2022年河南省南陽(yáng)市宛城區(qū)九年級(jí)下中考數(shù)學(xué)押題試卷含解析_第1頁(yè)
2022年河南省南陽(yáng)市宛城區(qū)九年級(jí)下中考數(shù)學(xué)押題試卷含解析_第2頁(yè)
2022年河南省南陽(yáng)市宛城區(qū)九年級(jí)下中考數(shù)學(xué)押題試卷含解析_第3頁(yè)
2022年河南省南陽(yáng)市宛城區(qū)九年級(jí)下中考數(shù)學(xué)押題試卷含解析_第4頁(yè)
2022年河南省南陽(yáng)市宛城區(qū)九年級(jí)下中考數(shù)學(xué)押題試卷含解析_第5頁(yè)
已閱讀5頁(yè),還剩18頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

2022年河南省南陽(yáng)市宛城區(qū)九年級(jí)下中考數(shù)學(xué)押題試卷注意事項(xiàng)1.考生要認(rèn)真填寫(xiě)考場(chǎng)號(hào)和座位序號(hào)。2.試題所有答案必須填涂或書(shū)寫(xiě)在答題卡上,在試卷上作答無(wú)效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題(共10小題,每小題3分,共30分)1.點(diǎn)P(4,﹣3)關(guān)于原點(diǎn)對(duì)稱(chēng)的點(diǎn)所在的象限是()A.第四象限 B.第三象限 C.第二象限 D.第一象限2.小明和小亮按如圖所示的規(guī)則玩一次“錘子、剪刀、布”游戲,下列說(shuō)法中正確的是()A.小明不是勝就是輸,所以小明勝的概率為 B.小明勝的概率是,所以輸?shù)母怕适荂.兩人出相同手勢(shì)的概率為 D.小明勝的概率和小亮勝的概率一樣3.若⊙O的半徑為5cm,OA=4cm,則點(diǎn)A與⊙O的位置關(guān)系是()A.點(diǎn)A在⊙O內(nèi) B.點(diǎn)A在⊙O上 C.點(diǎn)A在⊙O外 D.內(nèi)含4.已知二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖所示,下列結(jié)論:①abc>0;②2a+b>0;③b2﹣4ac>0;④a﹣b+c>0,其中正確的個(gè)數(shù)是()A.1 B.2 C.3 D.45.一個(gè)關(guān)于x的一元一次不等式組的解集在數(shù)軸上的表示如圖,則該不等式組的解集是()A.x>1 B.x≥1 C.x>3 D.x≥36.下列運(yùn)算正確的是()A.a(chǎn)2?a4=a8 B.2a2+a2=3a4 C.a(chǎn)6÷a2=a3 D.(ab2)3=a3b67.已知am=2,an=3,則a3m+2n的值是()A.24 B.36 C.72 D.68.某居委會(huì)組織兩個(gè)檢查組,分別對(duì)“垃圾分類(lèi)”和“違規(guī)停車(chē)”的情況進(jìn)行抽查.各組隨機(jī)抽取轄區(qū)內(nèi)某三個(gè)小區(qū)中的一個(gè)進(jìn)行檢查,則兩個(gè)組恰好抽到同一個(gè)小區(qū)的概率是()A. B. C. D.9.工人師傅用一張半徑為24cm,圓心角為150°的扇形鐵皮做成一個(gè)圓錐的側(cè)面,則這個(gè)圓錐的高為()cm.A. B. C. D.10.如圖,每個(gè)小正方形的邊長(zhǎng)均為1,則下列圖形中的三角形(陰影部分)與相似的是()A. B.C. D.二、填空題(本大題共6個(gè)小題,每小題3分,共18分)11.在平面直角坐標(biāo)系中,已知,A(2,0),C(0,﹣1),若P為線(xiàn)段OA上一動(dòng)點(diǎn),則CP+AP的最小值為_(kāi)____.12.一個(gè)不透明的袋中裝有除顏色外均相同的8個(gè)黑球、4個(gè)白球和若干個(gè)紅球.每次搖勻后隨機(jī)摸出一個(gè)球,記下顏色后再放回袋中,通過(guò)大量重復(fù)摸球試驗(yàn)后,發(fā)現(xiàn)摸到紅球的頻率穩(wěn)定于0.4,由此可估計(jì)袋中約有紅球_____個(gè).13.