第3章-電阻電路的一般分析_第1頁(yè)
第3章-電阻電路的一般分析_第2頁(yè)
第3章-電阻電路的一般分析_第3頁(yè)
第3章-電阻電路的一般分析_第4頁(yè)
第3章-電阻電路的一般分析_第5頁(yè)
已閱讀5頁(yè),還剩42頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

線性電路的一般分析方法(1)普遍性:對(duì)任何線性電路都適用。

復(fù)雜電路的一般分析法就是根據(jù)KCL、KVL及元件電壓和電流關(guān)系列方程、解方程。根據(jù)列方程時(shí)所選變量的不同可分為支路電流法、回路電流法和節(jié)點(diǎn)電壓法。(2)元件的電壓、電流約束特性。(1)電路的連接關(guān)系—KCL,KVL定律。

方法的基礎(chǔ)(2)系統(tǒng)性:計(jì)算方法有規(guī)律可循。第1頁(yè)/共47頁(yè)§3.1電路的圖uS拋開元件性質(zhì)一個(gè)元件作為一條支路元件的串聯(lián)及并聯(lián)組合作為一條支路65432178543216有向圖1.電路的圖R4R1R3R2R6+_iR5第2頁(yè)/共47頁(yè)(1)圖(Graph)G={支路,節(jié)點(diǎn)}①②1從圖G的一個(gè)節(jié)點(diǎn)出發(fā)沿著一些支路連續(xù)移動(dòng)到達(dá)另一節(jié)點(diǎn)所經(jīng)過(guò)的支路構(gòu)成路經(jīng)。(2)路徑(3)連通圖圖G的任意兩節(jié)點(diǎn)間至少有一條路經(jīng)時(shí)稱為連通圖,非連通圖至少存在兩個(gè)分離部分。第3頁(yè)/共47頁(yè)(4)子圖若圖G1中所有支路和結(jié)點(diǎn)都是圖G中的支路和結(jié)點(diǎn),則稱G1是G的子圖。

樹(Tree)T是連通圖的一個(gè)子圖滿足下列條件:(1)連通(2)包含所有節(jié)點(diǎn)(3)不含閉合路徑第4頁(yè)/共47頁(yè)樹支:構(gòu)成樹的支路連支:屬于G而不屬于T的支路2)樹支的數(shù)目是一定的:連支數(shù):不是樹樹特點(diǎn)1)對(duì)應(yīng)一個(gè)圖有很多的樹第5頁(yè)/共47頁(yè)

回路

(Loop)L是連通圖的一個(gè)子圖,構(gòu)成一條閉合路徑,并滿足:(1)連通(2)每個(gè)節(jié)點(diǎn)關(guān)聯(lián)2條支路12345678253124578不是回路回路2)基本回路的數(shù)目是一定的,為連支數(shù)特點(diǎn)1)對(duì)應(yīng)一個(gè)圖有很多的回路3)對(duì)于平面電路,網(wǎng)孔數(shù)為基本回路數(shù)第6頁(yè)/共47頁(yè)基本回路(單連支回路)12345651231236支路數(shù)=樹枝數(shù)+連支數(shù)=結(jié)點(diǎn)數(shù)-1+基本回路數(shù)結(jié)論結(jié)點(diǎn)、支路和基本回路關(guān)系基本回路具有獨(dú)占的一條連枝第7頁(yè)/共47頁(yè)例87654321圖示為電路的圖,畫出三種可能的樹及其對(duì)應(yīng)的基本回路。876586438243第8頁(yè)/共47頁(yè)

