版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領
文檔簡介
湖北省八市2025年高三二模擬數(shù)學試題試卷注意事項:1.答卷前,考生務必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號?;卮鸱沁x擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.設且,則下列不等式成立的是()A. B. C. D.2.已知函數(shù),其中,若恒成立,則函數(shù)的單調(diào)遞增區(qū)間為()A. B.C. D.3.在正方體中,點、分別為、的中點,過點作平面使平面,平面若直線平面,則的值為()A. B. C. D.4.已知函數(shù),則()A.2 B.3 C.4 D.55.已知拋物線的焦點與雙曲線的一個焦點重合,且拋物線的準線被雙曲線截得的線段長為,那么該雙曲線的離心率為()A. B. C. D.6.已知甲、乙兩人獨立出行,各租用共享單車一次(假定費用只可能為、、元).甲、乙租車費用為元的概率分別是、,甲、乙租車費用為元的概率分別是、,則甲、乙兩人所扣租車費用相同的概率為()A. B. C. D.7.中國古代數(shù)學著作《算法統(tǒng)宗》中有這樣一個問題;“三百七十八里關(guān),初行健步不為難,次后腳痛遞減半,六朝才得到其關(guān),要見每朝行里數(shù),請公仔細算相還.”其意思為:“有一個人走了378里路,第一天健步走行,從第二天起腳痛每天走的路程是前一天的一半,走了6天后到達目的地,求該人每天走的路程.”由這個描述請算出這人第四天走的路程為()A.6里 B.12里 C.24里 D.48里8.復數(shù)().A. B. C. D.9.已知x,,則“”是“”的()A.充分而不必要條件 B.必要而不充分條件C.充分必要條件 D.既不充分也不必要條件10.拋物線方程為,一直線與拋物線交于兩點,其弦的中點坐標為,則直線的方程為()A. B. C. D.11.己知集合,,則()A. B. C. D.12.在平行四邊形中,若則()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.設是公差不為0的等差數(shù)列的前項和,且,則______.14.已知復數(shù)(為虛數(shù)單位),則的共軛復數(shù)是_____,_____.15.隨著國力的發(fā)展,人們的生活水平越來越好,我國的人均身高較新中國成立初期有大幅提高.為了掌握學生的體質(zhì)與健康現(xiàn)狀,合理制定學校體育衛(wèi)生工作發(fā)展規(guī)劃,某市進行了一次全市高中男生身高統(tǒng)計調(diào)查,數(shù)據(jù)顯示全市30000名高中男生的身高(單位:)服從正態(tài)分布,且,那么該市身高高于的高中男生人數(shù)大約為__________.16.已知為橢圓上的一個動點,,,設直線和分別與直線交于,兩點,若與的面積相等,則線段的長為______.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)在銳角中,,,分別是角,,所對的邊,的面積,且滿足,則的取值范圍是()A. B. C. D.18.(12分)已知函數(shù),.(1)當時,①求函數(shù)在點處的切線方程;②比較與的大小;(2)當時,若對時,,且有唯一零點,證明:.19.(12分)這次新冠肺炎疫情,是新中國成立以來在我國發(fā)生的傳播速度最快、感染范圍最廣、防控難度最大的一次重大突發(fā)公共衛(wèi)生事件.中華民族歷史上經(jīng)歷過很多磨難,但從來沒有被壓垮過,而是愈挫愈勇,不斷在磨難中成長,從磨難中奮起.在這次疫情中,全國人民展現(xiàn)出既有責任擔當之勇、又有科學防控之智.