已知,大正方形的邊長(zhǎng)為4厘米,小正方形的邊長(zhǎng)為2厘米,起始狀態(tài)如圖所示,大正方形固定不動(dòng),把小正方形向右平移,當(dāng)兩個(gè)正方形重疊部分的面積為2平方厘米時(shí),小正方形平移的距離為_(kāi)____厘米.14.如圖,AB是⊙O的直徑,AB=2,點(diǎn)C在⊙O上,∠CAB=30°,D為的中點(diǎn),P是直徑AB上一動(dòng)點(diǎn),則PC+PD的最小值為_(kāi)_______.15.已知點(diǎn)A,B的坐標(biāo)分別為(﹣2,3)、(1,﹣2),將線(xiàn)段AB平移,得到線(xiàn)段A′B′,其中點(diǎn)A與點(diǎn)A′對(duì)應(yīng),點(diǎn)B與點(diǎn)B′對(duì)應(yīng),若點(diǎn)A′的坐標(biāo)為(2,﹣3),則點(diǎn)B′的坐標(biāo)為_(kāi)_______.16.已知菱形的周長(zhǎng)為10cm,一條對(duì)角線(xiàn)長(zhǎng)為6cm,則這個(gè)菱形的面積是_____cm1.三、解答題(共8題,共72分)17.(8分)邊長(zhǎng)為6的等邊△ABC中,點(diǎn)D,E分別在AC,BC邊上,DE∥AB,EC=2如圖1,將△DEC沿射線(xiàn)EC方向平移,得到△D′E′C′,邊D′E′與AC的交點(diǎn)為M,邊C′D′與∠ACC′的角平分線(xiàn)交于點(diǎn)N.當(dāng)CC′多大時(shí),四邊形MCND′為菱形?并說(shuō)明理由.如圖2,將△DEC繞點(diǎn)C旋轉(zhuǎn)∠α(0°<α<360°),得到△D′E′C,連接AD′,BE′.邊D′E′的中點(diǎn)為P.①在旋轉(zhuǎn)過(guò)程中,AD′和BE′有怎樣的數(shù)量關(guān)系?并說(shuō)明理由;②連接AP,當(dāng)AP最大時(shí),求AD′的值.(結(jié)果保留根號(hào))18.(8分)講授“軸對(duì)稱(chēng)”時(shí),八年級(jí)教師設(shè)計(jì)了如下:四種教學(xué)方法:①教師講,學(xué)生聽(tīng)②教師讓學(xué)生自己做③教師引導(dǎo)學(xué)生畫(huà)圖發(fā)現(xiàn)規(guī)律④教師讓學(xué)生對(duì)折紙,觀(guān)察發(fā)現(xiàn)規(guī)律,然后畫(huà)圖為調(diào)查教學(xué)效果,八年級(jí)教師將上述教學(xué)方法作為調(diào)研內(nèi)容發(fā)到全年級(jí)8個(gè)班420名同學(xué)手中,要求每位同學(xué)選出自己最喜歡的一種.他隨機(jī)抽取了60名學(xué)生的調(diào)查問(wèn)卷,統(tǒng)計(jì)如圖(1)請(qǐng)將條形統(tǒng)計(jì)圖補(bǔ)充完整;(2)計(jì)算扇形統(tǒng)計(jì)圖中方法③的圓心角的度數(shù)是;(3)八年級(jí)同學(xué)中最喜歡的教學(xué)方法是哪一種?選擇這種教學(xué)方法的約有多少人?19.(8分)如圖,在△ABC中,AB=AC,以AB為直徑作半圓⊙O,交BC于點(diǎn)D,連接AD.過(guò)點(diǎn)D作DE⊥AC,垂足為點(diǎn)E.求證:DE是⊙O的切線(xiàn);當(dāng)⊙O半徑為3,CE=2時(shí),求BD長(zhǎng).20.(8分)今年以來(lái),我國(guó)持續(xù)大面積的霧霾天氣讓環(huán)保和健康問(wèn)題成為焦點(diǎn).為了調(diào)查學(xué)生對(duì)霧霾天氣知識(shí)的了解程度,某校在學(xué)生中做了一次抽樣調(diào)查,調(diào)查結(jié)果共分為四個(gè)等級(jí):A.非常了解;B.比較了解;C.基本了解;D.不了解.根據(jù)調(diào)查統(tǒng)計(jì)結(jié)果,繪制了不完整的三種統(tǒng)計(jì)圖表.對(duì)霧霾了解程度的統(tǒng)計(jì)表:對(duì)霧霾的了解程度

