版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
2025屆河南省鄭州市河南實(shí)驗(yàn)中學(xué)高三下學(xué)期期末質(zhì)量監(jiān)測(cè)數(shù)學(xué)試題注意事項(xiàng)1.考生要認(rèn)真填寫考場(chǎng)號(hào)和座位序號(hào)。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知命題:,,則為()A., B.,C., D.,2.已知點(diǎn)是雙曲線上一點(diǎn),若點(diǎn)到雙曲線的兩條漸近線的距離之積為,則雙曲線的離心率為()A. B. C. D.23.已知函數(shù),則下列結(jié)論錯(cuò)誤的是()A.函數(shù)的最小正周期為πB.函數(shù)的圖象關(guān)于點(diǎn)對(duì)稱C.函數(shù)在上單調(diào)遞增D.函數(shù)的圖象可由的圖象向左平移個(gè)單位長度得到4.一個(gè)正三角形的三個(gè)頂點(diǎn)都在雙曲線的右支上,且其中一個(gè)頂點(diǎn)在雙曲線的右頂點(diǎn),則實(shí)數(shù)的取值范圍是()A. B. C. D.5.已知單位向量,的夾角為,若向量,,且,則()A.2 B.2 C.4 D.66.已知橢圓+=1(a>b>0)與直線交于A,B兩點(diǎn),焦點(diǎn)F(0,-c),其中c為半焦距,若△ABF是直角三角形,則該橢圓的離心率為()A. B. C. D.7.中國古代數(shù)學(xué)著作《孫子算經(jīng)》中有這樣一道算術(shù)題:“今有物不知其數(shù),三三數(shù)之余二,五五數(shù)之余三,問物幾何?”人們把此類題目稱為“中國剩余定理”,若正整數(shù)除以正整數(shù)后的余數(shù)為,則記為,例如.現(xiàn)將該問題以程序框圖的算法給出,執(zhí)行該程序框圖,則輸出的等于().A. B. C. D.8.已知,,則的大小關(guān)系為()A. B. C. D.9.設(shè)命題:,,則為A., B.,C., D.,10.關(guān)于函數(shù)有下述四個(gè)結(jié)論:()①是偶函數(shù);②在區(qū)間上是單調(diào)遞增函數(shù);③在上的最大值為2;④在區(qū)間上有4個(gè)零點(diǎn).其中所有正確結(jié)論的編號(hào)是()A.①②④ B.①③ C.①④ D.②④11.已知復(fù)數(shù)z滿足(i為虛數(shù)單位),則z的虛部為()A. B. C.1 D.12.定義在上函數(shù)滿足,且對(duì)任意的不相等的實(shí)數(shù)有成立,若關(guān)于x的不等式在上恒成立,則實(shí)數(shù)m的取值范圍是()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.設(shè)為偶函數(shù),且當(dāng)時(shí),;當(dāng)時(shí),.關(guān)于函數(shù)的零點(diǎn),有下列三個(gè)命題:①當(dāng)時(shí),存在實(shí)數(shù)m,使函數(shù)恰有5個(gè)不同的零點(diǎn);②若,函數(shù)的零點(diǎn)不超過4個(gè),則;③對(duì),,函數(shù)恰有4個(gè)不同的零點(diǎn),且這4個(gè)零點(diǎn)可以組成等差數(shù)列.其中,正確命題的序號(hào)是_______.14.已知是同一球面上的四個(gè)點(diǎn),其中平面,是正三角形,,則該球的表面積為______.15.能說明“若對(duì)于任意的都成立,則在上是減函數(shù)”為假命題的一個(gè)函數(shù)是________.16.已知數(shù)列滿足,且恒成立,則的值為____________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知函數(shù)(1)若恒成立,求實(shí)數(shù)的取值范圍;(2)若方程有兩個(gè)不同實(shí)根,,證明:.18.(12分)已知的三個(gè)內(nèi)角所對(duì)的邊分別為,向量,,且.