2025屆寧夏銀川市三校下學(xué)期高三數(shù)學(xué)試題第四次模擬考試試卷含解析_第1頁
2025屆寧夏銀川市三校下學(xué)期高三數(shù)學(xué)試題第四次模擬考試試卷含解析_第2頁
2025屆寧夏銀川市三校下學(xué)期高三數(shù)學(xué)試題第四次模擬考試試卷含解析_第3頁
2025屆寧夏銀川市三校下學(xué)期高三數(shù)學(xué)試題第四次模擬考試試卷含解析_第4頁
2025屆寧夏銀川市三校下學(xué)期高三數(shù)學(xué)試題第四次模擬考試試卷含解析_第5頁
已閱讀5頁,還剩13頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

2025屆寧夏銀川市三校下學(xué)期高三數(shù)學(xué)試題第四次模擬考試試卷注意事項1.考生要認(rèn)真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知復(fù)數(shù)z滿足i?z=2+i,則z的共軛復(fù)數(shù)是()A.﹣1﹣2i B.﹣1+2i C.1﹣2i D.1+2i2.已知函數(shù),若關(guān)于的方程恰好有3個不相等的實數(shù)根,則實數(shù)的取值范圍為()A. B. C. D.3.已知定義在上的可導(dǎo)函數(shù)滿足,若是奇函數(shù),則不等式的解集是()A. B. C. D.4.已知函數(shù),方程有四個不同的根,記最大的根的所有取值為集合,則“函數(shù)有兩個零點”是“”的().A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件5.在中,為上異于,的任一點,為的中點,若,則等于()A. B. C. D.6.已知集合A={y|y=|x|﹣1,x∈R},B={x|x≥2},則下列結(jié)論正確的是()A.﹣3∈AB.3BC.A∩B=BD.A∪B=B7.已知等差數(shù)列中,則()A.10 B.16 C.20 D.248.已知是兩條不重合的直線,是兩個不重合的平面,下列命題正確的是()A.若,,,,則B.若,,,則C.若,,,則D.若,,,則9.已知函數(shù)的圖像向右平移個單位長度后,得到的圖像關(guān)于軸對稱,,當(dāng)取得最小值時,函數(shù)的解析式為()A. B.C. D.10.如圖所示的程序框圖,若輸入,,則輸出的結(jié)果是()A. B. C. D.11.函數(shù)fxA. B.C. D.12.正項等比數(shù)列中的、是函數(shù)的極值點,則()A. B.1 C. D.2二、填空題:本題共4小題,每小題5分,共20分。13.記為數(shù)列的前項和,若,則__________.14.從一箱產(chǎn)品中隨機地抽取一件,設(shè)事件抽到一等品,事件抽到二等品,事件抽到三等品,且已知,,,則事件“抽到的產(chǎn)品不是一等品”的概率為________15.已知,,其中,為正的常數(shù),且,則的值為_______.16.若,則=______,=______.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)如圖,三棱柱ABC-A1B1C1中,側(cè)面BCC1B1是菱形,AC=BC=2,∠CBB1=,點A在平面BCC1B1上的投影為棱BB1的中點E.(1)求證:四邊形ACC1A1為矩形;(2)求二面角E-B1C-A1的平面角的余弦值.18.(12分)2019年底,北京2022年冬奧組委會啟動志愿者全球招募,僅一個月內(nèi)報名人數(shù)便突破60萬,其中青年學(xué)生約有50萬人.現(xiàn)從這50萬青年學(xué)生志愿者中,按男女分層抽樣隨機選取20人進(jìn)行英語水平測試,所得成績(單位:分)統(tǒng)計結(jié)果用莖葉圖記錄如下:(Ⅰ)試估計在這50萬青年學(xué)生志愿者中,英語測試成績在80分以上的女生人數(shù);(Ⅱ)從選出的8名男生中隨機抽取2人,記其中測試成績在70分以上的人數(shù)為X,求的分布列和數(shù)學(xué)期望;(Ⅲ)為便于聯(lián)絡(luò),現(xiàn)將所有的青年學(xué)生志愿者隨機分成若干組(每組人數(shù)不少于5000),并在每組中隨機選取個人作為聯(lián)絡(luò)員,要求每組的聯(lián)絡(luò)員中至少有1人的英語測試成績在70分以上的概率大于90%.根據(jù)圖表中數(shù)據(jù),以頻率作為概率,給出的最小值.(結(jié)論不要求證明)19.(12分)已知兩數(shù).(1)當(dāng)時,求函數(shù)的極值點;(2)當(dāng)時,若恒成立,求的最大值.20.(12分)已知函數(shù)是自然對數(shù)的底數(shù).(1)若,討論的單調(diào)性;(2)若有兩個極值點,求的取值范圍,并證明:.21.(12分)設(shè),函數(shù).(1)當(dāng)時,求在內(nèi)的極值;(2)設(shè)函數(shù),當(dāng)有兩個極值點時,總有,求實數(shù)的值.22.(10分)已知數(shù)列的前n項和,是等差數(shù)列,且.(Ⅰ)求數(shù)列的通項公式;(Ⅱ)令.求數(shù)列的前n項和.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.D【解析】