百分比

A.非常了解

5%

B.比較了解

m

C.基本了解

45%

D.不了解

n

請(qǐng)結(jié)合統(tǒng)計(jì)圖表,回答下列問(wèn)題.(1)本次參與調(diào)查的學(xué)生共有人,m=,n=;(2)圖2所示的扇形統(tǒng)計(jì)圖中D部分扇形所對(duì)應(yīng)的圓心角是度;(3)請(qǐng)補(bǔ)全條形統(tǒng)計(jì)圖;(4)根據(jù)調(diào)查結(jié)果,學(xué)校準(zhǔn)備開(kāi)展關(guān)于霧霾知識(shí)競(jìng)賽,某班要從“非常了解”態(tài)度的小明和小剛中選一人參加,現(xiàn)設(shè)計(jì)了如下游戲來(lái)確定,具體規(guī)則是:把四個(gè)完全相同的乒乓球標(biāo)上數(shù)字1,2,3,4,然后放到一個(gè)不透明的袋中,一個(gè)人先從袋中隨機(jī)摸出一個(gè)球,另一人再?gòu)氖O碌娜齻€(gè)球中隨機(jī)摸出一個(gè)球.若摸出的兩個(gè)球上的數(shù)字和為奇數(shù),則小明去;否則小剛?cè)ィ?qǐng)用樹(shù)狀圖或列表法說(shuō)明這個(gè)游戲規(guī)則是否公平.21.(8分)已知:如圖1在Rt△ABC中,∠C=90°,AC=8cm,BC=6cm,點(diǎn)P由點(diǎn)B出發(fā)沿BA方向向點(diǎn)A勻速運(yùn)動(dòng),速度為2cm/s;同時(shí)點(diǎn)Q由點(diǎn)A出發(fā)沿AC方向點(diǎn)C勻速運(yùn)動(dòng),速度為lcm/s;連接PQ,設(shè)運(yùn)動(dòng)的時(shí)間為t秒(0<t<5),解答下列問(wèn)題:(1)當(dāng)為t何值時(shí),PQ∥BC;(2)設(shè)△AQP的面積為y(cm2),求y關(guān)于t的函數(shù)關(guān)系式,并求出y的最大值;(3)如圖2,連接PC,并把△PQC沿QC翻折,得到四邊形PQPC,是否存在某時(shí)刻t,使四邊形PQP'C為菱形?若存在,求出此時(shí)t的值;若不存在,請(qǐng)說(shuō)明理由.22.(10分)如圖,在Rt△ABC中,∠C=90°,以BC為直徑的⊙O交AB于點(diǎn)D,DE交AC于點(diǎn)E,且∠A=∠ADE.(1)求證:DE是⊙O的切線(xiàn);(2)若AD=16,DE=10,求BC的長(zhǎng).23.(12分)(本題滿(mǎn)分8分)如圖,四邊形ABCD中,,E是邊CD的中點(diǎn),連接BE并延長(zhǎng)與AD的延長(zhǎng)線(xiàn)相較于點(diǎn)F.(1)求證:四邊形BDFC是平行四邊形;(2)若△BCD是等腰三角形,求四邊形BDFC的面積.24.先化簡(jiǎn):,然后在不等式的非負(fù)整數(shù)解中選擇一個(gè)適當(dāng)?shù)臄?shù)代入求值.

