北京首師附大興北校區(qū)2022年中考數(shù)學考前最后一卷含解析_第1頁
北京首師附大興北校區(qū)2022年中考數(shù)學考前最后一卷含解析_第2頁
北京首師附大興北校區(qū)2022年中考數(shù)學考前最后一卷含解析_第3頁
北京首師附大興北校區(qū)2022年中考數(shù)學考前最后一卷含解析_第4頁
北京首師附大興北校區(qū)2022年中考數(shù)學考前最后一卷含解析_第5頁
已閱讀5頁,還剩15頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

北京首師附大興北校區(qū)2022年中考數(shù)學考前最后一卷注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1.如圖,將函數(shù)的圖象沿y軸向上平移得到一條新函數(shù)的圖象,其中點A(-4,m),B(-1,n),平移后的對應點分別為點A'、B'.若曲線段AB掃過的面積為9(圖中的陰影部分),則新圖象的函數(shù)表達式是()A. B. C. D.2.已知一個多邊形的內角和是外角和的3倍,則這個多邊形是()A.五邊形 B.六邊形 C.七邊形 D.八邊形3.如圖,在正方形ABCD中,AB=,P為對角線AC上的動點,PQ⊥AC交折線A﹣D﹣C于點Q,設AP=x,△APQ的面積為y,則y與x的函數(shù)圖象正確的是()A. B.C. D.4.若關于x的一元二次方程x2-2x-k=0沒有實數(shù)根,則k的取值范圍是()A.k>-1 B.k≥-1 C.k<-1 D.k≤-15.已知不透明的袋中只裝有黑、白兩種球,這些球除顏色外都相同,其中白球有30個,黑球有n個.隨機地從袋中摸出一個球,記錄下顏色后,放回袋子中并搖勻,再從中摸出一個球,經過如此大量重復試驗,發(fā)現(xiàn)摸出的黑球的頻率穩(wěn)定在0.4附近,則n的值約為()A.20 B.30 C.40 D.506.反比例函數(shù)是y=的圖象在()A.第一、二象限 B.第一、三象限 C.第二、三象限 D.第二、四象限7.半徑為的正六邊形的邊心距和面積分別是()A., B.,C., D.,8.不等式組的解集表示在數(shù)軸上正確的是()A. B. C. D.9.不解方程,判別方程2x2﹣3x=3的根的情況()A.有兩個相等的實數(shù)根 B.有兩個不相等的實數(shù)根C.有一個實數(shù)根 D.無實數(shù)根10.整數(shù)a、b在數(shù)軸上對應點的位置如圖,實數(shù)c在數(shù)軸上且滿足,如果數(shù)軸上有一實數(shù)d,始終滿足,則實數(shù)d應滿足().A. B. C. D.二、填空題(共7小題,每小題3分,滿分21分)11.Rt△ABC中,∠ABC=90°,AB=3,BC=4,過點B的直線把△ABC分割成兩個三角形,使其中只有一個是等腰三角形,則這個等腰三角形的面積是_____.12.如圖,四邊形ABCD中,E,F(xiàn),G,H分別是邊AB、BC、CD、DA的中點.若四邊形EFGH為菱形,則對角線AC、BD應滿足條件_____.13.如圖,矩形ABCD的對角線BD經過坐標原點,矩形的邊分別平行于坐標軸,點C在反比例函數(shù)y=的圖象上,若點A的坐標為(﹣2,﹣2),則k的值為_____.14.已知,正六邊形的邊長為1cm,分別以它的三個不相鄰的頂點為圓心,1cm長為半徑畫?。ㄈ鐖D),則所得到的三條弧的長度之和為__________cm(結果保留π).15.如圖,的半徑為1,正六邊形內接于,則圖中陰影部分圖形的面積和為________(結果保留).16.若關于x的一元二次方程x2+2x﹣m2﹣m=0(m>0),當m=1、2、3、…、2018時,相應的一元二次方程的兩個根分別記為α1、β1,α2、β2,…,α2018、β2018,則:的值為_____.17.已知,那么__.三、解答題(共7小題,滿分69分)18.(10分)“知識改變命運,科技繁榮祖國”.在舉辦一屆全市科技運動會上.下圖為某校2017年參加科技運動會航模比賽(包括空模、海模、車模、建模四個類別)的參賽人數(shù)統(tǒng)計圖:(1)該校參加航模比賽的總人數(shù)是人,空模所在扇形的圓心角的度數(shù)是;(2)并把條形統(tǒng)計圖補充完整;(3)從全市中小學參加航模比賽選手中隨機抽取80人,其中有32人獲獎.今年全市中小學參加航模比賽人數(shù)共有2500人,請你估算今年參加航模比賽的獲獎人數(shù)約是多少人?19.(5分)在平面直角坐標系xOy中,拋物線y=ax2﹣4ax+3a﹣2(a≠0)與x軸交于A,B兩(點A在點B左側).(1)當拋物線過原點時,求實數(shù)a的值;(2)①求拋物線的對稱軸;②求拋物線的頂點的縱坐標(用含a的代數(shù)式表示);(3)當AB≤4時,求實數(shù)a的取值范圍.20.(8分)如圖,將一張直角三角形ABC紙片沿斜邊AB上的中線CD剪開,得到△ACD,再將△ACD沿DB方向平移到△A′C′D′的位置,若平移開始后點D′未到達點B時,A′C′交CD于E,D′C′交CB于點F,連接EF,當四邊形EDD′F為菱形時,試探究△A′DE的形狀,并判斷△A′DE與△EFC′是否全等?請說明理由.21.(10分)如圖,是的外接圓,是的直徑,過圓心的直線于,交于,是的切線,為切點,連接,.(1)求證:直線為的切線;(2)求證:;(3)若,,求的長.22.(10分)有A、B兩組卡片共1張,A組的三張分別寫有數(shù)字2,4,6,B組的兩張分別寫有3,1.它們除了數(shù)字外沒有任何區(qū)別,隨機從A組抽取一張,求抽到數(shù)字為2的概率;隨機地分別從A組、B組各抽取一張,請你用列表或畫樹狀圖的方法表示所有等可能的結果.現(xiàn)制定這樣一個游戲規(guī)則:若選出的兩數(shù)之積為3的倍數(shù),則甲獲勝;否則乙獲勝.請問這樣的游戲規(guī)則對甲乙雙方公平嗎?為什么?23.(12分)如圖,在四邊形中,為一條對角線,,,.為的中點,連結.(1)求證:四邊形為菱形;(2)連結,若平分,,求的長.24.(14分)先化簡,再求值:,其中x=﹣1.

