版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
黑龍江省大興安嶺漠河縣高中2025年高三下學期階段性考試數(shù)學試題注意事項1.考試結(jié)束后,請將本試卷和答題卡一并交回.2.答題前,請務(wù)必將自己的姓名、準考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應(yīng)選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.若函數(shù)滿足,且,則的最小值是()A. B. C. D.2.某歌手大賽進行電視直播,比賽現(xiàn)場有名特約嘉賓給每位參賽選手評分,場內(nèi)外的觀眾可以通過網(wǎng)絡(luò)平臺給每位參賽選手評分.某選手參加比賽后,現(xiàn)場嘉賓的評分情況如下表,場內(nèi)外共有數(shù)萬名觀眾參與了評分,組織方將觀眾評分按照,,分組,繪成頻率分布直方圖如下:嘉賓評分嘉賓評分的平均數(shù)為,場內(nèi)外的觀眾評分的平均數(shù)為,所有嘉賓與場內(nèi)外的觀眾評分的平均數(shù)為,則下列選項正確的是()A. B. C. D.3.窗花是貼在窗紙或窗戶玻璃上的剪紙,是中國古老的傳統(tǒng)民間藝術(shù)之一,它歷史悠久,風格獨特,神獸人們喜愛.下圖即是一副窗花,是把一個邊長為12的大正方形在四個角處都剪去邊長為1的小正方形后剩余的部分,然后在剩余部分中的四個角處再剪出邊長全為1的一些小正方形.若在這個窗花內(nèi)部隨機取一個點,則該點不落在任何一個小正方形內(nèi)的概率是()A. B. C. D.4.已知是橢圓和雙曲線的公共焦點,是它們的-一個公共點,且,設(shè)橢圓和雙曲線的離心率分別為,則的關(guān)系為()A. B.C. D.5.已知拋物線和點,直線與拋物線交于不同兩點,,直線與拋物線交于另一點.給出以下判斷:①以為直徑的圓與拋物線準線相離;②直線與直線的斜率乘積為;③設(shè)過點,,的圓的圓心坐標為,半徑為,則.其中,所有正確判斷的序號是()A.①② B.①③ C.②③ D.①②③6.以下兩個圖表是2019年初的4個月我國四大城市的居民消費價格指數(shù)(上一年同月)變化圖表,則以下說法錯誤的是()(注:圖表一每個城市的條形圖從左到右依次是1、2、3、4月份;圖表二每個月份的條形圖從左到右四個城市依次是北京、天津、上海、重慶)A.3月份四個城市之間的居民消費價格指數(shù)與其它月份相比增長幅度較為平均B.4月份僅有三個城市居民消費價格指數(shù)超過102C.四個月的數(shù)據(jù)顯示北京市的居民消費價格指數(shù)增長幅度波動較小D.僅有天津市從年初開始居民消費價格指數(shù)的增長呈上升趨勢7.已知全集,函數(shù)的定義域為,集合,則下列結(jié)論正確的是A. B.C. D.8.已知函數(shù)的圖像上有且僅有四個不同的點關(guān)于直線的對稱點在的圖像上,則實數(shù)的取值范圍是()A. B. C. D.9.已知定義在上的奇函數(shù)滿足,且當時,,則()A.1 B.-1 C.2 D.-210.為了進一步提升駕駛?cè)私煌ò踩拿饕庾R,駕考新規(guī)要求駕校學員必須到街道路口執(zhí)勤站崗,協(xié)助交警勸導交通.現(xiàn)有甲、乙等5名駕校學員按要求分配到三個不同的路口站崗,每個路口至少一人,且甲、乙在同一路口的分配方案共有()A.12種 B.24種 C.36種 D.48種11.若P是的充分不必要條件,則p是q的()A.充分不必要條件B.必要不充分條件C.充要條件D.既不充分也不必要條件12.