參考答案一、選擇題(共10小題,每小題3分,共30分)1、C【解析】

由題意得點(diǎn)P的坐標(biāo)為(﹣4,3),根據(jù)象限內(nèi)點(diǎn)的符號(hào)特點(diǎn)可得點(diǎn)P1的所在象限.【詳解】∵設(shè)P(4,﹣3)關(guān)于原點(diǎn)的對(duì)稱(chēng)點(diǎn)是點(diǎn)P1,∴點(diǎn)P1的坐標(biāo)為(﹣4,3),∴點(diǎn)P1在第二象限.故選C【點(diǎn)睛】本題主要考查了兩點(diǎn)關(guān)于原點(diǎn)對(duì)稱(chēng),這兩點(diǎn)的橫縱坐標(biāo)均互為相反數(shù);符號(hào)為(﹣,+)的點(diǎn)在第二象限.2、D【解析】

利用概率公式,一一判斷即可解決問(wèn)題.【詳解】A、錯(cuò)誤.小明還有可能是平;B、錯(cuò)誤、小明勝的概率是

,所以輸?shù)母怕适且彩?;C、錯(cuò)誤.兩人出相同手勢(shì)的概率為;D、正確.小明勝的概率和小亮勝的概率一樣,概率都是;故選D.【點(diǎn)睛】本題考查列表法、樹(shù)狀圖等知識(shí).用到的知識(shí)點(diǎn)為:概率=所求情況數(shù)與總情況數(shù)之比.3、A【解析】

直接利用點(diǎn)與圓的位置關(guān)系進(jìn)而得出答案.【詳解】解:∵⊙O的半徑為5cm,OA=4cm,∴點(diǎn)A與⊙O的位置關(guān)系是:點(diǎn)A在⊙O內(nèi).故選A.【點(diǎn)睛】此題主要考查了點(diǎn)與圓的位置關(guān)系,正確①點(diǎn)P在圓外?d>r,②點(diǎn)P在圓上?d=r,③點(diǎn)P在圓內(nèi)?d<r是解題關(guān)鍵.4、D【解析】

由拋物線(xiàn)的對(duì)稱(chēng)軸的位置判斷ab的符號(hào),由拋物線(xiàn)與y軸的交點(diǎn)判斷c的符號(hào),然后根據(jù)對(duì)稱(chēng)軸及拋物線(xiàn)與x軸交點(diǎn)情況進(jìn)行推理,進(jìn)而對(duì)所得結(jié)論進(jìn)行判斷.【詳解】①∵拋物線(xiàn)對(duì)稱(chēng)軸是y軸的右側(cè),∴ab<0,∵與y軸交于負(fù)半軸,∴c<0,∴abc>0,故①正確;②∵a>0,x=﹣<1,∴﹣b<2a,∴2a+b>0,故②正確;③∵拋物線(xiàn)與x軸有兩個(gè)交點(diǎn),∴b2﹣4ac>0,故③正確;④當(dāng)x=﹣1時(shí),y>0,∴a﹣b+c>0,故④正確.故選D.【點(diǎn)睛】本題主要考查了圖象與二次函數(shù)系數(shù)之間的關(guān)系,二次函數(shù)y=ax2+bx+c系數(shù)符號(hào)由拋物線(xiàn)開(kāi)口方向、對(duì)稱(chēng)軸和拋物線(xiàn)與y軸的交點(diǎn)、拋物線(xiàn)與x軸交點(diǎn)的個(gè)數(shù)確定.5、C【解析】試題解析:一個(gè)關(guān)于x的一元一次不等式組的解集在數(shù)軸上的表示如圖,則該不等式組的解集是x>1.故選C.考點(diǎn):在數(shù)軸上表示不等式的解集.6、D【解析】根據(jù)同底數(shù)冪的乘法,合并同類(lèi)項(xiàng),同底數(shù)冪的除法,冪的乘方與積的乘方運(yùn)算法則逐一計(jì)算作出判斷:A、a2?a4=a6,故此選項(xiàng)錯(cuò)誤;B、2a2+a2=3a2,故此選項(xiàng)錯(cuò)誤;C、a6÷a2=a4,故此選項(xiàng)錯(cuò)誤;D、(ab2)3=a3b6,故此選項(xiàng)正確..故選D.考點(diǎn):同底數(shù)冪的乘法,合并同類(lèi)項(xiàng),同底數(shù)冪的除法,冪的乘方與積的乘方.7、C【解析】試題解析:∵am=2,an=3,