兩邊同乘-i,化簡即可得出答案.【詳解】i?z=2+i兩邊同乘-i得z=1-2i,共軛復(fù)數(shù)為1+2i,選D.的共軛復(fù)數(shù)為2.D【解析】

討論,,三種情況,求導(dǎo)得到單調(diào)區(qū)間,畫出函數(shù)圖像,根據(jù)圖像得到答案.【詳解】當(dāng)時,,故,函數(shù)在上單調(diào)遞增,在上單調(diào)遞減,且;當(dāng)時,;當(dāng)時,,,函數(shù)單調(diào)遞減;如圖所示畫出函數(shù)圖像,則,故.故選:.本題考查了利用導(dǎo)數(shù)求函數(shù)的零點問題,意在考查學(xué)生的計算能力和應(yīng)用能力.3.A【解析】

構(gòu)造函數(shù),根據(jù)已知條件判斷出的單調(diào)性.根據(jù)是奇函數(shù),求得的值,由此化簡不等式求得不等式的解集.【詳解】構(gòu)造函數(shù),依題意可知,所以在上遞增.由于是奇函數(shù),所以當(dāng)時,,所以,所以.由得,所以,故不等式的解集為.故選:A本小題主要考查構(gòu)造函數(shù)法解不等式,考查利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,考查化歸與轉(zhuǎn)化的數(shù)學(xué)思想方法,屬于中檔題.4.A【解析】

作出函數(shù)的圖象,得到,把函數(shù)有零點轉(zhuǎn)化為與在(2,4]上有交點,利用導(dǎo)數(shù)求出切線斜率,即可求得的取值范圍,再根據(jù)充分、必要條件的定義即可判斷.【詳解】作出函數(shù)的圖象如圖,由圖可知,,函數(shù)有2個零點,即有兩個不同的根,也就是與在上有2個交點,則的最小值為;設(shè)過原點的直線與的切點為,斜率為,則切線方程為,把代入,可得,即,∴切線斜率為,∴k的取值范圍是,∴函數(shù)有兩個零點”是“”的充分不必要條件,故選A.本題主要考查了函數(shù)零點的判定,考查數(shù)學(xué)轉(zhuǎn)化思想方法與數(shù)形結(jié)合的解題思想方法,訓(xùn)練了利用導(dǎo)數(shù)研究過曲線上某點處的切線方程,試題有一定的綜合性,屬于中檔題.5.A【解析】

根據(jù)題意,用表示出與,求出的值即可.【詳解】解:根據(jù)題意,設(shè),則,又,,,故選:A.本題主要考查了平面向量基本定理的應(yīng)用,關(guān)鍵是要找到一組合適的基底表示向量,是基礎(chǔ)題.6.C【解析】試題分析:集合考點:集合間的關(guān)系7.C【解析】

根據(jù)等差數(shù)列性質(zhì)得到,再計算得到答案.【詳解】已知等差數(shù)列中,故答案選C本題考查了等差數(shù)列的性質(zhì),是數(shù)列的常考題型.8.B【解析】

根據(jù)空間中線線、線面位置關(guān)系,逐項判斷即可得出結(jié)果.【詳解】A選項,若,,,,則或與相交;故A錯;B選項,若,,則,又,是兩個不重合的平面,則,故B正確;C選項,若,,則或或與相交,又,是兩個不重合的平面,則或與相交;故C錯;D選項,若,,則或或與相交,又,是兩個不重合的平面,則或與相交;故D錯;故選B本題主要考查與線面、線線相關(guān)的命題,熟記線線、線面位置關(guān)系,即可求解,屬于??碱}型.9.A【解析】