定義兩種運算“★”與“◆”,對任意,滿足下列運算性質(zhì):①★,◆;②()★★,◆◆,則(◆2020)(2020★2018)的值為()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知過點的直線與函數(shù)的圖象交于、兩點,點在線段上,過作軸的平行線交函數(shù)的圖象于點,當∥軸,點的橫坐標是14.雙曲線的左焦點為,點,點P為雙曲線右支上的動點,且周長的最小值為8,則雙曲線的實軸長為________,離心率為________.15.已知函數(shù)恰好有3個不同的零點,則實數(shù)的取值范圍為____16.展開式中的系數(shù)為_______________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知函數(shù),,設(shè).(1)當時,求函數(shù)的單調(diào)區(qū)間;(2)設(shè)方程(其中為常數(shù))的兩根分別為,,證明:.(注:是的導函數(shù))18.(12分)已知函數(shù).(1)若曲線存在與軸垂直的切線,求的取值范圍.(2)當時,證明:.19.(12分)已知函數(shù)(1)若函數(shù)有且只有一個零點,求實數(shù)的取值范圍;(2)若函數(shù)對恒成立,求實數(shù)的取值范圍.20.(12分)已知函數(shù)(Ⅰ)若,求曲線在點處的切線方程;(Ⅱ)若在上恒成立,求實數(shù)的取值范圍;(Ⅲ)若數(shù)列的前項和,,求證:數(shù)列的前項和.21.(12分)已知函數(shù),.(Ⅰ)當時,求曲線在處的切線方程;(Ⅱ)求函數(shù)在上的最小值;(Ⅲ)若函數(shù),當時,的最大值為,求證:.22.(10分)在直角坐標系中,曲線的參數(shù)方程為(為參數(shù)).點在曲線上,點滿足.(1)以坐標原點為極點,軸的正半軸為極軸建立極坐標系,求動點的軌跡的極坐標方程;(2)點,分別是曲線上第一象限,第二象限上兩點,且滿足,求的值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.A【解析】
由推導出,且,將所求代數(shù)式變形為,利用基本不等式求得的取值范圍,再利用函數(shù)的單調(diào)性可得出其最小值.【詳解】函數(shù)滿足,,即,,,,即,,則,由基本不等式得,當且僅當時,等號成立.,由于函數(shù)在區(qū)間上為增函數(shù),所以,當時,取得最小值.故選:A.本題考查代數(shù)式最值的計算,涉及對數(shù)運算性質(zhì)、基本不等式以及函數(shù)單調(diào)性的應(yīng)用,考查計算能力,屬于中等題.2.C【解析】
計算出、,進而可得出結(jié)論.【詳解】由表格中的數(shù)據(jù)可知,,由頻率分布直方圖可知,,則,由于場外有數(shù)萬名觀眾,所以,.故選:B.本題考查平均數(shù)的大小比較,涉及平均數(shù)公式以及頻率分布直方圖中平均數(shù)的計算,考查計算能力,屬于基礎(chǔ)題.3.D【解析】
由幾何概型可知,概率應(yīng)為非小正方形面積與窗花面積的比,即可求解.【詳解】由題,窗花的面積為,其中小正方形的面積為,所以所求概率,故選:D本題考查幾何概型的面積公式的應(yīng)用,屬于基礎(chǔ)題.4.A【解析】
設(shè)橢圓的半長軸長為,雙曲線的半長軸長為,根據(jù)橢圓和雙曲線的定義得:,解得,然后在中,由余弦定理得:,化簡求解.【詳解】設(shè)橢圓的長半軸長為,雙曲線的長半軸長為,由橢圓和雙曲線的定義得:,解得,設(shè),在中,由余弦定理得:,化簡得,即.故選:A本題主要考查橢圓,雙曲線的定義和性質(zhì)以及余弦定理的應(yīng)用,還考查了運算求解的能力,屬于中檔題.5.D【解析】