參考答案一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1、D【解析】分析:過A作AC∥x軸,交B′B的延長線于點C,過A′作A′D∥x軸,交B′B的于點D,則C(-1,m),AC=-1-(-1)=3,根據(jù)平移的性質以及曲線段AB掃過的面積為9(圖中的陰影部分),得出AA′=3,然后根據(jù)平移規(guī)律即可求解.詳解:過A作AC∥x軸,交B′B的延長線于點C,過A′作A′D∥x軸,交B′B的于點D,則C(-1,m),∴AC=-1-(-1)=3,∵曲線段AB掃過的面積為9(圖中的陰影部分),∴矩形ACDA′的面積等于9,∴AC·AA′=3AA′=9,∴AA′=3,∴新函數(shù)的圖是將函數(shù)y=(x-2)2+1的圖象沿y軸向上平移3個單位長度得到的,∴新圖象的函數(shù)表達式是y=(x-2)2+1+3=(x-2)2+1.故選D.點睛:此題主要考查了二次函數(shù)圖象變換以及矩形的面積求法等知識,根據(jù)已知得出AA′的長度是解題關鍵.2、D【解析】

根據(jù)多邊形的外角和是360°,以及多邊形的內角和定理即可求解.【詳解】設多邊形的邊數(shù)是n,則(n?2)?180=3×360,解得:n=8.故選D.【點睛】此題考查多邊形內角與外角,解題關鍵在于掌握其定理.3、B【解析】∵在正方形ABCD中,AB=,∴AC=4,AD=DC=,∠DAP=∠DCA=45o,當點Q在AD上時,PA=PQ,∴DP=AP=x,∴S=;當點Q在DC上時,PC=PQCP=4-x,∴S=;所以該函數(shù)圖象前半部分是拋物線開口向上,后半部分也為拋物線開口向下,故選B.【點睛】本題考查動點問題的函數(shù)圖象,有一定難度,解題關鍵是注意點Q在AP、DC上這兩種情況.4、C【解析】試題分析:由題意可得根的判別式,即可得到關于k的不等式,解出即可.由題意得,解得故選C.考點:一元二次方程的根的判別式點評:解答本題的關鍵是熟練掌握一元二次方程,當時,方程有兩個不相等實數(shù)根;當時,方程的兩個相等的實數(shù)根;當時,方程沒有實數(shù)根.5、A【解析】分析:根據(jù)白球的頻率穩(wěn)定在0.4附近得到白球的概率約為0.4,根據(jù)白球個數(shù)確定出總個數(shù),進而確定出黑球個數(shù)n.詳解:根據(jù)題意得:,