∴a3m+2n

=a3m?a2n

=(am)3?(an)2

=23×32

=8×9

=1.故選C.8、C【解析】分析:將三個(gè)小區(qū)分別記為A、B、C,列舉出所有情況即可,看所求的情況占總情況的多少即可.詳解:將三個(gè)小區(qū)分別記為A、B、C,列表如下:ABCA(A,A)(B,A)(C,A)B(A,B)(B,B)(C,B)C(A,C)(B,C)(C,C)由表可知,共有9種等可能結(jié)果,其中兩個(gè)組恰好抽到同一個(gè)小區(qū)的結(jié)果有3種,所以?xún)蓚€(gè)組恰好抽到同一個(gè)小區(qū)的概率為.故選:C.點(diǎn)睛:此題主要考查了列表法求概率,列表法可以不重復(fù)不遺漏的列出所有可能的結(jié)果,適合于兩步完成的事件;樹(shù)狀圖法適用于兩步或兩步以上完成的事件;解題時(shí)還要注意是放回實(shí)驗(yàn)還是不放回實(shí)驗(yàn).用到的知識(shí)點(diǎn)為:概率=所求情況數(shù)與總情況數(shù)之比.9、B【解析】分析:直接利用圓錐的性質(zhì)求出圓錐的半徑,進(jìn)而利用勾股定理得出圓錐的高.詳解:由題意可得圓錐的母線(xiàn)長(zhǎng)為:24cm,設(shè)圓錐底面圓的半徑為:r,則2πr=,解得:r=10,故這個(gè)圓錐的高為:(cm).故選B.點(diǎn)睛:此題主要考查了圓錐的計(jì)算,正確得出圓錐的半徑是解題關(guān)鍵.10、B【解析】

根據(jù)相似三角形的判定方法一一判斷即可.【詳解】解:因?yàn)橹杏幸粋€(gè)角是135°,選項(xiàng)中,有135°角的三角形只有B,且滿(mǎn)足兩邊成比例夾角相等,故選:B.【點(diǎn)睛】本題考查相似三角形的性質(zhì),解題的關(guān)鍵是學(xué)會(huì)利用數(shù)形結(jié)合的思想解決問(wèn)題,屬于中考常考題型.二、填空題(本大題共6個(gè)小題,每小題3分,共18分)11、【解析】

可以取一點(diǎn)D(0,1),連接AD,作CN⊥AD于點(diǎn)N,PM⊥AD于點(diǎn)M,根據(jù)勾股定理可得AD=3,證明△APM∽△ADO得,PM=AP.當(dāng)CP⊥AD時(shí),CP+AP=CP+PM的值最小,最小值為CN的長(zhǎng).【詳解】如圖,取一點(diǎn)D(0,1),連接AD,作CN⊥AD于點(diǎn)N,PM⊥AD于點(diǎn)M,在Rt△AOD中,∵OA=2,OD=1,∴AD==3,∵∠PAM=∠DAO,∠AMP=∠AOD=90°,∴△APM∽△ADO,∴,即,∴PM=AP,∴PC+AP=PC+PM,∴當(dāng)CP⊥AD時(shí),CP+AP=CP+PM的值最小,最小值為CN的長(zhǎng).∵△CND∽△AOD,∴,即∴CN=.所以CP+AP的最小值為.故答案為:.【點(diǎn)睛】此題考查勾股定理,三角形相似的判定及性質(zhì),最短路徑問(wèn)題,如何找到AP的等量線(xiàn)段與線(xiàn)段CP相加是解題的關(guān)鍵,由此利用勾股定理、相似三角形做輔助線(xiàn)得到垂線(xiàn)段PM,使問(wèn)題得解.12、8【解析】試題分析:設(shè)紅球有x個(gè),根據(jù)概率公式可得,解得:x=8.考點(diǎn):概率.13、1或5.【解析】