某校高三學生也展開了對這次疫情的研究,一名同學在數(shù)據(jù)統(tǒng)計中發(fā)現(xiàn),從2020年2月1日至2月7日期間,日期和全國累計報告確診病例數(shù)量(單位:萬人)之間的關(guān)系如下表:日期1234567全國累計報告確診病例數(shù)量(萬人)1.41.72.02.42.83.13.5(1)根據(jù)表中的數(shù)據(jù),運用相關(guān)系數(shù)進行分析說明,是否可以用線性回歸模型擬合與的關(guān)系?(2)求出關(guān)于的線性回歸方程(系數(shù)精確到0.01).并預測2月10日全國累計報告確診病例數(shù).參考數(shù)據(jù):,,,.參考公式:相關(guān)系數(shù)回歸方程中斜率和截距的最小二乘估計公式分別為:,.20.(12分)為了打好脫貧攻堅戰(zhàn),某貧困縣農(nóng)科院針對玉米種植情況進行調(diào)研,力爭有效地改良玉米品種,為農(nóng)民提供技術(shù)支援,現(xiàn)對已選出的一組玉米的莖高進行統(tǒng)計,獲得莖葉圖如圖(單位:厘米),設莖高大于或等于180厘米的玉米為高莖玉米,否則為矮莖玉米.(1)求出易倒伏玉米莖高的中位數(shù);(2)根據(jù)莖葉圖的數(shù)據(jù),完成下面的列聯(lián)表:抗倒伏易倒伏矮莖高莖(3)根據(jù)(2)中的列聯(lián)表,是否可以在犯錯誤的概率不超過1%的前提下,認為抗倒伏與玉米矮莖有關(guān)?附:,0.0500.0100.0013.8416.63510.82821.(12分)已知函數(shù),(其中,).(1)求函數(shù)的最小值.(2)若,求證:.22.(10分)在中,角,,所對的邊分別為,,,已知,,角為銳角,的面積為.(1)求角的大??;(2)求的值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.A【解析】項,由得到,則,故項正確;項,當時,該不等式不成立,故項錯誤;項,當,時,,即不等式不成立,故項錯誤;項,當,時,,即不等式不成立,故項錯誤.綜上所述,故選.2.A【解析】
,從而可得,,再解不等式即可.【詳解】由已知,,所以,,由,解得,.故選:A.本題考查求正弦型函數(shù)的單調(diào)區(qū)間,涉及到恒成立問題,考查學生轉(zhuǎn)化與化歸的思想,是一道中檔題.3.B【解析】
作出圖形,設平面分別交、于點、,連接、、,取的中點,連接、,連接交于點,推導出,由線面平行的性質(zhì)定理可得出,可得出點為的中點,同理可得出點為的中點,結(jié)合中位線的性質(zhì)可求得的值.【詳解】如下圖所示:設平面分別交、于點、,連接、、,取的中點,連接、,連接交于點,四邊形為正方形,、分別為、的中點,則且,四邊形為平行四邊形,且,且,且,則四邊形為平行四邊形,,平面,則存在直線平面,使得,若平面,則平面,又平面,則平面,此時,平面為平面,直線不可能與平面平行,所以,平面,,平面,平面,平面平面,,,所以,四邊形為平行四邊形,可得,為的中點,同理可證為的中點,,,因此,.故選:B.本題考查線段長度比值的計算,涉及線面平行性質(zhì)的應用,解答的關(guān)鍵就是找出平面與正方體各棱的交點位置,考查推理能力與計算能力,屬于中等題.4.A【解析】
根據(jù)分段函數(shù)直接計算得到答案.【詳解】因為所以.故選:.本題考查了分段函數(shù)計算,意在考查學生的計算能力.5.A【解析】
由拋物線的焦點得雙曲線的焦點,求出,由拋物線準線方程被曲線截得的線段長為,由焦半徑公式,聯(lián)立求解.【詳解】解:由拋物線,可得,則,故其準線方程為,拋物線的準線過雙曲線的左焦點,.拋物線的準線被雙曲線截得的線段長為,,又,,則雙曲線的離心率為.故選:.本題考查拋物線的性質(zhì)及利用過雙曲線的焦點的弦長求離心率.弦過焦點時,可結(jié)合焦半徑公式求解弦長.6.B【解析】
甲、乙兩人所扣租車費用相同即同為1元,或同為2元,或同為3元,由獨立事件的概率公式計算即得.【詳解】由題意甲、乙租車費用為3元的概率分別是,∴甲、乙兩人所扣租車費用相同的概率為.故選:B.本題考查獨立性事件的概率.掌握獨立事件的概率乘法公式是解題基礎.7.C【解析】