計算得出:n=20,

故選A.

點睛:根據(jù)概率的求法,找準兩點:①全部情況的總數(shù);②符合條件的情況數(shù)目;二者的比值就是其發(fā)生的概率.6、B【解析】

解:∵反比例函數(shù)是y=中,k=2>0,

∴此函數(shù)圖象的兩個分支分別位于一、三象限.

故選B.7、A【解析】

首先根據(jù)題意畫出圖形,易得△OBC是等邊三角形,繼而可得正六邊形的邊長為R,然后利用解直角三角形求得邊心距,又由S正六邊形=求得正六邊形的面積.【詳解】解:如圖,O為正六邊形外接圓的圓心,連接OB,OC,過點O作OH⊥BC于H,∵六邊形ABCDEF是正六邊形,半徑為,∴∠BOC=,∵OB=OC=R,∴△OBC是等邊三角形,∴BC=OB=OC=R,∵OH⊥BC,∴在中,,即,∴,即邊心距為;∵,∴S正六邊形=,故選:A.【點睛】本題考查了正多邊形和圓的知識;求得正六邊形的中心角為60°,得到等邊三角形是正確解答本題的關鍵.8、C【解析】

根據(jù)題意先解出的解集是,把此解集表示在數(shù)軸上要注意表示時要注意起始標記為空心圓圈,方向向右;表示時要注意方向向左,起始的標記為實心圓點,綜上所述C的表示符合這些條件.故應選C.9、B【解析】一元二次方程的根的情況與根的判別式有關,,方程有兩個不相等的實數(shù)根,故選B10、D【解析】

根據(jù)a≤c≤b,可得c的最小值是﹣1,根據(jù)有理數(shù)的加法,可得答案.【詳解】由a≤c≤b,得:c最小值是﹣1,當c=﹣1時,c+d=﹣1+d,﹣1+d≥0,解得:d≥1,∴d≥b.故選D.【點睛】本題考查了實數(shù)與數(shù)軸,利用a≤c≤b得出c的最小值是﹣1是解題的關鍵.二、填空題(共7小題,每小題3分,滿分21分)11、3.1或4.32或4.2【解析】【分析】在Rt△ABC中,通過解直角三角形可得出AC=5、S△ABC=1,找出所有可能的分割方法,并求出剪出的等腰三角形的面積即可.【詳解】在Rt△ABC中,∠ACB=90°,AB=3,BC=4,∴AB==5,S△ABC=AB?BC=1.沿過點B的直線把△ABC分割成兩個三角形,使其中只有一個是等腰三角形,有三種情況:①當AB=AP=3時,如圖1所示,S等腰△ABP=?S△ABC=×1=3.1;②當AB=BP=3,且P在AC上時,如圖2所示,作△ABC的高BD,則BD=,∴AD=DP==1.2,∴AP=2AD=3.1,∴S等腰△ABP=?S△ABC=×1=4.32;③當CB=CP=4時,如圖3所示,S等腰△BCP=?S△ABC=×1=4.2;綜上所述:等腰三角形的面積可能為3.1或4.32或4.2,故答案為:3.1或4.32或4.2.【點睛】本題考查了勾股定理、等腰三角形的性質以及三角形的面積,找出所有可能的分割方法,并求出剪出的等腰三角形的面積是解題的關鍵.12、AC=BD.【解析】試題分析:添加的條件應為:AC=BD,把AC=BD作為已知條件,根據(jù)三角形的中位線定理可得,HG平行且等于AC的一半,EF平行且等于AC的一半,根據(jù)等量代換和平行于同一條直線的兩直線平行,得到HG和EF平行且相等,所以EFGH為平行四邊形,又EH等于BD的一半且AC=BD,所以得到所證四邊形的鄰邊EH與HG相等,所以四邊形EFGH為菱形.試題解析:添加的條件應為:AC=BD.證明:∵E,F(xiàn),G,H分別是邊AB、BC、CD、DA的中點,∴在△ADC中,HG為△ADC的中位線,所以HG∥AC且HG=AC;同理EF∥AC且EF=AC,同理可得EH=BD,則HG∥EF且HG=EF,∴四邊形EFGH為平行四邊形,又AC=BD,所以EF=EH,∴四邊形EFGH為菱形.考點:1.菱形的性質;2.三角形中位線定理.13、1【解析】試題分析:設點C的坐標為(x,y),則B(-2,y)D(x,-2),設BD的函數(shù)解析式為y=mx,則y=-2m,x=-,∴k=xy=(-2m)·(-)=1.考點:求反比例函數(shù)解析式.14、【解析】考點:弧長的計算;正多邊形和圓.分析:本題主要考查求正多邊形的每一個內角,以及弧長計算公式.解:方法一:先求出正六邊形的每一個內角==120°,所得到的三條弧的長度之和=3×=2πcm;方法二:先求出正六邊形的每一個外角為60°,得正六邊形的每一個內角120°,每條弧的度數(shù)為120°,三條弧可拼成一整圓,其三條弧的長度之和為2πcm.15、.【解析】

