0)三點(diǎn)共線,即通過整理可得"X)=0),繼
aatyCID〃
而可求出正確答案.
【詳解】
解:根據(jù)題意(a,>)=c=J茄,由定義可知:(a",(加0)),(c,0)三點(diǎn)共線.
故可得:—~~~~,即(J-=-1——―~,
整理得:
a-cc-ba-yjabyjab-b7b
故可以選擇/(%)=?,(x>0)J(x)=2?(x>。)等.
故答案為:
【點(diǎn)睛】
本題考查了兩點(diǎn)的斜率公式,考查了推理能力,考查了運(yùn)算能力.本題關(guān)鍵是分析出三點(diǎn)共線.
14、[-后,0]
【解析】
問題轉(zhuǎn)化為求直線/與圓好+/=1有公共點(diǎn)時(shí),。的取值范圍,利用數(shù)形結(jié)合思想能求出結(jié)果.
【詳解】
解:直線/:x-y+a=O,點(diǎn)A(-1,O),3(1,0),
直線I上存在點(diǎn)P滿足AP.BP=0,
二產(chǎn)的軌跡方程是/+丁=1.
二如圖,直線/與圓好+/=1有公共點(diǎn),
d,_=1~?^1=<1,
解得—
實(shí)數(shù)a的取值范圍為[-.
故答案為:[-應(yīng),應(yīng)].
【點(diǎn)睛】
本題主要考查直線方程、圓、點(diǎn)到直線的距離公式等基礎(chǔ)知識(shí),考查推理論證能力、運(yùn)算求解能力,考查化歸與轉(zhuǎn)化
思想、函數(shù)與方程思想,屬于中檔題.
【解析】
求出切線/的斜率,即可求出結(jié)論.
【詳解】
由圖可知直線/過點(diǎn)(3,3),(0,g1,
3_2
可求出直線/的斜率z21-
3-02
由導(dǎo)數(shù)的幾何意義可知,r(3)=1.
故答案為:
2
【點(diǎn)睛】
本題考查導(dǎo)數(shù)與曲線的切線的幾何意義,屬于基礎(chǔ)題.
16、1
【解析】
求出導(dǎo)函數(shù),由切線方程得切線斜率和切點(diǎn)坐標(biāo),從而可求得應(yīng)氏
【詳解】
由題意f'(x)=--2bx,
x
???函數(shù)圖象在點(diǎn)(2,/(2)處的切線方程為y=—3x+21n2+2,
n
--4&=-3ra=2
??<2>解得<卜>
Mn2-4b=-6+21n2+21
'?a+b=3.
故答案為:1.
【點(diǎn)睛】
本題考查導(dǎo)數(shù)的幾何意義,求出導(dǎo)函數(shù)是解題基礎(chǔ),
三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。
17、(1)b=a-l,單調(diào)性見解析;(2)不存在,理由見解析
【解析】
(1)由題意得r(l)=O,即可得b=a—1;求出函數(shù)/(%)的導(dǎo)數(shù)/'('=(.+1)(一:+1),再根據(jù)。20、
X
—1<。<0、a=-l.”-1分類討論,分別求出/"(x)〉。、/'(尤)<0的解集即可得解;
(2)假設(shè)滿足條件的4、3存在,不妨設(shè)4(M,%),B(%,%)且0<%<々,由題意得KB=尸(與三]可得
(X
22-1x
ln%=L_2,令/=±(0<?<1),構(gòu)造函數(shù)ga)=ln-2"T)(0</<1),求導(dǎo)后證明g?)<0即可
%王+1%t+1
%
得解.
【詳解】
(1)由題可得函數(shù)y=/(x)的定義域?yàn)?0,+8)且/''(力=!一取+'
由/'(1)=0,整理得b=a—1.
,/\11(。九+1)(—X+1)
f(x)=ax+b=ax+a-1---------?
xxx
(i)當(dāng)時(shí),易知工£(0,1),/f(x)>0,X£(l,+oo)時(shí)/'(x)<0.
故y=/(x)在(0,1)上單調(diào)遞增,在(1,+8)上單調(diào)遞減.
(ii)當(dāng)。<0時(shí),令/''(x)=0,解得%=1或x=—貝?。?/p>
①當(dāng)一:=1,即a=—1時(shí),/'(九)之0在(0,+8)上恒成立,則y=/(x)在(0,+8)上遞增.
②當(dāng)—工〉1,即一1<。<0時(shí),當(dāng)xe(0,l)u[-:,+oc]時(shí),/,(x)>0;
當(dāng)xe“,一時(shí),/(%)<0.
所以y=/(x)在(0」)上單調(diào)遞增,[1,—J單調(diào)遞減,+,|單調(diào)遞增.