(1)求角的大??;(2)若,求的值19.(12分)已知函數(shù).(1)解不等式;(2)若函數(shù)最小值為,且,求的最小值.20.(12分)改革開放年,我國經(jīng)濟(jì)取得飛速發(fā)展,城市汽車保有量在不斷增加,人們的交通安全意識(shí)也需要不斷加強(qiáng).為了解某城市不同性別駕駛員的交通安全意識(shí),某小組利用假期進(jìn)行一次全市駕駛員交通安全意識(shí)調(diào)查.隨機(jī)抽取男女駕駛員各人,進(jìn)行問卷測(cè)評(píng),所得分?jǐn)?shù)的頻率分布直方圖如圖所示在分以上為交通安全意識(shí)強(qiáng).求的值,并估計(jì)該城市駕駛員交通安全意識(shí)強(qiáng)的概率;已知交通安全意識(shí)強(qiáng)的樣本中男女比例為,完成下列列聯(lián)表,并判斷有多大把握認(rèn)為交通安全意識(shí)與性別有關(guān);安全意識(shí)強(qiáng)安全意識(shí)不強(qiáng)合計(jì)男性女性合計(jì)用分層抽樣的方式從得分在分以下的樣本中抽取人,再從人中隨機(jī)選取人對(duì)未來一年內(nèi)的交通違章情況進(jìn)行跟蹤調(diào)查,求至少有人得分低于分的概率.附:其中21.(12分)在等比數(shù)列中,已知,.設(shè)數(shù)列的前n項(xiàng)和為,且,(,).(1)求數(shù)列的通項(xiàng)公式;(2)證明:數(shù)列是等差數(shù)列;(3)是否存在等差數(shù)列,使得對(duì)任意,都有?若存在,求出所有符合題意的等差數(shù)列;若不存在,請(qǐng)說明理由.22.(10分)已知點(diǎn)為橢圓上任意一點(diǎn),直線與圓交于,兩點(diǎn),點(diǎn)為橢圓的左焦點(diǎn).(1)求證:直線與橢圓相切;(2)判斷是否為定值,并說明理由.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.C【解析】
根據(jù)全稱量詞命題的否定是存在量詞命題,即得答案.【詳解】全稱量詞命題的否定是存在量詞命題,且命題:,,.故選:.本題考查含有一個(gè)量詞的命題的否定,屬于基礎(chǔ)題.2.A【解析】
設(shè)點(diǎn)的坐標(biāo)為,代入橢圓方程可得,然后分別求出點(diǎn)到兩條漸近線的距離,由距離之積為,并結(jié)合,可得到的齊次方程,進(jìn)而可求出離心率的值.【詳解】設(shè)點(diǎn)的坐標(biāo)為,有,得.雙曲線的兩條漸近線方程為和,則點(diǎn)到雙曲線的兩條漸近線的距離之積為,所以,則,即,故,即,所以.故選:A.本題考查雙曲線的離心率,構(gòu)造的齊次方程是解決本題的關(guān)鍵,屬于中檔題.3.D【解析】
由可判斷選項(xiàng)A;當(dāng)時(shí),可判斷選項(xiàng)B;利用整體換元法可判斷選項(xiàng)C;可判斷選項(xiàng)D.【詳解】由題知,最小正周期,所以A正確;當(dāng)時(shí),,所以B正確;當(dāng)時(shí),,所以C正確;由的圖象向左平移個(gè)單位,得,所以D錯(cuò)誤.故選:D.本題考查余弦型函數(shù)的性質(zhì),涉及到周期性、對(duì)稱性、單調(diào)性以及圖象變換后的解析式等知識(shí),是一道中檔題.4.D【解析】
因?yàn)殡p曲線分左右支,所以,根據(jù)雙曲線和正三角形的對(duì)稱性可知:第一象限的頂點(diǎn)坐標(biāo)為,,將其代入雙曲線可解得.【詳解】因?yàn)殡p曲線分左右支,所以,根據(jù)雙曲線和正三角形的對(duì)稱性可知:第一象限的頂點(diǎn)坐標(biāo)為,,將其代入雙曲線方程得:,即,由得.故選:.本題考查了雙曲線的性質(zhì),意在考查學(xué)生對(duì)這些知識(shí)的理解掌握水平.5.C【解析】
根據(jù)列方程,由此求得的值,進(jìn)而求得.【詳解】由于,所以,即,解得.所以所以.故選:C本小題主要考查向量垂直的表示,考查向量數(shù)量積的運(yùn)算,考查向量模的求法,屬于基礎(chǔ)題.6.A【解析】