對于①,利用拋物線的定義,利用可判斷;對于②,設(shè)直線的方程為,與拋物線聯(lián)立,用坐標表示直線與直線的斜率乘積,即可判斷;對于③,將代入拋物線的方程可得,,從而,,利用韋達定理可得,再由,可用m表示,線段的中垂線與軸的交點(即圓心)橫坐標為,可得a,即可判斷.【詳解】如圖,設(shè)為拋物線的焦點,以線段為直徑的圓為,則圓心為線段的中點.設(shè),到準線的距離分別為,,的半徑為,點到準線的距離為,顯然,,三點不共線,則.所以①正確.由題意可設(shè)直線的方程為,代入拋物線的方程,有.設(shè)點,的坐標分別為,,則,.所以.則直線與直線的斜率乘積為.所以②正確.將代入拋物線的方程可得,,從而,.根據(jù)拋物線的對稱性可知,,兩點關(guān)于軸對稱,所以過點,,的圓的圓心在軸上.由上,有,,則.所以,線段的中垂線與軸的交點(即圓心)橫坐標為,所以.于是,,代入,,得,所以.所以③正確.故選:D本題考查了拋物線的性質(zhì)綜合,考查了學生綜合分析,轉(zhuǎn)化劃歸,數(shù)形結(jié)合,數(shù)學運算的能力,屬于較難題.6.D【解析】
采用逐一驗證法,根據(jù)圖表,可得結(jié)果.【詳解】A正確,從圖表二可知,3月份四個城市的居民消費價格指數(shù)相差不大B正確,從圖表二可知,4月份只有北京市居民消費價格指數(shù)低于102C正確,從圖表一中可知,只有北京市4個月的居民消費價格指數(shù)相差不大D錯誤,從圖表一可知上海市也是從年初開始居民消費價格指數(shù)的增長呈上升趨勢故選:D本題考查圖表的認識,審清題意,細心觀察,屬基礎(chǔ)題.7.A【解析】
求函數(shù)定義域得集合M,N后,再判斷.【詳解】由題意,,∴.故選A.本題考查集合的運算,解題關(guān)鍵是確定集合中的元素.確定集合的元素時要注意代表元形式,集合是函數(shù)的定義域,還是函數(shù)的值域,是不等式的解集還是曲線上的點集,都由代表元決定.8.A【解析】
可將問題轉(zhuǎn)化,求直線關(guān)于直線的對稱直線,再分別討論兩函數(shù)的增減性,結(jié)合函數(shù)圖像,分析臨界點,進一步確定的取值范圍即可【詳解】可求得直線關(guān)于直線的對稱直線為,當時,,,當時,,則當時,,單減,當時,,單增;當時,,,當,,當時,單減,當時,單增;根據(jù)題意畫出函數(shù)大致圖像,如圖:當與()相切時,得,解得;當與()相切時,滿足,解得,結(jié)合圖像可知,即,故選:A本題考查數(shù)形結(jié)合思想求解函數(shù)交點問題,導數(shù)研究函數(shù)增減性,找準臨界是解題的關(guān)鍵,屬于中檔題9.B【解析】
根據(jù)f(x)是R上的奇函數(shù),并且f(x+1)=f(1-x),便可推出f(x+4)=f(x),即f(x)的周期為4,而由x∈[0,1]時,f(x)=2x-m及f(x)是奇函數(shù),即可得出f(0)=1-m=0,從而求得m=1,這樣便可得出f(2019)=f(-1)=-f(1)=-1.【詳解】∵是定義在R上的奇函數(shù),且;∴;∴;∴的周期為4;∵時,;∴由奇函數(shù)性質(zhì)可得;∴;∴時,;∴.故選:B.本題考查利用函數(shù)的奇偶性和周期性求值,此類問題一般根據(jù)條件先推導出周期,利用函數(shù)的周期變換來求解,考查理解能力和計算能力,屬于中等題.10.C【解析】
先將甲、乙兩人看作一個整體,當作一個元素,再將這四個元素分成3個部分,每一個部分至少一個,再將這3部分分配到3個不同的路口,根據(jù)分步計數(shù)原理可得選項.【詳解】把甲、乙兩名交警看作一個整體,個人變成了4個元素,再把這4個元素分成3部分,每部分至少有1個人,共有種方法,再把這3部分分到3個不同的路口,有種方法,由分步計數(shù)原理,共有種方案。故選:C.本題主要考查排列與組合,常常運用捆綁法,插空法,先分組后分配等一些基本思想和方法解決問題,屬于中檔題.11.B【解析】