③當(dāng)—!<1,即"T時(shí),當(dāng)—]u(l,+8)時(shí),/(x)>0;當(dāng)時(shí),/(x)<0.
所以y=/(H在]。,-力上單調(diào)遞增,(一,1]單調(diào)遞減,(1,+8)單調(diào)遞增.
綜上,當(dāng)a?0時(shí),y=/(x)在(0,1)上單調(diào)遞增,在(1,+8)單調(diào)遞減.
當(dāng)—l<a<0時(shí),y=/(£)在(0,1)及]—f上單調(diào)遞增;y=/(x)在11,一口上單調(diào)遞減.
當(dāng)a=—1時(shí),y=/(x)在(0,+8)上遞增.
當(dāng)時(shí),y=〃力在10,一:1及0,+8)上單調(diào)遞增;丁=/(可在,:,11上遞減.
(2)滿足條件的4、3不存在,理由如下:
假設(shè)滿足條件的4、3存在,不妨設(shè)4(%,%),B(%,%)且0<%<%2,
貝!=%一%.Inxj—ln%+x2)+a-l,
玉一%2玉一%2
又/,(%=/1號(hào),"7ax詈+”1,
22-1
由題可知左4B=/'(/),整理可得:I0%—In%五二2一也=上~
X
%-X2%+%2%2%+%211
令"%(0</<1),構(gòu)造函數(shù)g⑺=ln/-型~—(0</<1).
X2/+1
?、14
則g(0=;-;一吊M〉。
/”+1)
所以g⑺在(0,1)上單調(diào)遞增,從而g⑺<g⑴=0,
所以方程In}=2:無解,即=無解.
綜上,滿足條件的A、3不存在.
【點(diǎn)睛】
本題考查了導(dǎo)數(shù)的應(yīng)用,考查了計(jì)算能力和轉(zhuǎn)化化歸思想,屬于中檔題.
18、(1)—+^=1(2)直線/的斜率為%=42或左=—
4377
【解析】
⑴根據(jù)已知列出方程組即可解得橢圓方程;
⑵設(shè)直線方程y=左"+1),與橢圓方程聯(lián)立,ZAF2B=|轉(zhuǎn)化為64耳3=0,借助向量的數(shù)量積的坐標(biāo)表示,及韋
達(dá)定理即可求得結(jié)果.
【詳解】
1
a=2J
2
(1)由題意得a=b2+c2,
19
---1---=1,
a24b2
a=2,
解得<b=V3,
c=l,
22
故橢圓c的方程為上+乙=1.
43
(2)直線/的方程為丁=左(尤+1),
設(shè)4(%,%),B(x2,y2),
[22
工+匕=1
則由方程組彳43消去y得,
y=左(尤+1)
(3+4左2)兀2+8左2%+4左2-12=0,
所由以I”XX=,—4~P—-172T,%+%=-----8-k-----
t23+4Q1'3+4左2
7T
由NAKB=5,得屬A?KB=O,
所以g4乙3=(玉_1)(%2_1)+%%=0,
又=公(玉+1)(尤2+1)=左之[%i%2+(%1+尤2)+1]
所以(1+左2)玉%2+(左之一1)(%]+/)+左之+1=0,
即(1+左2)4.—產(chǎn)+優(yōu)2_])(__笠二]+左2+]=0
',3+4-,\3+4k2)
,9
所以嚴(yán)=—,
7
因此,直線/的斜率為左=3夕或左=—
77
【點(diǎn)睛】
本題考查橢圓的標(biāo)準(zhǔn)方程,考查直線和橢圓的位置關(guān)系,考查學(xué)生的計(jì)算求解能力,難度一般.
19、(1)ADe[15,25](2)當(dāng)0<b<型時(shí),AD=25,AB=9米時(shí),發(fā)酵館的占地面積最?。划?dāng)6/當(dāng)36,41時(shí),
25125)
A。=迎但=旦也時(shí),發(fā)酵館的占地面積最?。划?dāng)b24時(shí),A3=A£>=15米時(shí),發(fā)酵館的占地面積最小.
b2
【解析】
(1)設(shè)的>=X米,總費(fèi)用為/(x)=225x200+150x2{2x+-
,解〃x)W65400即可得解;
225、
(2)結(jié)合(1)可得占地面積S(x)=(x+8)丁+2。結(jié)合導(dǎo)函數(shù)分類討論即可求得最值.