割集Q(Cutset)Q是連通圖G中支路的集合,具有下述性質(zhì):(1)把Q中全部支路移去,圖分成二個(gè)分離部分。(2)任意放回Q中一條支路,仍構(gòu)成連通圖。876543219876543219割集:(196)(289)(368)(467)(578)(36587)(3628)是割集嗎?基本割集只含有一個(gè)樹枝的割集。割集數(shù)=n-1連支集合不能構(gòu)成割集第9頁(yè)/共47頁(yè)§3.2KCL和KVL的獨(dú)立方程數(shù)KCL的獨(dú)立方程數(shù)654321432114324123+++=0結(jié)論n個(gè)結(jié)點(diǎn)的電路,獨(dú)立的KCL方程為n-1個(gè)。第10頁(yè)/共47頁(yè)KVL的獨(dú)立方程數(shù)KVL的獨(dú)立方程數(shù)=基本回路數(shù)=b-(n-1)結(jié)論n個(gè)結(jié)點(diǎn)、b條支路的電路,獨(dú)立的KCL和KVL方程數(shù)為:第11頁(yè)/共47頁(yè)§3.3支路電流法(branchcurrentmethod)對(duì)于有n個(gè)節(jié)點(diǎn)、b條支路的電路,要求解支路電流,未知量共有b個(gè)。只要列出b個(gè)獨(dú)立的電路方程,便可以求解這b個(gè)變量。以各支路電流為未知量列寫電路方程分析電路的方法。支路電流法獨(dú)立方程的列寫(1)從電路的n個(gè)結(jié)點(diǎn)中任意選擇n-1個(gè)結(jié)點(diǎn)列寫KCL方程(2)選擇基本回路列寫b-(n-1)個(gè)KVL方程第12頁(yè)/共47頁(yè)有6個(gè)支路電流,需列寫6個(gè)方程。KCL方程:取網(wǎng)孔為基本回路,沿順時(shí)針?lè)较蚶@行列KVL寫方程:結(jié)合元件特性消去支路電壓得:回路1回路2回路3R1R2R3R4R5R6+–i2i3i4i1i5i6uS1234例132123第13頁(yè)/共47頁(yè)支路電流法的一般步驟:(1)標(biāo)定各支路電流(電壓)的參考方向;(2)選定(n–1)個(gè)節(jié)點(diǎn),列寫其KCL方程;(3)選定b–(n–1)個(gè)獨(dú)立回路,列寫其KVL方程;

(元件特性代入)(4)求解上述方程,得到b個(gè)支路電流;(5)進(jìn)一步計(jì)算支路電壓和進(jìn)行其它分析。支路電流法的特點(diǎn):支路法列寫的是KCL和KVL方程,所以方程列寫方便、直觀,但方程數(shù)較多,宜于在支路數(shù)不多的情況下使用。第14頁(yè)/共47頁(yè)例1.節(jié)點(diǎn)a:–I1–I2+I3=0(1)n–1=1個(gè)KCL方程:求各支路電流及電壓源各自發(fā)出的功率。解(2)b-(n-1)=2個(gè)KVL方程:11I2+7I3=

6

U=US7I1–11I2=70-6=641270V6V7

ba+–+–I1I3I27

11

第15頁(yè)/共47頁(yè)例2.節(jié)點(diǎn)a:–I1–I2+I3=0(1)n–1=1個(gè)KCL方程:列寫支路電流方程.(電路中含有理想電流源)解1.(2)b–(n–1)=2個(gè)KVL方程:11I2+7I3=

U7I1–11I2=70-Ua1270V6A7

b+–I1I3I27

11

增補(bǔ)方程:I2=6A+U_1解2.70V6A7

b+–I1I3I27

11

a由于I2已知,故只列寫兩個(gè)方程節(jié)點(diǎn)a:–I1+I3=6避開電流源支路取回路:7I1+7I3=70第16頁(yè)/共47頁(yè)例3.節(jié)點(diǎn)a:–I1–I2+I3=0列寫支路電流方程.(電路中含有受控源)解11I2+7I3=5U7I1–11I2=70-5U增補(bǔ)方程:U=7I3a1270V7

b+–I1I3I27

11

+5U_+U_有受控源的電路,方程列寫分兩步:(1)先將受控源看作獨(dú)立源列方程;(2)將控制量用未知量表示,并代入(1)中所列的方程,消去中間變量。第17頁(yè)/共47頁(yè)§3.4網(wǎng)孔電流法基本思想為減少未知量(方程)的個(gè)數(shù),假想每個(gè)網(wǎng)孔中有一個(gè)網(wǎng)孔電流。各支路電流可用網(wǎng)孔電流的線性組合表示。來(lái)求得電路的解。網(wǎng)孔電流法以基本回路中的網(wǎng)孔電流為未知量列寫電路方程分析電路的方法。網(wǎng)孔電流是人為任意假定的在網(wǎng)孔中流動(dòng)的電流.獨(dú)立回路為2。選圖示的兩個(gè)獨(dú)立回路,支路電流可表示為:i1i3uS1uS2R1R2R3ba+–+–i2il1il2im1im2第18頁(yè)/共47頁(yè)網(wǎng)孔電流在獨(dú)立回路中是閉合的,對(duì)每個(gè)相關(guān)節(jié)點(diǎn)均流進(jìn)一次,流出一次,所以KCL自動(dòng)滿足。因此網(wǎng)孔電流法是對(duì)獨(dú)立回路列寫KVL方程,方程數(shù)為:列寫的方程與支路電流法相比,方程數(shù)減少n-1個(gè)。回路1:R1im1+R2(im1-im2)-uS1+uS2=0回路2:R2(im2-im1)+R3im2-uS2=0整理得:(R1+R2)

