版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2025屆河南省豫南九校高三年級(jí)第二學(xué)期教學(xué)質(zhì)量調(diào)研(三)數(shù)學(xué)試題考生請(qǐng)注意:1.答題前請(qǐng)將考場(chǎng)、試室號(hào)、座位號(hào)、考生號(hào)、姓名寫(xiě)在試卷密封線內(nèi),不得在試卷上作任何標(biāo)記。2.第一部分選擇題每小題選出答案后,需將答案寫(xiě)在試卷指定的括號(hào)內(nèi),第二部分非選擇題答案寫(xiě)在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請(qǐng)將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.有一改形塔幾何體由若千個(gè)正方體構(gòu)成,構(gòu)成方式如圖所示,上層正方體下底面的四個(gè)頂點(diǎn)是下層正方體上底面各邊的中點(diǎn).已知最底層正方體的棱長(zhǎng)為8,如果改形塔的最上層正方體的邊長(zhǎng)小于1,那么該塔形中正方體的個(gè)數(shù)至少是()A.8 B.7 C.6 D.42.設(shè),,是非零向量.若,則()A. B. C. D.3.如圖是正方體截去一個(gè)四棱錐后的得到的幾何體的三視圖,則該幾何體的體積是()A. B. C. D.4.在復(fù)平面內(nèi),復(fù)數(shù)(為虛數(shù)單位)的共軛復(fù)數(shù)對(duì)應(yīng)的點(diǎn)位于()A.第一象限 B.第二象限 C.第三象限 D.第四象限5.在四面體中,為正三角形,邊長(zhǎng)為6,,,,則四面體的體積為()A. B. C.24 D.6.已知拋物線C:,過(guò)焦點(diǎn)F的直線l與拋物線C交于A,B兩點(diǎn)(A在x軸上方),且滿足,則直線l的斜率為()A.1 B.C.2 D.37.已知f(x),g(x)都是偶函數(shù),且在[0,+∞)上單調(diào)遞增,設(shè)函數(shù)F(x)=f(x)+g(1-x)-|f(x)-g(1-x)|,若a>0,則()A.F(-a)≥F(a)且F(1+a)≥F(1-a)B.F(-a)≥F(a)且F(1+a)≤F(1-a)C.F(-a)≤F(a)且F(1+a)≥F(1-a)D.F(-a)≤F(a)且F(1+a)≤F(1-a)8.已知等差數(shù)列中,,,則數(shù)列的前10項(xiàng)和()A.100 B.210 C.380 D.4009.已知集合,,若,則的最小值為()A.1 B.2 C.3 D.410.在中,,,,若,則實(shí)數(shù)()A. B. C. D.11.中國(guó)古代中的“禮、樂(lè)、射、御、書(shū)、數(shù)”合稱“六藝”.“禮”,主要指德育;“樂(lè)”,主要指美育;“射”和“御”,就是體育和勞動(dòng);“書(shū)”,指各種歷史文化知識(shí);“數(shù)”,指數(shù)學(xué).某校國(guó)學(xué)社團(tuán)開(kāi)展“六藝”課程講座活動(dòng),每藝安排一節(jié),連排六節(jié),一天課程講座排課有如下要求:“數(shù)”必須排在第三節(jié),且“射”和“御”兩門(mén)課程相鄰排課,則“六藝”課程講座不同的排課順序共有()A.12種 B.24種 C.36種 D.48種12.函數(shù)的圖象大致是()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.的展開(kāi)式中的常數(shù)項(xiàng)為_(kāi)______.14.已知數(shù)列的前項(xiàng)和為且滿足,則數(shù)列的通項(xiàng)_______.15.已知二面角α﹣l﹣β為60°,在其內(nèi)部取點(diǎn)A,在半平面α,β內(nèi)分別取點(diǎn)B,C.