試題分析:通過逆否命題的同真同假,結(jié)合充要條件的判斷方法判定即可.由p是的充分不必要條件知“若p則”為真,“若則p”為假,根據(jù)互為逆否命題的等價性知,“若q則”為真,“若則q”為假,故選B.考點:邏輯命題12.B【解析】
根據(jù)新運算的定義分別得出◆2020和2020★2018的值,可得選項.【詳解】由()★★,得(+2)★★,又★,所以★,★,★,,以此類推,2020★2018★2018,又◆◆,◆,所以◆,◆,◆,,以此類推,◆2020,所以(◆2020)(2020★2018),故選:B.本題考查定義新運算,關(guān)鍵在于理解,運用新定義進行求值,屬于中檔題.二、填空題:本題共4小題,每小題5分,共20分。13.【解析】
通過設(shè)出A點坐標,可得C點坐標,通過∥軸,可得B點坐標,于是再利用可得答案.【詳解】根據(jù)題意,可設(shè)點,則,由于∥軸,故,代入,可得,即,由于在線段上,故,即,解得.14.22【解析】
設(shè)雙曲線的右焦點為,根據(jù)周長為,計算得到答案.【詳解】設(shè)雙曲線的右焦點為.周長為:.當共線時等號成立,故,即實軸長為,.故答案為:;.本題考查雙曲線周長的最值問題,離心率,實軸長,意在考查學生的計算能力和轉(zhuǎn)化能力.15.【解析】
恰好有3個不同的零點恰有三個根,然后轉(zhuǎn)化成求函數(shù)值域即可.【詳解】解:恰好有3個不同的零點恰有三個根,令,,在遞增;,遞減,遞增,時,在有一個零點,在有2個零點;故答案為:.已知函數(shù)的零點個數(shù)求參數(shù)的取值范圍是重點也是難點,這類題一般用分離參數(shù)的方法,中檔題.16.【解析】
把按照二項式定理展開,可得的展開式中的系數(shù).【詳解】解:,故它的展開式中的系數(shù)為,故答案為:.本題主要考查二項式定理的應(yīng)用,二項展開式的通項公式,二項式系數(shù)的性質(zhì),屬于基礎(chǔ)題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(1)在上單調(diào)遞增,在上單調(diào)遞減.(2)見解析【解析】
(1)求出導函數(shù),由確定增區(qū)間,由確定減區(qū)間;(2)求出含有參數(shù)的,再求出,由的兩根是,得,計算,代入后可得結(jié)論.【詳解】解:,函數(shù)的定義域為,.(1)當時,,由得,由得,故函數(shù)在上單調(diào)遞增,在上單調(diào)遞減.(2)證明:由條件可得,,,方程的兩根分別為,,,且,可得..本題考查用導數(shù)研究函數(shù)的單調(diào)性,考查導數(shù)的運算、方程根的知識.在可導函數(shù)中一般由確定增區(qū)間,由確定減區(qū)間.18.(1)(2)證明見解析【解析】
(1)在上有解,,設(shè),求導根據(jù)函數(shù)的單調(diào)性得到最值,得到答案.(2)證明,只需證,記,求導得到函數(shù)的單調(diào)性,得到函數(shù)的最小值,得到證明.【詳解】(1)由題可得,在上有解,則,令,,當時,單調(diào)遞增;當時,單調(diào)遞減.所以是的最大值點,所以.(2)由,所以,要證明,只需證,即證.記在上單調(diào)遞增,且,當時,單調(diào)遞減;當時,單調(diào)遞增.所以是的最小值點,,則,故.本題考查了函數(shù)的切線問題,證明不等式,意在考查學生的綜合應(yīng)用能力和轉(zhuǎn)化能力.19.(1);(2).【解析】