im1-R2im2=uS1-uS2-R2im1+(R2+R3)

im2=uS2i1i3uS1uS2R1R2R3ba+–+–i2im1im2方程的列寫第19頁(yè)/共47頁(yè)R11=R1+R2

回路1的自電阻。等于回路1中所有電阻之和。觀察可以看出如下規(guī)律:R22=R2+R3

回路2的自電阻。等于回路2中所有電阻之和。自電阻總為正。R12=R21=–R2

回路1、回路2之間的互電阻。當(dāng)兩個(gè)回路電流流過(guò)相關(guān)支路方向相同時(shí),互電阻取正號(hào);否則為負(fù)號(hào)。us11=uS1-uS2

回路1中所有獨(dú)立源電壓的代數(shù)和。us22=uS2

回路2中所有獨(dú)立源電壓的代數(shù)和。當(dāng)獨(dú)立源電壓方向與該回路方向一致時(shí),取負(fù)號(hào);反之取正號(hào)。注意:獨(dú)立源包括電壓源,電流源.為了便于計(jì)算也要把受控源的電壓考慮在內(nèi)第20頁(yè)/共47頁(yè)R11im1+R12im2=uS11R12im1+R22im2=uS22由此得標(biāo)準(zhǔn)形式的方程:對(duì)于具有l(wèi)=b-(n-1)

個(gè)回路的電路,有:其中:Rjk:互阻+:流過(guò)互阻兩個(gè)回路電流方向相同-:流過(guò)互阻兩個(gè)回路電流方向相反0:無(wú)關(guān)R11im1+R12im2+…+R1liml=uS11…R21im1+R22im2+…+R2liml=uS22Rl1im1+Rl2im2+…+Rlliml=uSllRkk:自阻(為正)第21頁(yè)/共47頁(yè)例1.用網(wǎng)孔法求各支路電流。解:求自阻和互阻R11=R1+R2R22=R2+R3R33=R3+R4R12=R21=-R2R23=R32=-R3R13=R31=0us11=Us1-Us2us22=Us2us33=-Us4(2)列KVL方程(R1+R2)Ia-R2Ib=US1-US2

-R2Ia+(R2+R3)Ib-

R3Ic=US2

-R3Ib+(R3+R4)Ic=-US4對(duì)稱陣,且互電阻為負(fù)(3)求解回路電流方程,得Ia,Ib,Ic(4)求各支路電流:I1=Ia

,I2=Ib-Ia

,I3=Ic-Ib,I4=-IcIaIcIb+_US2+_US1I1I2I3R1R2R3+_US4R4I4第22頁(yè)/共47頁(yè)例2:用網(wǎng)孔法求各支路電流。+-+-140V90V++--u10.5u1i1i2i320Ω5Ω2Ωim1im2解:R11=20+2=22ΩR12=R21=-2ΩR22=2+5=7Ωus11=140-0.5u1

us22=0.5u1-9022im1-2im2=140-0.5u1-2im1+7im2=0.5u1-90u1=20im1im1=4Aim2=-6Ai1=im1=4Ai2=-im2=6Ai3=im1-im2=10A注:含受控源時(shí)第23頁(yè)/共47頁(yè)§3.5回路電流法(loopcurrentmethod)基本思想為減少未知量(方程)的個(gè)數(shù),假想每個(gè)回路中有一個(gè)回路電流。各支路電流可用回路電流的線性組合表示。來(lái)求得電路的解。回路電流法以基本回路中的回路電流為未知量列寫電路方程分析電路的方法。回路電流法是網(wǎng)孔電流法的拓展應(yīng)用。i1i3uS1uS2R1R2R3ba+–+–i2il1il2獨(dú)立回路為2。選圖示的兩個(gè)獨(dú)立回路,支路電流可表示為:第24頁(yè)/共47頁(yè)例1.用回路電流法求解電流i.解1獨(dú)立回路有三個(gè),選網(wǎng)孔為獨(dú)立回路:(1)不含受控源的線性網(wǎng)絡(luò)Rjk=Rkj

,系數(shù)矩陣為對(duì)稱陣。(2)當(dāng)網(wǎng)孔電流均取順(或逆時(shí)針?lè)较驎r(shí),Rjk均為負(fù)。表明i1i3i2RSR5R4R3R1R2US+_iiL1iL2iL3第25頁(yè)/共47頁(yè)解2只讓一個(gè)回路電流經(jīng)過(guò)R5支路特點(diǎn)(1)減少計(jì)算量(2)互有電阻的識(shí)別難度加大,易遺漏互有電阻RSR5R4R3R1R2US+_ii1i3i2il1il3il2第26頁(yè)/共47頁(yè)回路法的一般步驟:(1)選定l=b-(n-1)個(gè)獨(dú)立回路,并確定其繞行方向;(2)對(duì)l個(gè)獨(dú)立回路,以回路電流為未知量,列寫其KVL方程;(3)求解上述方程,得到l個(gè)回路電流;(5)其它分析。(4)求各支路電流(用回路電流表示);第27頁(yè)/共47頁(yè)理想電流源支路的處理