若點(diǎn)A到棱l的距離為1,則△ABC的周長(zhǎng)的最小值為_(kāi)____.16.已知△的三個(gè)內(nèi)角為,,,且,,成等差數(shù)列,則的最小值為_(kāi)_________,最大值為_(kāi)__________.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)某公園準(zhǔn)備在一圓形水池里設(shè)置兩個(gè)觀景噴泉,觀景噴泉的示意圖如圖所示,兩點(diǎn)為噴泉,圓心為的中點(diǎn),其中米,半徑米,市民可位于水池邊緣任意一點(diǎn)處觀賞.(1)若當(dāng)時(shí),,求此時(shí)的值;(2)設(shè),且.(i)試將表示為的函數(shù),并求出的取值范圍;(ii)若同時(shí)要求市民在水池邊緣任意一點(diǎn)處觀賞噴泉時(shí),觀賞角度的最大值不小于,試求兩處噴泉間距離的最小值.18.(12分)如圖,在中,,的角平分線與交于點(diǎn),.(Ⅰ)求;(Ⅱ)求的面積.19.(12分)已知函數(shù),函數(shù),其中,是的一個(gè)極值點(diǎn),且.(1)討論的單調(diào)性(2)求實(shí)數(shù)和a的值(3)證明20.(12分)如圖,平面分別是上的動(dòng)點(diǎn),且.(1)若平面與平面的交線為,求證:;(2)當(dāng)平面平面時(shí),求平面與平面所成的二面角的余弦值.21.(12分)已知函數(shù),,使得對(duì)任意兩個(gè)不等的正實(shí)數(shù),都有恒成立.(1)求的解析式;(2)若方程有兩個(gè)實(shí)根,且,求證:.22.(10分)在直角坐標(biāo)系中,曲線的參數(shù)方程為(為參數(shù),以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸,取相同長(zhǎng)度單位建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.(1)求曲線的極坐標(biāo)方程和曲線的普通方程;(2)設(shè)射線與曲線交于不同于極點(diǎn)的點(diǎn),與曲線交于不同于極點(diǎn)的點(diǎn),求線段的長(zhǎng).
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.A【解析】
則從下往上第二層正方體的棱長(zhǎng)為:,從下往上第三層正方體的棱長(zhǎng)為:,從下往上第四層正方體的棱長(zhǎng)為:,以此類(lèi)推,能求出改形塔的最上層正方體的邊長(zhǎng)小于1時(shí)該塔形中正方體的個(gè)數(shù)的最小值的求法.【詳解】最底層正方體的棱長(zhǎng)為8,則從下往上第二層正方體的棱長(zhǎng)為:,從下往上第三層正方體的棱長(zhǎng)為:,從下往上第四層正方體的棱長(zhǎng)為:,從下往上第五層正方體的棱長(zhǎng)為:,從下往上第六層正方體的棱長(zhǎng)為:,從下往上第七層正方體的棱長(zhǎng)為:,從下往上第八層正方體的棱長(zhǎng)為:,∴改形塔的最上層正方體的邊長(zhǎng)小于1,那么該塔形中正方體的個(gè)數(shù)至少是8.故選:A.本小題主要考查正方體有關(guān)計(jì)算,屬于基礎(chǔ)題.2.D【解析】試題分析:由題意得:若,則;若,則由可知,,故也成立,故選D.考點(diǎn):平面向量數(shù)量積.【思路點(diǎn)睛】幾何圖形中向量的數(shù)量積問(wèn)題是近幾年高考的又一熱點(diǎn),作為一類(lèi)既能考查向量的線性運(yùn)算、坐標(biāo)運(yùn)算、數(shù)量積及平面幾何知識(shí),又能考查學(xué)生的數(shù)形結(jié)合能力及轉(zhuǎn)化與化歸能力的問(wèn)題,實(shí)有其合理之處.解決此類(lèi)問(wèn)題的常用方法是:①利用已知條件,結(jié)合平面幾何知識(shí)及向量數(shù)量積的基本概念直接求解(較易);②將條件通過(guò)向量的線性運(yùn)算進(jìn)行轉(zhuǎn)化,再利用①求解(較難);③建系,借助向量的坐標(biāo)運(yùn)算,此法對(duì)解含垂直關(guān)系的問(wèn)題往往有很好效果.3.C【解析】