(1)求導得到,討論和兩種情況,計算函數(shù)的單調(diào)性,得到,再討論,,三種情況,計算得到答案.(2)計算得到,討論,兩種情況,分別計算單調(diào)性得到函數(shù)最值,得到答案.【詳解】(1),①當時恒成立,所以單調(diào)遞增,因為,所以有唯一零點,即符合題意;②當時,令,函數(shù)在上單調(diào)遞減,在上單調(diào)遞增,函數(shù)。(i)當即,所以符合題意,(ii)當即時,因為,故存在,所以不符題意(iii)當時,因為,設(shè),所以,單調(diào)遞增,即,故存在,使得,不符題意;綜上,的取值范圍為。(2)。①當時,恒成立,所以單調(diào)遞增,所以,即符合題意;②當時,恒成立,所以單調(diào)遞增,又因為,所以存在,使得,且當時,。即在上單調(diào)遞減,所以,不符題意。綜上,的取值范圍為.本題考查了函數(shù)的零點問題,恒成立問題,意在考查學生的分類討論能力和綜合應(yīng)用能力.20.(Ⅰ);(Ⅱ);(Ⅲ)證明見解析.【解析】試題分析:將,求出切線方程求導后討論當時和時的單調(diào)性證明,求出實數(shù)的取值范圍先求出、的通項公式,利用當時,得,下面證明:解析:(Ⅰ)因為,所以,,切點為.由,所以,所以曲線在處的切線方程為,即(Ⅱ)由,令,則(當且僅當取等號).故在上為增函數(shù).①當時,,故在上為增函數(shù),所以恒成立,故符合題意;②當時,由于,,根據(jù)零點存在定理,必存在,使得,由于在上為增函數(shù),故當時,,故在上為減函數(shù),所以當時,,故在上不恒成立,所以不符合題意.綜上所述,實數(shù)的取值范圍為(III)證明:由由(Ⅱ)知當時,,故當時,,故,故.下面證明:因為而,所以,,即:點睛:本題考查了利用導數(shù)的幾何意義求出參數(shù)及證明不等式成立,借助第二問的證明過程,利用導數(shù)的單調(diào)性證明數(shù)列的不等式,在求解的過程中還要求出數(shù)列的和,計算較為復(fù)雜,本題屬于難題.21.(Ⅰ)(Ⅱ)見解析;(Ⅲ
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 二零二五年度護校與養(yǎng)老機構(gòu)合作服務(wù)合同3篇
- 女生節(jié)活動策劃方案(3篇)
- 中小學校實驗室內(nèi)部管理制度范文(二篇)
- 2025年度物流運輸安全環(huán)保服務(wù)協(xié)議范本3篇
- 液壓銑床課程設(shè)計摘要
- 財務(wù)分析圖表課程設(shè)計
- 平路機安全操作規(guī)程范文(2篇)
- 二零二五年度房地產(chǎn)租賃權(quán)包銷合同3篇
- 2025年上半年安全員工作總結(jié)(3篇)
- 2024年滬教版高三歷史上冊階段測試試卷
- 2022年福建省職業(yè)院校技能大賽中職組“現(xiàn)代物流綜合作業(yè)”賽項規(guī)程
- XX農(nóng)貿(mào)市場物業(yè)公司管理方案
- 2024六年級英語上冊 Module 6 Unit 2 I've got a stamp from China教案 外研版(三起)
- 孕期口腔保健知識課件
- 地理丨青桐鳴河南省2025屆高三9月質(zhì)量檢測地理試卷及答案
- 2024年社區(qū)意識形態(tài)工作計劃
- 2024中考語文《儒林外史》歷年真題專練(學生版+解析版)
- DB12T 1334-2024 養(yǎng)老機構(gòu)衛(wèi)生管理規(guī)范
- 工程項目審核現(xiàn)場踏勘記錄表
- YYT 0698.1-2011 最終滅菌醫(yī)療器械包裝材料 第1部分 吸塑包裝共擠塑料膜 要求和試驗方法
- 入職申請登記表(模板)
評論
0/150
提交評論