引入電流源電壓,增加回路電流和電流源電流的關(guān)系方程。例RSR4R3R1R2US+_iSU_+i1i3i2電流源看作電壓源列方程增補(bǔ)方程:第28頁(yè)/共47頁(yè)

選取獨(dú)立回路,使理想電流源支路僅僅屬于一個(gè)回路,

該回路電流即IS。RSR4R3R1R2US+_iSi1i3i2例為已知電流,實(shí)際減少了一方程第29頁(yè)/共47頁(yè)

與電阻并聯(lián)的電流源,可做電源等效變換IRISoo轉(zhuǎn)換+_RISIRoo受控電源支路的處理

對(duì)含有受控電源支路的電路,可先把受控源看作獨(dú)立電源按上述方法列方程,再將控制量用回路電流表示。第30頁(yè)/共47頁(yè)例RSR4R3R1R2US+_5U_+_+Ui1i3i2受控電壓源看作獨(dú)立電壓源列方程增補(bǔ)方程:第31頁(yè)/共47頁(yè)例:求回路電流iL1,iL2,iL3.+++---5VU02U0ux1Ω4Ω3Ω2ΩiL1iL2iL3解:R11=7ΩR22=4ΩR33=3ΩR12=R21=-3ΩR13=R31=0ΩR23=R32=-1Ωus11=uxus22=5Vus33=-ux7iL1-3iL2=ux-3iL1+4iL2-iL3=5-iL2+3iL3=-uxiL1-iL3=2U0U0=3(iL2-iL1)iL1=11/6(A)iL2=7/3(A)iL3=-7/6(A)第32頁(yè)/共47頁(yè)§3.6結(jié)點(diǎn)電壓法(nodevoltagemethod)選結(jié)點(diǎn)電壓為未知量,則KVL自動(dòng)滿足,就無(wú)需列寫KVL方程。各支路電流、電壓可視為結(jié)點(diǎn)電壓的線性組合,求出結(jié)點(diǎn)電壓后,便可方便地得到各支路電壓、電流?;舅枷耄阂越Y(jié)點(diǎn)電壓為未知量列寫電路方程分析電路的方法。適用于結(jié)點(diǎn)較少的電路。結(jié)點(diǎn)電壓法列寫的方程結(jié)點(diǎn)電壓法列寫的是結(jié)點(diǎn)上的KCL方程,獨(dú)立方程數(shù)為:與支路電流法相比,方程數(shù)減少b-(n-1)個(gè)。第33頁(yè)/共47頁(yè)任意選擇參考點(diǎn):其它結(jié)點(diǎn)與參考點(diǎn)的電壓差即是節(jié)點(diǎn)電壓(位),方向?yàn)閺莫?dú)立節(jié)點(diǎn)指向參考節(jié)點(diǎn)。(uA-uB)+uB-uA=0KVL自動(dòng)滿足說(shuō)明uA-uBuAuB方程的列寫iS1uSiS3R1i1i2i3i4i5R2R5R3R4+_(1)選定參考節(jié)點(diǎn),標(biāo)明其余n-1個(gè)獨(dú)立節(jié)點(diǎn)的電壓132第34頁(yè)/共47頁(yè)iS1uSiS2R1i1i2i3i4i5R2R5R3R4+_132(2)列KCL方程:

iR出=iS入i1+i2=iS1+iS2-i2+i4+i3=0把支路電流用結(jié)點(diǎn)電壓表示:-i3+i5=-iS2第35頁(yè)/共47頁(yè)整理,得:令Gk=1/Rk,k=1,2,3,4,5上式簡(jiǎn)記為:G11un1+G12un2

