




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
2024屆陜西省藍田縣中考一模數(shù)學試題考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.計算的結(jié)果為()A.2 B.1 C.0 D.﹣12.A,B兩地相距48千米,一艘輪船從A地順流航行至B地,又立即從B地逆流返回A地,共用去9小時,已知水流速度為4千米/時,若設(shè)該輪船在靜水中的速度為x千米/時,則可列方程()A. B.C.+4=9 D.3.若直線y=kx+b圖象如圖所示,則直線y=?bx+k的圖象大致是()A. B. C. D.4.如圖,數(shù)軸上有A,B,C,D四個點,其中表示互為倒數(shù)的點是()A.點A與點B B.點A與點D C.點B與點D D.點B與點C5.據(jù)統(tǒng)計,2015年廣州地鐵日均客運量均為人次,將用科學記數(shù)法表示為()A. B. C. D.6.第四屆濟南國際旅游節(jié)期間,全市共接待游客686000人次.將686000用科學記數(shù)法表示為()A.686×104B.68.6×105C.6.86×106D.6.86×1057.2018年1月,“墨子號”量子衛(wèi)星實現(xiàn)了距離達7600千米的洲際量子密鑰分發(fā),這標志著“墨子號”具備了洲際量子保密通信的能力.數(shù)字7600用科學記數(shù)法表示為()A.0.76×104 B.7.6×103 C.7.6×104 D.76×1028.據(jù)悉,超級磁力風力發(fā)電機可以大幅度提升風力發(fā)電效率,但其造價高昂,每座磁力風力發(fā)電機,其建造花費估計要5300萬美元,“5300萬”用科學記數(shù)法可表示為()A.5.3×103 B.5.3×104 C.5.3×107 D.5.3×1089.如圖,在平行四邊形ABCD中,AB=4,BC=6,分別以A,C為圓心,以大于AC的長為半徑作弧,兩弧相交于M,N兩點,作直線MN交AD于點E,則△CDE的周長是()A.7 B.10 C.11 D.1210.某種品牌手機經(jīng)過二、三月份再次降價,每部售價由1000元降到810元,則平均每月降價的百分率為()A.20% B.11% C.10% D.9.5%11.如圖,直線y=3x+6與x,y軸分別交于點A,B,以O(shè)B為底邊在y軸右側(cè)作等腰△OBC,將點C向左平移5個單位,使其對應(yīng)點C′恰好落在直線AB上,則點C的坐標為()A.(3,3) B.(4,3) C.(﹣1,3) D.(3,4)12.對于二次函數(shù),下列說法正確的是()A.當x>0,y隨x的增大而增大B.當x=2時,y有最大值-3C.圖像的頂點坐標為(-2,-7)D.圖像與x軸有兩個交點二、填空題:(本大題共6個小題,每小題4分,共24分.)13.當a=3時,代數(shù)式的值是______.14.從,0,π,3.14,6這五個數(shù)中隨機抽取一個數(shù),抽到有理數(shù)的概率是____.15.在平面直角坐標系中,點A,B的坐標分別為(m,7),(3m﹣1,7),若線段AB與直線y=﹣2x﹣1相交,則m的取值范圍為__.16.從“線段,等邊三角形,圓,矩形,正六邊形”這五個圖形中任取一個,取到既是軸對稱圖形又是中心對稱圖形的概率是_____.17.已知關(guān)于x的方程1-xx-218.如圖,在同一平面內(nèi),將邊長相等的正三角形和正六邊形的一條邊重合并疊在一起,則∠1的度數(shù)為_____.三、解答題:(本大題共9個小題,共78分,解答應(yīng)寫出文字說明、證明過程或演算步驟.19.