連接OA,OB,OC,則根據(jù)正六邊形內接于可知陰影部分的面積等于扇形OAB的面積,計算出扇形OAB的面積即可.【詳解】解:如圖所示,連接OA,OB,OC,∵正六邊形內接于∴∠AOB=60°,四邊形OABC是菱形,∴AG=GC,OG=BG,∠AGO=∠BGC∴△AGO≌△BGC.∴△AGO的面積=△BGC的面積∵弓形DE的面積=弓形AB的面積∴陰影部分的面積=弓形DE的面積+△ABC的面積=弓形AB的面積+△AGB的面積+△BGC的面積=弓形AB的面積+△AGB的面積+△AGO的面積=扇形OAB的面積==故答案為.【點睛】本題考查了扇形的面積計算公式,利用數(shù)形結合進行轉化是解題的關鍵.16、.【解析】

利用根與系數(shù)的關系得到α1+β1=-2,α1β1=-1×2;α2+β2=-2,α2β2=-2×3;…α2018+β2018=-2,α2018β2018=-2018×1.把原式變形,再代入,即可求出答案.【詳解】∵x2+2x-m2-m=0,m=1,2,3,…,2018,∴由根與系數(shù)的關系得:α1+β1=-2,α1β1=-1×2;α2+β2=-2,α2β2=-2×3;…α2018+β2018=-2,α2018β2018=-2018×1.∴原式===2×()=2×(1-)=,故答案為.【點睛】本題考查了根與系數(shù)的關系:若x1,x2是一元二次方程ax2+bx+c=0(a≠0)的兩根時,x1+x2=-,x1x2=.17、【解析】

根據(jù)比例的性質,設x=5a,則y=2a,代入原式即可求解.【詳解】解:∵,∴設x=5a,則y=2a,那么.故答案為:.【點睛】本題主要考查了比例的性質,根據(jù)比例式用同一個未知數(shù)得出的值進而求解是解題關鍵.三、解答題(共7小題,滿分69分)18、(1)24,120°;(2)見解析;(3)1000人【解析】

(1)由建模的人數(shù)除以占的百分比,求出調查的總人數(shù)即可,再算空模人數(shù),即可知道空模所占百分比,從而算出對應的圓心角度數(shù);(2)根據(jù)空模人數(shù)然后補全條形統(tǒng)計圖;(3)根據(jù)隨機取出人數(shù)獲獎的人數(shù)比,即可得到結果.【詳解】解:(1)該校參加航模比賽的總人數(shù)是6÷25%=24(人),則參加空模人數(shù)為24﹣(6+4+6)=8(人),∴空模所在扇形的圓心角的度數(shù)是360°×=120°,故答案為:24,120°;(2)補全條形統(tǒng)計圖如下:(3)估算今年參加航模比賽的獲獎人數(shù)約是2500×=1000(人).【點睛】此題考查了條形統(tǒng)計圖,扇形統(tǒng)計圖,以及用樣本估計總體,弄清題意是解本題的關鍵.19、(1)a=;(2)①x=2;②拋物線的頂點的縱坐標為﹣a﹣2;(3)a的范圍為a<﹣2或a≥.【解析】

