高三數(shù)學(xué)一輪復(fù)習(xí)導(dǎo)學(xué)案-正弦定理和余弦定理_第1頁
高三數(shù)學(xué)一輪復(fù)習(xí)導(dǎo)學(xué)案-正弦定理和余弦定理_第2頁
高三數(shù)學(xué)一輪復(fù)習(xí)導(dǎo)學(xué)案-正弦定理和余弦定理_第3頁
全文預(yù)覽已結(jié)束

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

高三數(shù)學(xué)備課組制案人:013審案人:012用案時(shí)間:高三一輪復(fù)習(xí)導(dǎo)學(xué)案028正弦定理和余弦定理(1)一、教學(xué)目標(biāo):借助向量的運(yùn)算,推導(dǎo)正余弦定理,掌握余弦定理、正弦定理的簡單應(yīng)用。核心知識點(diǎn):1、知識結(jié)構(gòu)(見鳳凰臺(tái)資料)2、常用結(jié)論:在三角形中的三角函數(shù)關(guān)系①②③④⑤⑥若⑦若或3、三角形中的射影定理在△ABC中,a=b?cosC+c?cosB,b4、角平分線定理及邊角之間的關(guān)系:1)運(yùn)用正弦定理證明三角形中大邊對大角;運(yùn)用余弦定理證明三角形中大角對大邊。選擇恰當(dāng)?shù)姆椒ㄗC明三角形的內(nèi)角角平分線定理。三、真題再現(xiàn)1、(2023北京7)在?ABC中,(a+c)(sinA?sinC)=b(sinA.π6B.π3C.2π3 2、(2023全國甲理)已知△ABC中,∠BAC=60°,AB=2,BC=6,AD平分∠BAC交BC于點(diǎn)D3、(2024全國新課標(biāo)I)記△ABC的內(nèi)角A,B,C的對邊分別為a,b,c,已知sinC=2(1)求B;(2)若△ABC的面積為3+3,求c四、例題精講例1-1.在中,已知,則此三角形(

)A.有一解 B.有兩解 C.無解 D.無法判斷有幾解1-2、在中,角所對的邊分別是,且,則的形狀為(

)A.等腰三角形B.直角三角形C.等腰直角三角形 D.等腰三角形或直角三角形例2、在△ABC中,內(nèi)角A,B,C的對邊分別為a,b,c,tanAtanB+tanAtanC=3tanBtanC.

(1)證明:3c2+3b2=5a2;

(2)若a=15,當(dāng)例3、記△ABC的內(nèi)角A,B,C的對邊分別為a,b,c,已知b=4,2bcos(1)求角B的大小;(2)已知直線BD為∠ABC的平分線,且與AC交于點(diǎn)D,若BD=223,求△ABC的周長.

例4、在①bsin??A+asin已知?ABC中,a,b,c分別為內(nèi)角A,B,C的對邊,sin??Asin??B=1+34,c=2,________,求角C及?ABC的面積鞏固練習(xí)1、在中,“”是“”的()A.既不充分也不必要條件B.必要不充分條件C.充分不必要條件 D.充要條件2、.在△ABC中,若A=60°,b=1,其面積為3,則a+b+cA.33 B.2393 3、在△ABC中,角A,B,C的對邊分別為a,b,c,cos2A=sin2B+cos2C+sinAsinB,c=3,a=14、在ΔABC中,AC=

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論