(6分)(11分)閱讀資料:如圖1,在平面之間坐標系xOy中,A,B兩點的坐標分別為A(x1,y1),B(x1,y1),由勾股定理得AB1=|x1﹣x1|1+|y1﹣y1|1,所以A,B兩點間的距離為AB=.我們知道,圓可以看成到圓心距離等于半徑的點的集合,如圖1,在平面直角坐標系xoy中,A(x,y)為圓上任意一點,則A到原點的距離的平方為OA1=|x﹣0|1+|y﹣0|1,當⊙O的半徑為r時,⊙O的方程可寫為:x1+y1=r1.問題拓展:如果圓心坐標為P(a,b),半徑為r,那么⊙P的方程可以寫為.綜合應(yīng)用:如圖3,⊙P與x軸相切于原點O,P點坐標為(0,6),A是⊙P上一點,連接OA,使tan∠POA=,作PD⊥OA,垂足為D,延長PD交x軸于點B,連接AB.①證明AB是⊙P的切點;②是否存在到四點O,P,A,B距離都相等的點Q?若存在,求Q點坐標,并寫出以Q為圓心,以O(shè)Q為半徑的⊙O的方程;若不存在,說明理由.20.(6分)如圖,已知二次函數(shù)的圖象經(jīng)過,兩點.求這個二次函數(shù)的解析式;設(shè)該二次函數(shù)的對稱軸與軸交于點,連接,,求的面積.21.(6分)邊長為6的等邊△ABC中,點D,E分別在AC,BC邊上,DE∥AB,EC=2如圖1,將△DEC沿射線EC方向平移,得到△D′E′C′,邊D′E′與AC的交點為M,邊C′D′與∠ACC′的角平分線交于點N.當CC′多大時,四邊形MCND′為菱形?并說明理由.如圖2,將△DEC繞點C旋轉(zhuǎn)∠α(0°<α<360°),得到△D′E′C,連接AD′,BE′.邊D′E′的中點為P.①在旋轉(zhuǎn)過程中,AD′和BE′有怎樣的數(shù)量關(guān)系?并說明理由;②連接AP,當AP最大時,求AD′的值.(結(jié)果保留根號)22.(8分)解方程:=1.23.(8分)如圖1,在四邊形ABCD中,AD∥BC,AB=CD=13,AD=11,BC=21,E是BC的中點,P是AB上的任意一點,連接PE,將PE繞點P逆時針旋轉(zhuǎn)90°得到PQ.(1)如圖2,過A點,D點作BC的垂線,垂足分別為M,N,求sinB的值;(2)若P是AB的中點,求點E所經(jīng)過的路徑弧EQ的長(結(jié)果保留π);(3)若點Q落在AB或AD邊所在直線上,請直接寫出BP的長.24.(10分)如圖1,B(2m,0),C(3m,0)是平面直角坐標系中兩點,其中m為常數(shù),且m>0,E(0,n)為y軸上一動點,以BC為邊在x軸上方作矩形ABCD,使AB=2BC,畫射線OA,把△ADC繞點C逆時針旋轉(zhuǎn)90°得△A′D′C′,連接ED′,拋物線()過E,A′兩點.(1)填空:∠AOB=°,用m表示點A′的坐標:A′(,);(2)當拋物線的頂點為A′,拋物線與線段AB交于點P,且時,△D′OE與△ABC是否相似?說明理由;(3)若E與原點O重合,拋物線與射線OA的另一個交點為點M,過M作MN⊥y軸,垂足為N:①求a,b,m滿足的關(guān)系式;②當m為定值,拋物線與四邊形ABCD有公共點,線段MN的最大值為10,請你探究a的取值范圍.25.(10分)如圖1,正方形ABCD的邊長為4,把三角板的直角頂點放置BC中點E處,三角板繞點E旋轉(zhuǎn),三角板的兩邊分別交邊AB、CD于點G、F.(1)求證:△GBE∽△GEF.(2)設(shè)AG=x,GF=y,求Y關(guān)于X的函數(shù)表達式,并寫出自變量取值范圍.(3)如圖2,連接AC交GF于點Q,交EF于點P.當△AGQ與△CEP相似,求線段AG的長.26.