(1)把原點坐標代入y=ax2﹣4ax+3a﹣2即可求得a的值;(2)①②把拋物線解析式配成頂點式,即可得到拋物線的對稱軸和拋物線的頂點的縱坐標;(3)設A(m,1),B(n,1),利用拋物線與x軸的交點問題,則m、n為方程ax2﹣4ax+3a﹣2=1的兩根,利用判別式的意義解得a>1或a<﹣2,再利用根與系數(shù)的關系得到m+n=4,mn=,然后根據(jù)完全平方公式利用n﹣m≤4得到(m+n)2﹣4mn≤16,所以42﹣4?≤16,接著解關于a的不等式,最后確定a的范圍.【詳解】(1)把(1,1)代入y=ax2﹣4ax+3a﹣2得3a﹣2=1,解得a=;(2)①y=a(x﹣2)2﹣a﹣2,拋物線的對稱軸為直線x=2;②拋物線的頂點的縱坐標為﹣a﹣2;(3)設A(m,1),B(n,1),∵m、n為方程ax2﹣4ax+3a﹣2=1的兩根,∴△=16a2﹣4a(3a﹣2)>1,解得a>1或a<﹣2,∴m+n=4,mn=,而n﹣m≤4,∴(n﹣m)2≤16,即(m+n)2﹣4mn≤16,∴42﹣4?≤16,即≥1,解得a≥或a<1.∴a的范圍為a<﹣2或a≥.【點睛】本題考查了拋物線與x軸的交點:把求二次函數(shù)y=ax2+bx+c(a,b,c是常數(shù),a≠1)與x軸的交點坐標問題轉化為解關于x的一元二次方程.也考查了二次函數(shù)的性質.20、△A′DE是等腰三角形;證明過程見解析.【解析】試題分析:當四邊形EDD′F為菱形時,△A′DE是等腰三角形,△A′DE≌△EFC′.先證明CD=DA=DB,得到∠DAC=∠DCA,由AC∥A′C′即可得到∠DA′E=∠DEA′由此即可判斷△DA′E的形狀.由EF∥AB推出∠CEF=∠EA′D,∠EFC=∠A′D′C=∠A′DE,再根據(jù)A′D=DE=EF即可證明.試題解析:當四邊形EDD′F為菱形時,△A′DE是等腰三角形,△A′DE≌△EFC′.理由:∵△BCA是直角三角形,∠ACB=90°,AD=DB,∴CD=DA=DB,∴∠DAC=∠DCA,∵A′C∥AC,∴∠DA′E=∠A,∠DEA′=∠DCA,∴∠DA′E=∠DEA′,∴DA′=DE,∴△A′DE是等腰三角形.∵四邊形DEFD′是菱形,∴EF=DE=DA′,EF∥DD′,∴∠CEF=∠DA′E,∠EFC=∠CD′A′,∵CD∥C′D′,∴∠A′DE=∠A′D′C=∠EFC,在△A′DE和△EFC′中,∠EA∴△A′DE≌△EFC′.考點:1.菱形的性質;2.全等三角形的判定;3.平移的性質.21、(1)證明見解析;(2)證明見解析;(3)1.【解析】

(1)連接OA,由OP垂直于AB,利用垂徑定理得到D為AB的中點,即OP垂直平分AB,可得出AP=BP,再由OA=OB,OP=OP,利用SSS得出三角形AOP與三角形BOP全等,由PA為圓的切線,得到OA垂直于AP,利用全等三角形的對應角相等及垂直的定義得到OB垂直于BP,即PB為圓O的切線;

(2)由一對直角相等,一對公共角,得出三角形AOD與三角形OAP相似,由相似得比例,列出關系式,由OA為EF的一半,等量代換即可得證.【詳解】(1)連接OB,

∵PB是⊙O的切線,

∴∠PBO=90°.

∵OA=OB,BA⊥PO于D,

∴AD=BD,∠POA=∠POB.

又∵PO=PO,

∴△PAO≌△PBO.

∴∠PAO=∠PBO=90°,

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論