根據(jù)三視圖作出幾何體的直觀圖,結(jié)合三視圖的數(shù)據(jù)可求得幾何體的體積.【詳解】根據(jù)三視圖還原幾何體的直觀圖如下圖所示:由圖可知,該幾何體是在棱長(zhǎng)為的正方體中截去四棱錐所形成的幾何體,該幾何體的體積為.故選:C.本題考查利用三視圖計(jì)算幾何體的體積,考查空間想象能力與計(jì)算能力,屬于基礎(chǔ)題.4.D【解析】
將復(fù)數(shù)化簡(jiǎn)得,,即可得到對(duì)應(yīng)的點(diǎn)為,即可得出結(jié)果.【詳解】,對(duì)應(yīng)的點(diǎn)位于第四象限.故選:.本題考查復(fù)數(shù)的四則運(yùn)算,考查共軛復(fù)數(shù)和復(fù)數(shù)與平面內(nèi)點(diǎn)的對(duì)應(yīng),難度容易.5.A【解析】
推導(dǎo)出,分別取的中點(diǎn),連結(jié),則,推導(dǎo)出,從而,進(jìn)而四面體的體積為,由此能求出結(jié)果.【詳解】解:在四面體中,為等邊三角形,邊長(zhǎng)為6,,,,,,分別取的中點(diǎn),連結(jié),則,且,,,,平面,平面,,四面體的體積為:.故答案為:.本題考查四面體體積的求法,考查空間中線線,線面,面面間的位置關(guān)系等基礎(chǔ)知識(shí),考查運(yùn)算求解能力.6.B【解析】
設(shè)直線的方程為代入拋物線方程,利用韋達(dá)定理可得,,由可知所以可得代入化簡(jiǎn)求得參數(shù),即可求得結(jié)果.【詳解】設(shè),(,).易知直線l的斜率存在且不為0,設(shè)為,則直線l的方程為.與拋物線方程聯(lián)立得,所以,.因?yàn)?,所以,得,所以,即,,所?故選:B.本題考查直線與拋物線的位置關(guān)系,考查韋達(dá)定理及向量的坐標(biāo)之間的關(guān)系,考查計(jì)算能力,屬于中檔題.7.A【解析】試題分析:由題意得,F(xiàn)(x)=2g(1-x),f(x)≥g(1-x)∴F(-a)=2g(1+a),f(a)=f(-a)≥g(1+a)2f(-a),f(a)=f(-a)<g(1+a),∵a>0,∴(a+1)2-(a-1)∴若f(a)>g(1+a):F(-a)=2g(1+a),F(xiàn)(a)=2g(1-a),∴F(-a)>F(a),若g(1-a)≤f(a)≤g(1+a):F(-a)=2f(-a)=2f(a),F(xiàn)(a)=2g(1-a),∴F(-a)≥F(a),若f(a)<g(1-a):F(-a)=2f(-a)=2f(a),F(xiàn)(a)=2f(a),∴F(-a)=F(a),綜上可知F(-a)≥F(a),同理可知F(1+a)≥F(1-a),故選A.考點(diǎn):1.函數(shù)的性質(zhì);2.分類(lèi)討論的數(shù)學(xué)思想.【思路點(diǎn)睛】本題在在解題過(guò)程中抓住偶函數(shù)的性質(zhì),避免了由于單調(diào)性不同導(dǎo)致1-a與1+a大小不明確的討論,從而使解題過(guò)程得以優(yōu)化,另外,不要忘記定義域,如果要研究奇函數(shù)或者偶函數(shù)的值域、最值、單調(diào)性等問(wèn)題,通常先在原點(diǎn)一側(cè)的區(qū)間(對(duì)奇(偶)函數(shù)而言)或某一周期內(nèi)(對(duì)周期函數(shù)而言)考慮,然后推廣到整個(gè)定義域上.8.B【解析】