小正方形的高不變,根據(jù)面積即可求出小正方形平移的距離.【詳解】解:當(dāng)兩個(gè)正方形重疊部分的面積為2平方厘米時(shí),重疊部分寬為2÷2=1,①如圖,小正方形平移距離為1厘米;②如圖,小正方形平移距離為4+1=5厘米.故答案為1或5,【點(diǎn)睛】此題考查了平移的性質(zhì),要明確,平移前后圖形的形狀和面積不變.畫(huà)出圖形即可直觀(guān)解答.14、【解析】

作出D關(guān)于AB的對(duì)稱(chēng)點(diǎn)D’,則PC+PD的最小值就是CD’的長(zhǎng)度,在△COD'中根據(jù)邊角關(guān)系即可求解.【詳解】解:如圖:作出D關(guān)于AB的對(duì)稱(chēng)點(diǎn)D’,連接OC,OD',CD'.又∵點(diǎn)C在⊙O上,∠CAB=30°,D為弧BC的中點(diǎn),即,∴∠BAD'=∠CAB=15°.∴∠CAD'=45°.∴∠COD'=90°.則△COD'是等腰直角三角形.∵OC=OD'=AB=1,故答案為:.【點(diǎn)睛】本題考查了軸對(duì)稱(chēng)-最短路線(xiàn)問(wèn)題,勾股定理,垂徑定理,正確作出輔助線(xiàn)是解題的關(guān)鍵.15、(5,﹣8)【解析】

各對(duì)應(yīng)點(diǎn)之間的關(guān)系是橫坐標(biāo)加4,縱坐標(biāo)減6,那么讓點(diǎn)B的橫坐標(biāo)加4,縱坐標(biāo)減6即為點(diǎn)B′的坐標(biāo).【詳解】由A(-2,3)的對(duì)應(yīng)點(diǎn)A′的坐標(biāo)為(2,-13),坐標(biāo)的變化規(guī)律可知:各對(duì)應(yīng)點(diǎn)之間的關(guān)系是橫坐標(biāo)加4,縱坐標(biāo)減6,∴點(diǎn)B′的橫坐標(biāo)為1+4=5;縱坐標(biāo)為-2-6=-8;即所求點(diǎn)B′的坐標(biāo)為(5,-8).故答案為(5,-8)【點(diǎn)睛】此題主要考查了坐標(biāo)與圖形的變化-平移,解決本題的關(guān)鍵是根據(jù)已知對(duì)應(yīng)點(diǎn)找到各對(duì)應(yīng)點(diǎn)之間的變化規(guī)律.16、14【解析】

根據(jù)菱形的性質(zhì),先求另一條對(duì)角線(xiàn)的長(zhǎng)度,再運(yùn)用菱形的面積等于對(duì)角線(xiàn)乘積的一半求解.【詳解】解:如圖,在菱形ABCD中,BD=2.∵菱形的周長(zhǎng)為10,BD=2,∴AB=5,BO=3,∴AC=3.∴面積故答案為14.【點(diǎn)睛】此題考查了菱形的性質(zhì)及面積求法,難度不大.三、解答題(共8題,共72分)17、(1)當(dāng)CC'=時(shí),四邊形MCND'是菱形,理由見(jiàn)解析;(2)①AD'=BE',理由見(jiàn)解析;②.【解析】