先求出平移后的函數(shù)解析式,結(jié)合圖像的對稱性和得到A和.【詳解】因為關(guān)于軸對稱,所以,所以,的最小值是.,則,所以.本題主要考查三角函數(shù)的圖像變換及性質(zhì).平移圖像時需注意x的系數(shù)和平移量之間的關(guān)系.10.B【解析】

列舉出循環(huán)的每一步,可得出輸出結(jié)果.【詳解】,,不成立,,;不成立,,;不成立,,;成立,輸出的值為.故選:B.本題考查利用程序框圖計算輸出結(jié)果,一般要將算法的每一步列舉出來,考查計算能力,屬于基礎(chǔ)題.11.A【解析】

由f12=e-14>0排除選項D;【詳解】由f12=e-14>0,可排除選項D,f-1=-e本題通過對多個圖象的選擇考查函數(shù)的圖象與性質(zhì),屬于中檔題.這類題型也是近年高考常見的命題方向,該題型的特點是綜合性較強、考查知識點較多,但是并不是無路可循.解答這類題型可以從多方面入手,根據(jù)函數(shù)的定義域、值域、單調(diào)性、奇偶性、特殊點以及x→012.B【解析】

根據(jù)可導(dǎo)函數(shù)在極值點處的導(dǎo)數(shù)值為,得出,再由等比數(shù)列的性質(zhì)可得.【詳解】解:依題意、是函數(shù)的極值點,也就是的兩個根∴又是正項等比數(shù)列,所以∴.故選:B本題主要考查了等比數(shù)列下標(biāo)和性質(zhì)以應(yīng)用,屬于中檔題.二、填空題:本題共4小題,每小題5分,共20分。13.-254【解析】

利用代入即可得到,即是等比數(shù)列,再利用等比數(shù)列的通項公式計算即可.【詳解】由已知,得,即,所以又,即,,所以是以-4為首項,2為公比的等比數(shù)列,所以,即,所以。故答案為:本題考查已知與的關(guān)系求,考查學(xué)生的數(shù)學(xué)運算求解能力,是一道中檔題.14.0.35【解析】

根據(jù)對立事件的概率和為1,結(jié)合題意,即可求出結(jié)果來.【詳解】解:由題意知本題是一個對立事件的概率,抽到的不是一等品的對立事件是抽到一等品,,抽到不是一等品的概率是,故答案為:.本題考查了求互斥事件與對立事件的概率的應(yīng)用問題,屬于基礎(chǔ)題.15.【解析】

把已知等式變形,展開兩角和與差的三角函數(shù),結(jié)合已知求得值.【詳解】解:由,得,,即,,又,,解得:.為正的常數(shù),.故答案為:.本題考查兩角和與差的三角函數(shù),考查數(shù)學(xué)轉(zhuǎn)化思想方法,屬于中檔題.16.10【解析】

①根據(jù)換底公式計算即可得解;②根據(jù)同底對數(shù)加法法則,結(jié)合①的結(jié)果即可求解.【詳解】①由題:,則;②由①可得:.故答案為:①1,②0此題考查對數(shù)的基本運算,涉及換底公式和同底對數(shù)加法運算,屬于基礎(chǔ)題目.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(1)見解析(2)【解析】

(1)通過勾股定理得出,又,進(jìn)而可得平面,則可得到,問題得證;(2)如圖,以為原點,,,所在直線分別為軸,軸,軸,求出平面的法向量和平面的法向量,利用空間向量的夾角公式可得答案.【詳解】(1)因為平面,所以,又因為,,,所以,因此,所以,因此平面,所以,從而,又四邊形為平行四邊形,則四邊形為矩形;(2)如圖,以為原點,,,所在直線分別為軸,軸,軸,所以,平面的法向量,設(shè)平面的法向量,由,由,令,即,所以,,所以,所求二面角的余弦值是.本題考查空間垂直關(guān)系的證明,考查向量法求二面角的大小,考查學(xué)生計算能力,是中檔題.18.(Ⅰ)萬;(Ⅱ)分布列見解析,;(Ⅲ)【解析】

(Ⅰ)根據(jù)比例關(guān)系直接計算得到答案.(Ⅱ)的可能取值為,計算概率得到分布列,再計算數(shù)學(xué)期望得到答案.(Ⅲ)英語測試成績在70分以上的概率為,故,解得答案.【詳解】(Ⅰ)樣本中女生英語成績在分以上的有人,故人數(shù)為:萬人.(Ⅱ)8名男生中,測試成績在70分以上的有人,的可能取值為:.,,.故分布列為:.(Ⅲ)英語測試成績在70分以上的概率為,故,故.故的最小值為.本題考查了樣本估計總體,分布列,數(shù)學(xué)期望,意在考查學(xué)生的計算能力和綜合應(yīng)用能力.19.(1)唯一的極大值點1,無極小值點.(2)1【解析】