【詳解】
450
(1)由題意知:矩形ABC。面積S=—=225米2,
2
225225
設(shè)=x米,則A5=——米,由題意知:九2——>0,得光215,
XX
設(shè)總費(fèi)用為了(X),
貝!|/(x)=225x200+150x2?2x+型
=600h+—+45000<65400,
解得:9WxW25,又x215,故xe[15,25],
所以發(fā)酵池。邊長的范圍是不小于15米,且不超過25米;
f22s\12f)f)
(2)設(shè)發(fā)酵館的占地面積為S(x)由⑴知:S(x)=(x+8)|^^+26]=2法+——+16ZJ+225,XG[15,25],
2僅d-900)
S'(x)=,xG[15,25]
①b"時(shí),S'(x)20,S(x)在[15,25]上遞增,則x=15,即AB=AD=15米時(shí),發(fā)酵館的占地面積最??;
②0<人時(shí),S'(x)=0,S(x)在[15,25]上遞減,則尤=25,即A£>=25,AB=9米時(shí),發(fā)酵館的占地面積最
??;
③時(shí),xc15,5]時(shí),S'(x)<0,S(x)遞減;x]田,25時(shí),S(r)>0,S(x)遞增,
因此%=孚=型也,即A£>=迎回,巫時(shí),發(fā)酵館的占地面積最小;
4bbb2
綜上所述:當(dāng)0<人〈的時(shí),AD=25,AB=9米時(shí),發(fā)酵館的占地面積最??;當(dāng)3641時(shí),
25125)25
A。=迎但=旦也時(shí),發(fā)酵館的占地面積最?。划?dāng)b24時(shí),A3=A£>=15米時(shí),發(fā)酵館的占地面積最小.
b2
【點(diǎn)睛】
此題考查函數(shù)模型的應(yīng)用,關(guān)鍵在于根據(jù)題意恰當(dāng)?shù)亟⒛P?,利用函?shù)性質(zhì)討論最值取得的情況.
22
20、(1)---F-^―=1;(2)(8,+co).
164
【解析】
(1)根據(jù)題意得到GB是線段AN的中垂線,從而|GM|+|GN|為定值,根據(jù)橢圓定義可知點(diǎn)G的軌跡是以N為
焦點(diǎn)的橢圓,即可求出曲線C的方程;(2)聯(lián)立直線方程和橢圓方程,表示處AOPQ的面積代入韋達(dá)定理化簡即可求
范圍.
【詳解】
'NA=2NB
(1)\=8為⑷V的中點(diǎn),且是線段AN的中垂線,
GBNA=O
二|AG|=|GN|,x\GM\+\GN\=\GM\+\G^=\AM\=S>4j3=\MN\,
點(diǎn)G的軌跡是以M,N為焦點(diǎn)的橢圓,
r2y2
設(shè)橢圓方程為二+=1(a>b>0)
ab29
則〃=4,c=2-\/3,,\b=J/_W—2,
22
所以曲線c的方程為土+匕=1.
164
(2)設(shè)直線Ay=kx+m±—),
2
y=kx+m/,o\o,o
由<99消去y,可得(1+4左2)尤2+8物a+4加2-]6=0.
x+4y=16'7
因?yàn)橹本€,總與橢圓。有且只有一個(gè)公共點(diǎn),
2
所以A=64%2病一4(1+4的(4癡一16)=0,m=16^+4.?
y=kx+m2mm(-2mm
又由(-2尸??傻?同理可得。
1—2左'1—2左[1+2左'1+2左廣
\m\
由原點(diǎn)O到直線PQ的距離為d=
Jl+k2
可得S"=g|尸。|
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 房屋買賣合同解除的起訴狀示例3篇
- 方式器買賣合同范本3篇
- 新版不動(dòng)產(chǎn)買賣合同書3篇
- 房屋買賣建筑材料檢測合同3篇
- 房屋買賣委托代理協(xié)議書范例3篇
- 安全駕駛超速自省3篇
- 招標(biāo)文件遺漏補(bǔ)充公告3篇
- 攪拌站施工合同合作保修3篇
- 掌握閱讀招標(biāo)文件的方法3篇
- 房屋買賣居間合同填寫指南3篇
- 詩經(jīng)采葛原文題解注釋譯文賞析讀解市公開課金獎(jiǎng)市賽課一等獎(jiǎng)?wù)n件
- 空壓機(jī)安全安全檢查表
- 大學(xué)生就業(yè)創(chuàng)業(yè)與指導(dǎo)王
- 談中考復(fù)習(xí)備考策略
- 青島版五四制四年級(jí)上冊(cè)課件- 小數(shù)的意義和性質(zhì)
- 電生理發(fā)展史
- CRH380B(L)動(dòng)車組信息網(wǎng)絡(luò)
- 2022年灌區(qū)灌排渠建設(shè)可行性研究報(bào)告
- 樁基高應(yīng)變檢測技術(shù)講義(237頁圖文豐富)
- 幼兒園暑期安全教育課件(ppt共30張)
- 小學(xué)道德與法治教學(xué)論文(五篇)
評(píng)論
0/150
提交評(píng)論