(1)先判斷出四邊形MCND'為平行四邊形,再由菱形的性質(zhì)得出CN=CM,即可求出CC';(2)①分兩種情況,利用旋轉(zhuǎn)的性質(zhì),即可判斷出△ACD≌△BCE'即可得出結(jié)論;②先判斷出點(diǎn)A,C,P三點(diǎn)共線(xiàn),先求出CP,AP,最后用勾股定理即可得出結(jié)論.【詳解】(1)當(dāng)CC'=時(shí),四邊形MCND'是菱形.理由:由平移的性質(zhì)得,CD∥C'D',DE∥D'E',∵△ABC是等邊三角形,∴∠B=∠ACB=60°,∴∠ACC'=180°-∠ACB=120°,∵CN是∠ACC'的角平分線(xiàn),∴∠D'E'C'=∠ACC'=60°=∠B,∴∠D'E'C'=∠NCC',∴D'E'∥CN,∴四邊形MCND'是平行四邊形,∵∠ME'C'=∠MCE'=60°,∠NCC'=∠NC'C=60°,∴△MCE'和△NCC'是等邊三角形,∴MC=CE',NC=CC',∵E'C'=2,∵四邊形MCND'是菱形,∴CN=CM,∴CC'=E'C'=;(2)①AD'=BE',理由:當(dāng)α≠180°時(shí),由旋轉(zhuǎn)的性質(zhì)得,∠ACD'=∠BCE',由(1)知,AC=BC,CD'=CE',∴△ACD'≌△BCE',∴AD'=BE',當(dāng)α=180°時(shí),AD'=AC+CD',BE'=BC+CE',即:AD'=BE',綜上可知:AD'=BE'.②如圖連接CP,在△ACP中,由三角形三邊關(guān)系得,AP<AC+CP,∴當(dāng)點(diǎn)A,C,P三點(diǎn)共線(xiàn)時(shí),AP最大,如圖1,在△D'CE'中,由P為D'E的中點(diǎn),得AP⊥D'E',PD'=,∴CP=3,∴AP=6+3=9,在Rt△APD'中,由勾股定理得,AD'=.【點(diǎn)睛】此題是四邊形綜合題,主要考查了平行四邊形的判定和性質(zhì),菱形的性質(zhì),平移和旋轉(zhuǎn)的性質(zhì),等邊三角形的判定和性質(zhì),勾股定理,解(1)的關(guān)鍵是四邊形MCND'是平行四邊形,解(2)的關(guān)鍵是判斷出點(diǎn)A,C,P三點(diǎn)共線(xiàn)時(shí),AP最大.18、解:(1)見(jiàn)解析;(2)108°;(3)最喜歡方法④,約有189人.【解析】

(1)由題意可知:喜歡方法②的學(xué)生有60-6-18-27=9(人);(2)求方法③的圓心角應(yīng)先求所占比值,再乘以360°;(3)根據(jù)條形的高低可判斷喜歡方法④的學(xué)生最多,人數(shù)應(yīng)該等于總?cè)藬?shù)乘以喜歡方法④所占的比例;【詳解】(1)方法②人數(shù)為60?6?18?27=9(人);補(bǔ)條形圖如圖:(2)方法③的圓心角為故答案為108°(3)由圖可以看出喜歡方法④的學(xué)生最多,人數(shù)為(人);【點(diǎn)睛】考查扇形統(tǒng)計(jì)圖,條形統(tǒng)計(jì)圖,用樣本估計(jì)總體,比較基礎(chǔ),難度不大,是中考??碱}型.19、(1)證明見(jiàn)解析;(2)BD=2.【解析】

(1)連接OD,AB為⊙0的直徑得∠ADB=90°,由AB=AC,根據(jù)等腰三角形性質(zhì)得AD平分BC,即DB=DC,則OD為△ABC的中位線(xiàn),所以O(shè)D∥AC,而DE⊥AC,則OD⊥DE,然后根據(jù)切線(xiàn)的判定方法即可得到結(jié)論;