設第一天走里,則是以為首項,以為公比的等比數(shù)列,由題意得,求出(里,由此能求出該人第四天走的路程.【詳解】設第一天走里,則是以為首項,以為公比的等比數(shù)列,由題意得:,解得(里,(里.故選:C.本題考查等比數(shù)列的某一項的求法,考查等比數(shù)列等基礎知識,考查推理論證能力、運算求解能力,考查化歸與轉(zhuǎn)化思想、函數(shù)與方程思想,是基礎題.8.A【解析】試題分析:,故選A.【考點】復數(shù)運算【名師點睛】復數(shù)代數(shù)形式的四則運算的法則是進行復數(shù)運算的理論依據(jù),加減運算類似于多項式的合并同類項,乘法法則類似于多項式的乘法法則,除法運算則先將除式寫成分式的形式,再將分母實數(shù)化.9.D【解析】
,不能得到,成立也不能推出,即可得到答案.【詳解】因為x,,當時,不妨取,,故時,不成立,當時,不妨取,則不成立,綜上可知,“”是“”的既不充分也不必要條件,故選:D本題主要考查了充分條件,必要條件的判定,屬于容易題.10.A【解析】
設,,利用點差法得到,所以直線的斜率為2,又過點,再利用點斜式即可得到直線的方程.【詳解】解:設,∴,又,兩式相減得:,∴,∴,∴直線的斜率為2,又∴過點,∴直線的方程為:,即,故選:A.本題考查直線與拋物線相交的中點弦問題,解題方法是“點差法”,即設出弦的兩端點坐標,代入拋物線方程相減后可把弦所在直線斜率與中點坐標建立關(guān)系.11.C【解析】
先化簡,再求.【詳解】因為,又因為,所以,故選:C.本題主要考查一元二次不等式的解法、集合的運算,還考查了運算求解能力,屬于基礎題.12.C【解析】
由,,利用平面向量的數(shù)量積運算,先求得利用平行四邊形的性質(zhì)可得結(jié)果.【詳解】如圖所示,
平行四邊形中,,
,,,
因為,
所以
,
,所以,故選C.本題主要考查向量的幾何運算以及平面向量數(shù)量積的運算法則,屬于中檔題.向量的運算有兩種方法:(1)平行四邊形法則(平行四邊形的對角線分別是兩向量的和與差);(2)三角形法則(兩箭頭間向量是差,箭頭與箭尾間向量是和).二、填空題:本題共4小題,每小題5分,共20分。13.18【解析】
先由,可得,再結(jié)合等差數(shù)列的前項和公式求解即可.【詳解】解:因為,所以,.故答案為:18.本題考查了等差數(shù)列基本量的運算,重點考查了等差數(shù)列的前項和公式,屬基礎題.14.【解析】
直接利用復數(shù)的乘法運算化簡,從而得到復數(shù)的共軛復數(shù)和的模.【詳解】,則復數(shù)的共軛復數(shù)為,且.故答案為:;.本題考查了復數(shù)代數(shù)形式的乘除運算,考查了復數(shù)的基本概念,是基礎的計算題.15.3000【解析】
根據(jù)正態(tài)曲線的對稱性求出,進而可求出身高高于的高中男生人數(shù).【詳解】解:全市30000名高中男生的身高(單位:)服從正態(tài)分布,且,則,該市身高高于的高中男生人數(shù)大約為.故答案為:.本題考查正態(tài)曲線的對稱性的應用,是基礎題.16.【解析】
先設點坐標,由三角形面積相等得出兩個三角形的邊之間的比例關(guān)系,這個比例關(guān)系又可用線段上點的坐標表示出來,從而可求得點的橫坐標,代入橢圓方程得縱坐標,然后可得.【詳解】如圖,設,,,由,得,由得,∴,解得,又在橢圓上,∴,,∴.故答案為:.本題考查直線與橢圓相交問題,解題時由三角形面積相等得出線段長的比例關(guān)系,解題是由把線段長的比例關(guān)系用點的橫坐標表示.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.A【解析】
由正弦定理化簡得,解得,進而得到,利用正切的倍角公式求得,根據(jù)三角形的面積公式,求得,進而化簡,即可求解.【詳解】由題意,在銳角中,滿足,由正弦定理可得,即,可得,所以,即,所以,所以,則,所以,可得,又由的面積,所以,則.故選:A.本題主要考查了正弦定理、余弦定理的應用,以及三角形的面積公式和正切的倍角公式的綜合應用,著重考查了推理與運算能力,屬于中檔試題.18.(1)①見解析,②見解析;(2)見解析【解析】