聯(lián)立直線與橢圓方程求出交點(diǎn)A,B兩點(diǎn),利用平面向量垂直的坐標(biāo)表示得到關(guān)于的關(guān)系式,解方程求解即可.【詳解】聯(lián)立方程,解方程可得或,不妨設(shè)A(0,a),B(-b,0),由題意可知,·=0,因?yàn)?,,由平面向量垂直的坐?biāo)表示可得,,因?yàn)?,所以a2-c2=ac,兩邊同時(shí)除以可得,,解得e=或(舍去),所以該橢圓的離心率為.故選:A本題考查橢圓方程及其性質(zhì)、離心率的求解、平面向量垂直的坐標(biāo)表示;考查運(yùn)算求解能力和知識(shí)遷移能力;利用平面向量垂直的坐標(biāo)表示得到關(guān)于的關(guān)系式是求解本題的關(guān)鍵;屬于中檔題、??碱}型.7.C【解析】從21開始,輸出的數(shù)是除以3余2,除以5余3,滿足條件的是23,故選C.8.D【解析】
由指數(shù)函數(shù)的圖像與性質(zhì)易得最小,利用作差法,結(jié)合對(duì)數(shù)換底公式及基本不等式的性質(zhì)即可比較和的大小關(guān)系,進(jìn)而得解.【詳解】根據(jù)指數(shù)函數(shù)的圖像與性質(zhì)可知,由對(duì)數(shù)函數(shù)的圖像與性質(zhì)可知,,所以最??;而由對(duì)數(shù)換底公式化簡可得由基本不等式可知,代入上式可得所以,綜上可知,故選:D.本題考查了指數(shù)式與對(duì)數(shù)式的化簡變形,對(duì)數(shù)換底公式及基本不等式的簡單應(yīng)用,作差法比較大小,屬于中檔題.9.D【解析】
直接利用全稱命題的否定是特稱命題寫出結(jié)果即可.【詳解】因?yàn)槿Q命題的否定是特稱命題,所以,命題:,,則為:,.故本題答案為D.本題考查命題的否定,特稱命題與全稱命題的否定關(guān)系,是基礎(chǔ)題.10.C【解析】
根據(jù)函數(shù)的奇偶性、單調(diào)性、最值和零點(diǎn)對(duì)四個(gè)結(jié)論逐一分析,由此得出正確結(jié)論的編號(hào).【詳解】的定義域?yàn)?由于,所以為偶函數(shù),故①正確.由于,,所以在區(qū)間上不是單調(diào)遞增函數(shù),所以②錯(cuò)誤.當(dāng)時(shí),,且存在,使.所以當(dāng)時(shí),;由于為偶函數(shù),所以時(shí),所以的最大值為,所以③錯(cuò)誤.依題意,,當(dāng)時(shí),,所以令,解得,令,解得.所以在區(qū)間,有兩個(gè)零點(diǎn).由于為偶函數(shù),所以在區(qū)間有兩個(gè)零點(diǎn).故在區(qū)間上有4個(gè)零點(diǎn).所以④正確.綜上所述,正確的結(jié)論序號(hào)為①④.故選:C本小題主要考查三角函數(shù)的奇偶性、單調(diào)性、最值和零點(diǎn),考查化歸與轉(zhuǎn)化的數(shù)學(xué)思想方法,屬于中檔題.11.D【解析】
根據(jù)復(fù)數(shù)z滿足,利用復(fù)數(shù)的除法求得,再根據(jù)復(fù)數(shù)的概念求解.【詳解】因?yàn)閺?fù)數(shù)z滿足,所以,所以z的虛部為.故選:D.本題主要考查復(fù)數(shù)的概念及運(yùn)算,還考查了運(yùn)算求解的能力,屬于基礎(chǔ)題.12.B【解析】
結(jié)合題意可知是偶函數(shù),且在單調(diào)遞減,化簡題目所給式子,建立不等式,結(jié)合導(dǎo)函數(shù)與原函數(shù)的單調(diào)性關(guān)系,構(gòu)造新函數(shù),計(jì)算最值,即可.【詳解】結(jié)合題意可知為偶函數(shù),且在單調(diào)遞減,故可以轉(zhuǎn)換為對(duì)應(yīng)于恒成立,即即對(duì)恒成立即對(duì)恒成立令,則上遞增,在上遞減,所以令,在上遞減所以.故,故選B.本道題考查了函數(shù)的基本性質(zhì)和導(dǎo)函數(shù)與原函數(shù)單調(diào)性關(guān)系,計(jì)算范圍,可以轉(zhuǎn)化為函數(shù),結(jié)合導(dǎo)函數(shù),計(jì)算最值,即可得出答案.二、填空題:本題共4小題,每小題5分,共20分。13.①②③【解析】