(12分)某市對城區(qū)部分路段的人行道地磚、綠化帶、排水管等公用設(shè)施進行全面更新改造,根據(jù)市政建設(shè)的需要,需在35天內(nèi)完成工程.現(xiàn)有甲、乙兩個工程隊有意承包這項工程,經(jīng)調(diào)查知道,乙工程隊單獨完成此項工程的時間是甲工程隊單獨完成此項工程時間的2倍,若甲、乙兩工程隊合作,只需10天完成.甲、乙兩個工程隊單獨完成此項工程各需多少天?若甲工程隊每天的工程費用是4萬元,乙工程隊每天的工程費用是2.5萬元,請你設(shè)計一種方案,既能按時完工,又能使工程費用最少.27.(12分)為上標保障我國海外維和部隊官兵的生活,現(xiàn)需通過A港口、B港口分別運送100噸和50噸生活物資.已知該物資在甲倉庫存有80噸,乙倉庫存有70噸,若從甲、乙兩倉庫運送物資到港口的費用(元/噸)如表所示:設(shè)從甲倉庫運送到A港口的物資為x噸,求總運費y(元)與x(噸)之間的函數(shù)關(guān)系式,并寫出x的取值范圍;求出最低費用,并說明費用最低時的調(diào)配方案.
參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、B【解析】
按照分式運算規(guī)則運算即可,注意結(jié)果的化簡.【詳解】解:原式=,故選擇B.【點睛】本題考查了分式的運算規(guī)則.2、A【解析】
根據(jù)輪船在靜水中的速度為x千米/時可進一步得出順流與逆流速度,從而得出各自航行時間,然后根據(jù)兩次航行時間共用去9小時進一步列出方程組即可.【詳解】∵輪船在靜水中的速度為x千米/時,∴順流航行時間為:,逆流航行時間為:,∴可得出方程:,故選:A.【點睛】本題主要考查了分式方程的應(yīng)用,熟練掌握順流與逆流速度的性質(zhì)是解題關(guān)鍵.3、A【解析】
根據(jù)一次函數(shù)y=kx+b的圖象可知k>1,b<1,再根據(jù)k,b的取值范圍確定一次函數(shù)y=?bx+k圖象在坐標平面內(nèi)的位置關(guān)系,即可判斷.【詳解】解:∵一次函數(shù)y=kx+b的圖象可知k>1,b<1,
∴-b>1,∴一次函數(shù)y=?bx+k的圖象過一、二、三象限,與y軸的正半軸相交,故選:A.【點睛】本題考查了一次函數(shù)的圖象與系數(shù)的關(guān)系.函數(shù)值y隨x的增大而減小?k<1;函數(shù)值y隨x的增大而增大?k>1;一次函數(shù)y=kx+b圖象與y軸的正半軸相交?b>1,一次函數(shù)y=kx+b圖象與y軸的負半軸相交?b<1,一次函數(shù)y=kx+b圖象過原點?b=1.4、A【解析】
試題分析:主要考查倒數(shù)的定義和數(shù)軸,要求熟練掌握.需要注意的是:倒數(shù)的性質(zhì):負數(shù)的倒數(shù)還是負數(shù),正數(shù)的倒數(shù)是正數(shù),0沒有倒數(shù).倒數(shù)的定義:若兩個數(shù)的乘積是1,我們就稱這兩個數(shù)互為倒數(shù).根據(jù)倒數(shù)定義可知,-2的倒數(shù)是-,有數(shù)軸可知A對應(yīng)的數(shù)為-2,B對應(yīng)的數(shù)為-,所以A與B是互為倒數(shù).故選A.考點:1.倒數(shù)的定義;2.數(shù)軸.5、D【解析】
科學記數(shù)法就是將一個數(shù)字表示成(a×10的n次冪的形式),其中1≤|a|<10,n表示整數(shù).n為整數(shù)位數(shù)減1,即從左邊第一位開始,在首位非零的后面加上小數(shù)點,再乘以10的n次冪.【詳解】解:6
590