設(shè)公差為,由已知可得,進(jìn)而求出的通項(xiàng)公式,即可求解.【詳解】設(shè)公差為,,,,.故選:B.本題考查等差數(shù)列的基本量計(jì)算以及前項(xiàng)和,屬于基礎(chǔ)題.9.B【解析】
解出,分別代入選項(xiàng)中的值進(jìn)行驗(yàn)證.【詳解】解:,.當(dāng)時(shí),,此時(shí)不成立.當(dāng)時(shí),,此時(shí)成立,符合題意.故選:B.本題考查了不等式的解法,考查了集合的關(guān)系.10.D【解析】
將、用、表示,再代入中計(jì)算即可.【詳解】由,知為的重心,所以,又,所以,,所以,.故選:D本題考查平面向量基本定理的應(yīng)用,涉及到向量的線性運(yùn)算,是一道中檔題.11.C【解析】
根據(jù)“數(shù)”排在第三節(jié),則“射”和“御”兩門(mén)課程相鄰有3類(lèi)排法,再考慮兩者的順序,有種,剩余的3門(mén)全排列,即可求解.【詳解】由題意,“數(shù)”排在第三節(jié),則“射”和“御”兩門(mén)課程相鄰時(shí),可排在第1節(jié)和第2節(jié)或第4節(jié)和第5節(jié)或第5節(jié)和第6節(jié),有3種,再考慮兩者的順序,有種,剩余的3門(mén)全排列,安排在剩下的3個(gè)位置,有種,所以“六藝”課程講座不同的排課順序共有種不同的排法.故選:C.本題主要考查了排列、組合的應(yīng)用,其中解答中認(rèn)真審題,根據(jù)題設(shè)條件,先排列有限制條件的元素是解答的關(guān)鍵,著重考查了分析問(wèn)題和解答問(wèn)題的能力,屬于基礎(chǔ)題.12.C【解析】
根據(jù)函數(shù)奇偶性可排除AB選項(xiàng);結(jié)合特殊值,即可排除D選項(xiàng).【詳解】∵,,∴函數(shù)為奇函數(shù),∴排除選項(xiàng)A,B;又∵當(dāng)時(shí),,故選:C.本題考查了依據(jù)函數(shù)解析式選擇函數(shù)圖象,注意奇偶性及特殊值的用法,屬于基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13.【解析】
寫(xiě)出展開(kāi)式的通項(xiàng)公式,考慮當(dāng)?shù)闹笖?shù)為零時(shí),對(duì)應(yīng)的值即為常數(shù)項(xiàng).【詳解】的展開(kāi)式通項(xiàng)公式為:,令,所以,所以常數(shù)項(xiàng)為.
故答案為:.本題考查二項(xiàng)展開(kāi)式中指定項(xiàng)系數(shù)的求解,難度較易.解答問(wèn)題的關(guān)鍵是,能通過(guò)展開(kāi)式通項(xiàng)公式分析常數(shù)項(xiàng)對(duì)應(yīng)的取值.14.【解析】
先求得時(shí);再由可得時(shí),兩式作差可得,進(jìn)而求解.【詳解】當(dāng)時(shí),,解得;由,可知當(dāng)時(shí),,兩式相減,得,即,所以數(shù)列是首項(xiàng)為,公比為的等比數(shù)列,所以,故答案為:本題考查由與的關(guān)系求通項(xiàng)公式,考查等比數(shù)列的通項(xiàng)公式的應(yīng)用.15.【解析】
作A關(guān)于平面α和β的對(duì)稱點(diǎn)M,N,交α和β與D,E,連接MN,AM,AN,DE,根據(jù)對(duì)稱性三角形ADC的周長(zhǎng)為AB+AC+BC=MB+BC+CN,當(dāng)四點(diǎn)共線時(shí)長(zhǎng)度最短,結(jié)合對(duì)稱性和余弦定理求解.【詳解】作A關(guān)于平面α和β的對(duì)稱點(diǎn)M,N,交α和β與D,E,連接MN,AM,AN,DE,根據(jù)對(duì)稱性三角形ABC的周長(zhǎng)為AB+AC+BC=MB+BC+CN,當(dāng)M,B,C,N共線時(shí),周長(zhǎng)最小為MN設(shè)平面ADE交l于,O,連接OD,OE,顯然OD⊥l,OE⊥l,∠DOE=60°,∠MOA+∠AON=240°,OA=1,∠MON=120°,且OM=ON=OA=1,根據(jù)余弦定理,故MN2=1+1﹣2×1×1×cos120°=3,故MN.故答案為:.此題考查求空間三角形邊長(zhǎng)的最值,關(guān)鍵在于根據(jù)幾何性質(zhì)找出對(duì)稱關(guān)系,結(jié)合解三角形知識(shí)求解.16.【解析】