根據(jù)偶函數(shù)的圖象關(guān)于軸對(duì)稱,利用已知中的條件作出偶函數(shù)的圖象,利用圖象對(duì)各個(gè)選項(xiàng)進(jìn)行判斷即可.【詳解】解:當(dāng)時(shí)又因?yàn)闉榕己瘮?shù)可畫出的圖象,如下所示:可知當(dāng)時(shí)有5個(gè)不同的零點(diǎn);故①正確;若,函數(shù)的零點(diǎn)不超過4個(gè),即,與的交點(diǎn)不超過4個(gè),時(shí)恒成立又當(dāng)時(shí),在上恒成立在上恒成立由于偶函數(shù)的圖象,如下所示:直線與圖象的公共點(diǎn)不超過個(gè),則,故②正確;對(duì),偶函數(shù)的圖象,如下所示:,使得直線與恰有4個(gè)不同的交點(diǎn)點(diǎn),且相鄰點(diǎn)之間的距離相等,故③正確.故答案為:①②③本題考查函數(shù)方程思想,數(shù)形結(jié)合思想,屬于難題.14.【解析】
求得等邊三角形的外接圓半徑,利用勾股定理求得三棱錐外接球的半徑,進(jìn)而求得外接球的表面積.【詳解】設(shè)是等邊三角形的外心,則球心在其正上方處.設(shè),由正弦定理得.所以得三棱錐外接球的半徑,所以外接球的表面積為.故答案為:本小題主要考查幾何體外接球表面積的計(jì)算,屬于基礎(chǔ)題.15.答案不唯一,如【解析】
根據(jù)對(duì)基本函數(shù)的理解可得到滿足條件的函數(shù).【詳解】由題意,不妨設(shè),則在都成立,但是在是單調(diào)遞增的,在是單調(diào)遞減的,說明原命題是假命題.所以本題答案為,答案不唯一,符合條件即可.本題考查對(duì)基本初等函數(shù)的圖像和性質(zhì)的理解,關(guān)鍵是假設(shè)出一個(gè)在上不是單調(diào)遞減的函數(shù),再檢驗(yàn)是否滿足命題中的條件,屬基礎(chǔ)題.16.【解析】
易得,所以是等差數(shù)列,再利用等差數(shù)列的通項(xiàng)公式計(jì)算即可.【詳解】由已知,,因,所以,所以數(shù)列是以為首項(xiàng),3為公差的等差數(shù)列,故,所以.故答案為:本題考查由遞推數(shù)列求數(shù)列中的某項(xiàng),考查學(xué)生等價(jià)轉(zhuǎn)化的能力,是一道容易題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(1)(2)詳見解析【解析】
(1)將原不等式轉(zhuǎn)化為,構(gòu)造函數(shù),求得的最大值即可;
(2)首先通過求導(dǎo)判斷的單調(diào)區(qū)間,考查兩根的取值范圍,再構(gòu)造函數(shù),將問題轉(zhuǎn)化為證明,探究在區(qū)間內(nèi)的最大值即可得證.【詳解】解:(1)由,即,即,令,則只需,,令,得,在上單調(diào)遞增,在上單調(diào)遞減,,的取值范圍是;(2)證明:不妨設(shè),當(dāng)時(shí),單調(diào)遞增,當(dāng)時(shí),單調(diào)遞減,,當(dāng)時(shí),,,要證,即證,由在上單調(diào)遞增,只需證明,由,只需證明,令,,只需證明,易知,由,故,,從而在上單調(diào)遞增,由,故當(dāng)時(shí),,故,證畢.本題考查利用導(dǎo)數(shù)研究函數(shù)單調(diào)性,最值等,關(guān)鍵是要對(duì)問題進(jìn)行轉(zhuǎn)化,比如把恒成立問題轉(zhuǎn)化為最值問題,把根的個(gè)數(shù)問題轉(zhuǎn)化為圖像的交點(diǎn)個(gè)數(shù),進(jìn)而轉(zhuǎn)化為證明不等式的問題,屬難題.18.(1)(2)【解析】
利用平面向量數(shù)量積的坐標(biāo)表示和二倍角的余弦公式得到關(guān)于的方程,解方程即可求解;由知,在中利用余弦定理得到關(guān)于的方程,與方程聯(lián)立求出,進(jìn)而求出,利用兩角差的正弦公式求解即可.【詳解】由題意得,,由二倍角的余弦公式可得,,又因?yàn)?,所以,解得或,∵,?在中,由余弦定理得,即①又因?yàn)?把代入①整理得,,解得,,所以為等邊三角形,,∴,即.本題考查利用平面向量數(shù)量積的坐標(biāo)表示和余弦定理及二倍角的余弦公式解三角形;熟練掌握余弦的二倍角公式和余弦定理是求解本題的關(guān)鍵;屬于中檔題、??碱}型.19.(1)(2)【解析】