+G13un3

=iSn1G21un1+G22un2

+G23un3

=iSn2G31un1+G32un2

+G33un3

=iSn3標(biāo)準(zhǔn)形式的結(jié)點(diǎn)電壓方程等效電流源第36頁(yè)/共47頁(yè)G11=G1+G2

結(jié)點(diǎn)1的自電導(dǎo),等于接在結(jié)點(diǎn)1上所有的電

導(dǎo)之和。

G22=G2+G3+G4

結(jié)點(diǎn)2的自電導(dǎo),等于接在結(jié)點(diǎn)2上所有支路的電導(dǎo)之和。G12=G21=-G2

結(jié)點(diǎn)1與結(jié)點(diǎn)2之間的互電導(dǎo),等于接在結(jié)點(diǎn)1與結(jié)點(diǎn)2之間的所有支路的電導(dǎo)之和,為負(fù)值。自電導(dǎo)總為正,互電導(dǎo)總為負(fù)。G33=G3+G5結(jié)點(diǎn)3的自電導(dǎo),等于接在結(jié)點(diǎn)3上所有支路

的電導(dǎo)之和。G23=G32=-G3

結(jié)點(diǎn)2與結(jié)點(diǎn)3之間的互電導(dǎo),等于接在結(jié)點(diǎn)

1與結(jié)點(diǎn)2之間的所有支路的電導(dǎo)之和,為負(fù)值。第37頁(yè)/共47頁(yè)iS22=-iS2+uS/R5

流入結(jié)點(diǎn)2的獨(dú)立源電流的代數(shù)和。iS11=iS1+iS2

流入結(jié)點(diǎn)1的獨(dú)立源電流的代數(shù)和。注:獨(dú)立源發(fā)出的電流流入結(jié)點(diǎn)取正號(hào),流出取負(fù)號(hào)。獨(dú)立源的成分包括:電流源,電壓源,為了便于計(jì)算含有受控源電路,可以把受控源暫時(shí)看作獨(dú)立源.由節(jié)點(diǎn)電壓方程求得各節(jié)點(diǎn)電壓后即可求得各支路電壓,各支路電流可用節(jié)點(diǎn)電壓表示:第38頁(yè)/共47頁(yè)一般情況G11un1+G12un2+…+G1,n-1un,n-1=iS11G21un1+G22un2+…+G2,n-1un,n-1=iS22

Gn-1,1un1+Gn-1,2un2+…+Gn-1,nun,n-1=iSn-1,n-1其中Gii—自電導(dǎo),等于接在節(jié)點(diǎn)i上所有支路的電導(dǎo)之和(包括電壓源與電阻串聯(lián)支路)??倿檎?。

當(dāng)電路不含受控源時(shí),系數(shù)矩陣為對(duì)稱陣。iSii

—流入節(jié)點(diǎn)i的所有電流源電流的代數(shù)和(包括由電壓源與電阻串聯(lián)支路等效的電流源)。Gij

=Gji—互電導(dǎo),等于接在節(jié)點(diǎn)i與節(jié)點(diǎn)j之間的所支路的電導(dǎo)之和,總為負(fù)。第39頁(yè)/共47頁(yè)節(jié)點(diǎn)法的一般步驟:(1)選定參考結(jié)點(diǎn),標(biāo)定n-1個(gè)獨(dú)立結(jié)點(diǎn);(2)對(duì)n-1個(gè)獨(dú)立結(jié)點(diǎn),以結(jié)點(diǎn)電壓為未知量,列寫其n-1個(gè)獨(dú)立結(jié)點(diǎn)所對(duì)應(yīng)的自導(dǎo),互導(dǎo),獨(dú)立源電流的代數(shù)和。(3)求解上述方程,得到n-1個(gè)結(jié)點(diǎn)電壓;(5)其它分析。(4)求各支路電流(用結(jié)點(diǎn)電壓表示);第40頁(yè)/共47頁(yè)例1:電路如圖所示,用結(jié)點(diǎn)電壓法求各支路電流及輸出電壓U0++--15VU0i1i4i3i2i55A10A3Ω6Ω2Ω2Ω2Ω1230解:-(1/3+1/6)+(1/3+1/6+1/2)un2-1/2un3=15/3+10-5(1/2+1/6+1/3)un1-(1/3+1/6)un2=-15/3-1/2un2+(1/2+1/2)un3=5un1=5Vun2=20Vun3=U0=15Vi1=15-(un2-un1)/3=0Ai2=(un2-un1)/6=2.5Ai3=un1/2=2.5Ai4=(un2-un3)/2=2.5Ai5=un3/2=7.5A第41頁(yè)/共47頁(yè)例2:電路如圖所示,us1為無(wú)伴電壓源的電壓,試列出此電路的結(jié)點(diǎn)電壓方程。+-us1G1G2G3is2120解:選0為參考點(diǎn)Un1=us1-G3.un1+(G2+G3).un2=is2即可解出un2第42頁(yè)/共47頁(yè)試列寫電路的節(jié)點(diǎn)電壓方程。(G1+G2+GS)U1-G1U2-GsU3=USGS-G1U1+(G1+G3+G4)U2

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論