(1)①把代入函數(shù)解析式,求出函數(shù)的導函數(shù)得到,再求出,利用直線方程的點斜式求函數(shù)在點處的切線方程;②令,利用導數(shù)研究函數(shù)的單調(diào)性,可得當時,;當時,;當時,.(2)由題意,,在上有唯一零點.利用導數(shù)可得當時,在上單調(diào)遞減,當,時,在,上單調(diào)遞增,得到.由在恒成立,且有唯一解,可得,得,即.令,則,再由在上恒成立,得在上單調(diào)遞減,進一步得到在上單調(diào)遞增,由此可得.【詳解】解:(1)①當時,,,,又,切線方程為,即;②令,則,在上單調(diào)遞減.又,當時,,即;當時,,即;當時,,即.證明:(2)由題意,,而,令,解得.,,在上有唯一零點.當時,,在上單調(diào)遞減,當,時,,在,上單調(diào)遞增..在恒成立,且有唯一解,,即,消去,得,即.令,則,在上恒成立,在上單調(diào)遞減,又,,.在上單調(diào)遞增,.本題考查利用導數(shù)研究過曲線上某點處的切線方程,考查利用導數(shù)研究函數(shù)的單調(diào)性,考查邏輯思維能力與推理論證能力,屬難題.19.(1)可以用線性回歸模型擬合與的關(guān)系;(2),預測2月10日全國累計報告確診病例數(shù)約有4.5萬人.【解析】
(1)根據(jù)已知數(shù)據(jù),利用公式求得,再根據(jù)的值越大說明它們的線性相關(guān)性越高來判斷.(2)由(1)的相關(guān)數(shù)據(jù),求得,,寫出回歸方程,然后將代入回歸方程求解.【詳解】(1)由已知數(shù)據(jù)得,,,所以,,所以.因為與的相關(guān)近似為0.99,說明它們的線性相關(guān)性相當高,從而可以用線性回歸模型擬合與的關(guān)系.(2)由(1)得,,,所以,關(guān)于的回歸方程為:,2月10日,即代入回歸方程得:.所以預測2月10日全國累計報告確診病例數(shù)約有4.5萬人.本題主要考查線性回歸分析和回歸方程的求解及應用,還考查了運算求解的能力,屬于中檔題.20.(1)190(2)見解析(3)可以在犯錯誤的概率不超過1%的前提下
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024綜合崗位勞動協(xié)議模板版B版
- 2024年版城市出租車租賃協(xié)議樣式版B版
- 2025年消防安全管理咨詢及標準制定合同2篇
- 2024-2025學年高中歷史第七單元復雜多樣的當代世界第24課兩極對峙格局的形成學案含解析岳麓版必修1
- 2024-2025學年高中語文課時分層作業(yè)4歸去來兮辭并序含解析新人教版必修5
- 二零二四年度時尚傳媒廣告投放及制作合同
- 2025年度道路照明燈具批發(fā)合同范本3篇
- 2025年酒店客房銷售渠道建設與維護合同3篇
- 2025年度綠色生態(tài)農(nóng)業(yè)種植承包合同范本3篇
- 2025年蔬菜種植戶與農(nóng)產(chǎn)品電商平臺合作合同范本3篇
- 2025年度影視制作公司兼職制片人聘用合同3篇
- 兒童糖尿病的飲食
- 2025屆高考語文復習:散文的結(jié)構(gòu)與行文思路 課件
- 干細胞項目商業(yè)計劃書
- 拉薩市2025屆高三第一次聯(lián)考(一模)語文試卷(含答案解析)
- 浙江省嘉興市2024-2025學年高一數(shù)學上學期期末試題含解析
- 2024年高考新課標Ⅱ卷語文試題講評課件
- 無人機航拍技術(shù)教案(完整版)
- 人教PEP版(2024)三年級上冊英語Unit 4《Plants around us》單元作業(yè)設計
- 《保密法》培訓課件
- 醫(yī)院項目竣工驗收和工程收尾階段的管理措施專項方案
評論
0/150
提交評論