根據(jù)正弦定理可得,利用余弦定理以及均值不等式,可得角的范圍,然后構(gòu)造函數(shù),利用導(dǎo)數(shù),研究函數(shù)性質(zhì),可得結(jié)果.【詳解】由,,成等差數(shù)列所以所以又化簡(jiǎn)可得當(dāng)且僅當(dāng)時(shí),取等號(hào)又,所以令,則當(dāng),即時(shí),當(dāng),即時(shí),則在遞增,在遞減所以由,所以所以的最小值為最大值為故答案為:,本題考查等差數(shù)列、正弦定理、余弦定理,還考查了不等式、導(dǎo)數(shù)的綜合應(yīng)用,難點(diǎn)在于根據(jù)余弦定理以及不等式求出,考驗(yàn)分析能力以及邏輯思維能力,屬難題.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17.(1);(2)(i),;(ii).【解析】
(1)在中,由正弦定理可得所求;(2)(i)由余弦定理得,兩式相加可得所求解析式.(ii)在中,由余弦定理可得,根據(jù)的最大值不小于可得關(guān)于的不等式,解不等式可得所求.【詳解】(1)在中,由正弦定理得,所以,即.(2)(i)在中,由余弦定理得,在中,由余弦定理得,又所以,即.又,解得,所以所求關(guān)系式為,.(ii)當(dāng)觀賞角度的最大時(shí),取得最小值.在中,由余弦定理可得,因?yàn)榈淖畲笾挡恍∮冢?,解得,?jīng)驗(yàn)證知,所以.即兩處噴泉間距離的最小值為.本題考查解三角形在實(shí)際中的應(yīng)用,解題時(shí)要注意把條件轉(zhuǎn)化為三角形的邊或角,然后借助正余弦定理進(jìn)行求解.解題時(shí)要注意三角形邊角關(guān)系的運(yùn)用,同時(shí)還要注意所得結(jié)果要符合實(shí)際意義.18.(Ⅰ);(Ⅱ).【解析】試題分析:(Ⅰ)在中,由余弦定理得,由正弦定理得,可得解;(Ⅱ)由(Ⅰ)可知,進(jìn)而得,在中,由正弦定理得,所以的面積即可得解.試題解析:(Ⅰ)在中,由余弦定理得,所以,由正弦定理得,所以.(Ⅱ)由(Ⅰ)可知.在中,.在中,由正弦定理得,所以.所以的面積.19.(1)在區(qū)間單調(diào)遞增;(2);(3)證明見(jiàn)解析.【解析】
(1)求出,在定義域內(nèi),再次求導(dǎo),可得在區(qū)間上恒成立,從而可得結(jié)論;(2)由,可得,由可得,聯(lián)立解方程組可得結(jié)果;(3)由(1)知在區(qū)間單調(diào)遞增,可證明,取,可得,而,利用裂項(xiàng)相消法,結(jié)合放縮法可得結(jié)果.【詳解】(1)由已知可得函數(shù)的定義域?yàn)?,且,令,則有,由,可得,可知當(dāng)x變化時(shí),的變化情況如下表:1-0+極小值,即,可得在區(qū)間單調(diào)遞增;(2)由已知可得函數(shù)的定義域?yàn)?,且,由已知得,即,①由可得,,②?lián)立①②,消去a,可得,③令,則,由(1)知,,故,在區(qū)間單調(diào)遞增,注意到,所以方程③有唯一解,代入①,可得,;(3)證明:由(1)知在區(qū)間單調(diào)遞增,故當(dāng)時(shí),,,可得在區(qū)間單調(diào)遞增,因此,當(dāng)時(shí),,即,亦即,這時(shí),故可得,取,可得,而,故.