(2)由∠B=∠C,∠CED=∠BDA=90°,得出△DEC∽△ADB,得出,從而求得BD?CD=AB?CE,由BD=CD,即可求得BD2=AB?CE,然后代入數(shù)據(jù)即可得到結(jié)果.【詳解】(1)證明:連接OD,如圖,∵AB為⊙0的直徑,∴∠ADB=90°,∴AD⊥BC,∵AB=AC,∴AD平分BC,即DB=DC,∵OA=OB,∴OD為△ABC的中位線(xiàn),∴OD∥AC,∵DE⊥AC,∴OD⊥DE,∴DE是⊙0的切線(xiàn);(2)∵∠B=∠C,∠CED=∠BDA=90°,∴△DEC∽△ADB,∴,∴BD?CD=AB?CE,∵BD=CD,∴BD2=AB?CE,∵⊙O半徑為3,CE=2,∴BD==2.【點(diǎn)睛】本題考查了切線(xiàn)的判定定理:過(guò)半徑的外端點(diǎn)且與半徑垂直的直線(xiàn)為圓的切線(xiàn).也考查了等腰三角形的性質(zhì)、三角形相似的判定和性質(zhì).20、解:(1)400;15%;35%.(2)1.(3)∵D等級(jí)的人數(shù)為:400×35%=140,∴補(bǔ)全條形統(tǒng)計(jì)圖如圖所示:(4)列樹(shù)狀圖得:∵從樹(shù)狀圖可以看出所有可能的結(jié)果有12種,數(shù)字之和為奇數(shù)的有8種,∴小明參加的概率為:P(數(shù)字之和為奇數(shù));小剛參加的概率為:P(數(shù)字之和為偶數(shù)).∵P(數(shù)字之和為奇數(shù))≠P(數(shù)字之和為偶數(shù)),∴游戲規(guī)則不公平.【解析】(1)根據(jù)“基本了解”的人數(shù)以及所占比例,可求得總?cè)藬?shù):180÷45%=400人.在根據(jù)頻數(shù)、百分比之間的關(guān)系,可得m,n的值:.(2)根據(jù)在扇形統(tǒng)計(jì)圖中,每部分占總體的百分比等于該部分所對(duì)應(yīng)的扇形圓心的度數(shù)與360°的比可得出統(tǒng)計(jì)圖中D部分扇形所對(duì)應(yīng)的圓心角:360°×35%=1°.(3)根據(jù)D等級(jí)的人數(shù)為:400×35%=140,據(jù)此補(bǔ)全條形統(tǒng)計(jì)圖.(4)用樹(shù)狀圖或列表列舉出所有可能,分別求出小明和小剛參加的概率,若概率相等,游戲規(guī)則公平;反之概率不相等,游戲規(guī)則不公平.21、(1)當(dāng)t=時(shí),PQ∥BC;(2)﹣(t﹣)2+,當(dāng)t=時(shí),y有最大值為;(3)存在,當(dāng)t=時(shí),四邊形PQP′C為菱形【解析】

(1)只要證明△APQ∽△ABC,可得=,構(gòu)建方程即可解決問(wèn)題;(2)過(guò)點(diǎn)P作PD⊥AC于D,則有△APD∽△ABC,理由相似三角形的性質(zhì)構(gòu)建二次函數(shù)即可解決問(wèn)題;

(3)存在.由△APO∽△ABC,可得=,即=,推出OA=(5﹣t),根據(jù)OC=CQ,構(gòu)建方程即可解決問(wèn)題;【詳解】(1)在Rt△ABC中,AB===10,BP=2t,AQ=t,則AP=10﹣2t,∵PQ∥BC,∴△APQ∽△ABC,∴=,即=,解得t=,∴當(dāng)t=時(shí),PQ∥BC.(2)過(guò)點(diǎn)P作PD⊥AC于D,則有△APD∽△ABC,∴=,即=,∴PD=6﹣t,∴y=t(6﹣t)=﹣(t﹣)2+,∴當(dāng)t=時(shí),y有最大值為.(3)存在.理由:連接PP′,交AC于點(diǎn)O.∵四邊形PQP′C為菱形,∴OC=CQ,∵△APO∽△ABC,∴=,即=,∴OA=(5﹣t),∴8﹣(5﹣t)=(8﹣t),解得t=,∴當(dāng)t=時(shí),四邊形PQP′C為菱形.【點(diǎn)睛】本題考查四邊形綜合題、相似三角形的判定和性質(zhì)、平行線(xiàn)的性質(zhì)、勾股定理等知識(shí),解題的關(guān)鍵是學(xué)會(huì)添加常用輔助線(xiàn),構(gòu)造相似三角形解決問(wèn)題,學(xué)會(huì)理由參數(shù)構(gòu)建方程解決問(wèn)題,屬于中考?jí)狠S題.22、(1)證明見(jiàn)解析;(2)15.【解析】

(1)先連接OD,根據(jù)圓周角定理求出∠ADB=90°,根據(jù)直角三角形斜邊上中線(xiàn)性質(zhì)求出DE=BE,推出∠EDB=∠EBD,∠ODB=∠OBD,即可求出∠ODE=90°,根據(jù)切線(xiàn)的判定推出即可.

(2)首先證明AC=2DE=20,在Rt△ADC中,DC=12,設(shè)B

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論