(1)求出導(dǎo)函數(shù),求得的解,確定此解兩側(cè)導(dǎo)數(shù)值的正負(fù),確定極值點;(2)問題可變形為恒成立,由導(dǎo)數(shù)求出函數(shù)的最小值,時,無最小值,因此只有,從而得出的不等關(guān)系,得出所求最大值.【詳解】解:(1)定義域為,當(dāng)時,,令得,當(dāng)所以在上單調(diào)遞增,在上單調(diào)遞減,所以有唯一的極大值點,無極小值點.(2)當(dāng)時,.若恒成立,則恒成立,所以恒成立,令,則,由題意,函數(shù)在上單調(diào)遞減,在上單調(diào)遞增,所以,所以所以,所以,故的最大值為1.本題考查用導(dǎo)數(shù)求函數(shù)極值,研究不等式恒成立問題.在求極值時,由確定的不一定是極值點,還需滿足在兩側(cè)的符號相反.不等式恒成立深深轉(zhuǎn)化為求函數(shù)的最值,這里分離參數(shù)法起關(guān)鍵作用.20.(1)減區(qū)間是,增區(qū)間是;(2),證明見解析.【解析】

(1)當(dāng)時,求得函數(shù)的導(dǎo)函數(shù)以及二階導(dǎo)函數(shù),由此求得的單調(diào)區(qū)間.(2)令求得,構(gòu)造函數(shù),利用導(dǎo)數(shù)求得的單調(diào)區(qū)間、極值和最值,結(jié)合有兩個極值點,求得的取值范圍.將代入列方程組,由證得.【詳解】(1),,又,所以在單增,從而當(dāng)時,遞減,當(dāng)時,遞增.(2).令,令,則故在遞增,在遞減,所以.注意到當(dāng)時,所以當(dāng)時,有一個極值點,當(dāng)時,有兩個極值點,當(dāng)時,沒有極值點,綜上因為是的兩個極值點,所以不妨設(shè),得,因為在遞減,且,所以又所以本小題主要考查利用導(dǎo)數(shù)研究函數(shù)的單調(diào)區(qū)間,考查利用導(dǎo)數(shù)研究函數(shù)的極值點,考查利用導(dǎo)數(shù)證明不等式,考查化歸與轉(zhuǎn)化的數(shù)學(xué)思想方法,屬于難題.21.(1)極大值是,無極小值;(2)【解析】

(1)當(dāng)時,可求得,令,利用導(dǎo)數(shù)可判斷的單調(diào)性并得其零點,從而可得原函數(shù)的極值點及極大值;(2)表示出,并求得,由題意,得方程有兩個不同的實根,,從而可得△及,由,得.則可化為對任意的恒成立,按照、、三種情況分類討論,分離參數(shù)后轉(zhuǎn)化為求函數(shù)的最值可解決;【詳解】(1)當(dāng)時,.令,則,顯然在上單調(diào)遞減,又因為,故時,總有,所以在上單調(diào)遞減.由于,所以當(dāng)時,;當(dāng)時,.當(dāng)變化時,的變化情況如下表:+-增極大減所以在上的極大值是,無極小值.(2)由于,則.由題意,方程有兩個不等實根,則,解得,且,又,所以.由,,可得又.將其代入上式得:.整理得,即當(dāng)時,不等式恒成立,即.當(dāng)時,恒成立,即,令,易證是上的減函數(shù).因此,當(dāng)時,,故.當(dāng)時,恒成立,即,因此,當(dāng)時,所以.綜上所述,.本題考查利用導(dǎo)數(shù)求函數(shù)的最值、研究函數(shù)的極值等知識,考查分類討論思想、轉(zhuǎn)化思想,考查學(xué)生綜合運用知識分析問題解決問題的能力,該題綜合性強,難度大,對能力要求較高.22.(Ⅰ);(Ⅱ)【解析】試題分析:(1)先由公式求出數(shù)列的通項公式;進(jìn)而列方程組求數(shù)列的首項與公差,得數(shù)列的通項公式;(2)由(1)可得,再利用“錯位相減法”求

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論