(1)利用零點(diǎn)分段法,求得不等式的解集.(2)先求得,即,再根據(jù)“的代換”的方法,結(jié)合基本不等式,求得的最小值.【詳解】(1)當(dāng)時(shí),,即,無解;當(dāng)時(shí),,即,得;當(dāng)時(shí),,即,得.故所求不等式的解集為.(2)因?yàn)?,所以,則,.當(dāng)且僅當(dāng)即時(shí)取等號(hào).故的最小值為.本小題主要考查零點(diǎn)分段法解絕對(duì)值不等式,考查利用基本不等式求最值,考查化歸與轉(zhuǎn)化的數(shù)學(xué)思想方法,屬于中檔題.20.,概率為;列聯(lián)表詳見解析,有的把握認(rèn)為交通安全意識(shí)與性別有關(guān);.【解析】
根據(jù)頻率和為列方程求得的值,計(jì)算得分在分以上的頻率即可;根據(jù)題意填寫列聯(lián)表,計(jì)算的值,對(duì)照臨界值得出結(jié)論;用分層抽樣法求得抽取各分?jǐn)?shù)段人數(shù),用列舉法求出基本事件數(shù),計(jì)算所求的概率值.【詳解】解:解得.所以,該城市駕駛員交通安全意識(shí)強(qiáng)的概率根據(jù)題意可知,安全意識(shí)強(qiáng)的人數(shù)有,其中男性為人,女性為人,填寫列聯(lián)表如下:安全意識(shí)強(qiáng)安全意識(shí)不強(qiáng)合計(jì)男性女性合計(jì)所以有的把握認(rèn)為交通安全意識(shí)與性別有關(guān).由題意可知分?jǐn)?shù)在,的分別為名和名,所以分層抽取的人數(shù)分別為名和名,設(shè)的為,,的為,,,,則基本事件空間為,,,,,,,,,,,,,,共種,設(shè)至少有人得分低于分的事件為,則事件包含的基本事件有,,,,,,,,共種所以.本題考查獨(dú)立性檢驗(yàn)應(yīng)用問題,也考查了列舉法求古典概型的概率問題,屬于中檔題.21.(1)(2)見解析(3)存在唯一的等差數(shù)列,其通項(xiàng)公式為,滿足題設(shè)【解析】
(1)由,可得公比,即得;(2)由(1)和可得數(shù)列的遞推公式,即可知結(jié)果為常數(shù),即得
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024-2030年中國鼓式剎車片行業(yè)發(fā)展?fàn)顩r及投資前景趨勢(shì)分析報(bào)告
- 2024-2030年中國高鐵產(chǎn)業(yè)發(fā)展規(guī)劃及投融資模式分析報(bào)告
- 小班手套線上課程設(shè)計(jì)
- 2024-2030年中國高端禮品酒行業(yè)經(jīng)營策略分析及投資競(jìng)爭力研究報(bào)告
- 材料成型課程設(shè)計(jì)A
- 2024年精簡裝修:住宅裝潢合同范本
- 打字軟件課程設(shè)計(jì)
- 機(jī)械制圖課程設(shè)計(jì)代畫
- 建筑抗震課程設(shè)計(jì)
- 2024年短視頻平臺(tái)廣告投放及效果評(píng)估合同3篇
- 鉗工銼削教案公開課一等獎(jiǎng)市賽課獲獎(jiǎng)?wù)n件
- 全山東省淄博市2022學(xué)年高一數(shù)學(xué)上學(xué)期期末試題含答案
- 公司財(cái)務(wù)預(yù)算工作報(bào)告
- 民警工作調(diào)動(dòng)申請(qǐng)書
- 題庫(大氣科學(xué)基礎(chǔ)(一)-題庫)資料
- 香菇購銷合同
- 54張管理用財(cái)務(wù)報(bào)表模板(帶釋義和公式)
- 個(gè)別化教育實(shí)施方案
- 人大代表“鄉(xiāng)村振興戰(zhàn)略”調(diào)研報(bào)告
- 白血病病例討論
- (新版)高級(jí)茶藝師資格考試題庫(含答案)
評(píng)論
0/150
提交評(píng)論