本題主要考查利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性以及不等式的證明,屬于難題.不等式證明問(wèn)題是近年高考命題的熱點(diǎn),利用導(dǎo)數(shù)證明不等主要方法有兩個(gè),一是比較簡(jiǎn)單的不等式證明,不等式兩邊作差構(gòu)造函數(shù),利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,求出函數(shù)的最值即可;二是較為綜合的不等式證明,要觀察不等式特點(diǎn),結(jié)合已解答的問(wèn)題把要證的不等式變形,并運(yùn)用已證結(jié)論先行放縮,然后再化簡(jiǎn)或者進(jìn)一步利用導(dǎo)數(shù)證明.20.(1)見(jiàn)解析;(2)【解析】
(1)首先由線面平行的判定定理可得平面,再由線面平行的性質(zhì)定理即可得證;(2)以點(diǎn)為坐標(biāo)原點(diǎn),,所在的直線分別為軸,以過(guò)點(diǎn)且垂直于的直線為軸建立空間直角坐標(biāo)系,利用空間向量法求出二面角的余弦值;【詳解】解:(1)由,又平面,平面,所以平面.又平面,且平面平面,故.(2)因?yàn)槠矫?,所以,又,所以平面,所以,又,所?若平面平面,則平面,所以,由且,又,所以.以點(diǎn)為坐標(biāo)原點(diǎn),,所在的直線分別為軸,以過(guò)點(diǎn)且垂直于的直線為軸建立空間直角坐標(biāo)系,則,,設(shè)則由,可得,,即,所以可得,所以,設(shè)平面的一個(gè)法向量為,則,,,取,得所以易知平面的法向量為,設(shè)平面與平面所成的二面角為,則,結(jié)合圖形可知平面與平面所成的二面角的余弦值為.本題考查線面平行的判定定理及性質(zhì)定理的應(yīng)用,利用空間向量法求二面角,解題時(shí)要認(rèn)真審題,注意空間思維能力的培養(yǎng),屬于中檔題.21.(1);(2)證明見(jiàn)解析.【解析】
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024年預(yù)購(gòu)商品房合同3篇
- 2025年度oem服裝加工與品牌授權(quán)合同范本3篇
- 2024年標(biāo)準(zhǔn)版商品交易協(xié)議書(shū)版B版
- 2024年金融教育與普及項(xiàng)目合同3篇
- 2025年度特色餐廳品牌授權(quán)合作協(xié)議3篇
- 2024幼兒園清潔服務(wù)租賃合同
- 2024年離婚協(xié)議書(shū)規(guī)范格式3篇
- 2024年礦石物流承運(yùn)協(xié)議標(biāo)準(zhǔn)模板版B版
- 2024購(gòu)房合同樣書(shū)
- 2024年高頻交易系統(tǒng)開(kāi)發(fā)與授權(quán)合同
- 綠色貸款培訓(xùn)課件
- 2024年七年級(jí)語(yǔ)文上學(xué)期期末作文題目及范文匯編
- 云南省昆明市五華區(qū)2023-2024學(xué)年九年級(jí)上學(xué)期期末英語(yǔ)試卷+
- 2023年生產(chǎn)運(yùn)營(yíng)副總經(jīng)理年度總結(jié)及下一年計(jì)劃
- 2023年中考語(yǔ)文標(biāo)點(diǎn)符號(hào)(頓號(hào))練習(xí)(含答案)
- 施工圖審查招標(biāo)文件范文
- 新課標(biāo)人教版數(shù)學(xué)三年級(jí)上冊(cè)第八單元《分?jǐn)?shù)的初步認(rèn)識(shí)》教材解讀
- 布袋式除塵器制造工序檢驗(yàn)規(guī)定
- 艾滋病、梅毒和乙肝檢測(cè)方法介紹及選擇
- 水資源稅納稅申報(bào)表附表
- MF47萬(wàn)用表組裝與檢測(cè)教學(xué)教案
評(píng)論
0/150
提交評(píng)論