000=6.59×1.故選:D.【點睛】本題考查學生對科學記數(shù)法的掌握,一定要注意a的形式,以及指數(shù)n的確定方法.6、D【解析】根據(jù)科學記數(shù)法的表示形式(a×10n,其中1≤|a|<10,n為整數(shù).確定n的值時,要看把原數(shù)變成a時,小數(shù)點移動了多少位,n的絕對值與小數(shù)點移動的位數(shù)相同.當原數(shù)絕對值>1時,n是正數(shù);當原數(shù)的絕對值<1時,n是負數(shù))可得:686000=6.86×105,
故選:D.7、B【解析】
科學記數(shù)法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數(shù).確定n的值時,要看把原數(shù)變成a時,小數(shù)點移動了多少位,n的絕對值與小數(shù)點移動的位數(shù)相同.當原數(shù)絕對值>10時,n是正數(shù);當原數(shù)的絕對值<1時,n是負數(shù).【詳解】解:7600=7.6×103,故選B.【點睛】此題考查科學記數(shù)法的表示方法.科學記數(shù)法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數(shù),表示時關(guān)鍵要正確確定a的值以及n的值.8、C【解析】
科學記數(shù)法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數(shù).確定n的值時,要看把原數(shù)變成a時,小數(shù)點移動了多少位,n的絕對值與小數(shù)點移動的位數(shù)相同.當原數(shù)絕對值>1時,n是正數(shù);當原數(shù)的絕對值<1時,n是負數(shù).【詳解】解:5300萬=53000000=.故選C.【點睛】在把一個絕對值較大的數(shù)用科學記數(shù)法表示為的形式時,我們要注意兩點:①必須滿足:;②比原來的數(shù)的整數(shù)位數(shù)少1(也可以通過小數(shù)點移位來確定).9、B【解析】∵四邊形ABCD是平行四邊形,
∴AD=BC=4,CD=AB=6,
∵由作法可知,直線MN是線段AC的垂直平分線,
∴AE=CE,
∴AE+DE=CE+DE=AD,
∴△CDE的周長=CE+DE+CD=AD+CD=4+6=1.
故選B.10、C【解析】
設(shè)二,三月份平均每月降價的百分率為,則二月份為,三月份為,然后再依據(jù)第三個月售價為1,列出方程求解即可.【詳解】解:設(shè)二,三月份平均每月降價的百分率為.根據(jù)題意,得=1.解得,(不合題意,舍去).答:二,三月份平均每月降價的百分率為10%【點睛】本題主要考查一元二次方程的應(yīng)用,關(guān)于降價百分比的問題:若原數(shù)是a,每次降價的百分率為a,則第一次降價后為a(1-x);第二次降價后后為a(1-x)2,即:原數(shù)x(1-降價的百分率)2=后兩次數(shù).11、B【解析】令x=0,y=6,∴B(0,6),∵等腰△OBC,∴點C在線段OB的垂直平分線上,∴設(shè)C(a,3),則C'(a-5,3),∴3=3(a-5)+6,解得a=4,∴C(4,3).故選B.點睛:掌握等腰三角形的性質(zhì)、函數(shù)圖像的平移.12、B【解析】
二次函數(shù),所以二次函數(shù)的開口向下,當x<2,y隨x的增大而增大,選項A錯誤;當x=2時,取得最大值,最大值為-3,選項B正確;頂點坐標為(2,-3),選項C錯誤;頂點坐標為(2,-3),拋物線開口向下可得拋物線與x軸沒有交點,選項D錯誤,故答案選B.考點:二次函數(shù)的性質(zhì).二、填空題:(本大題共6個小題,每小題4分,共24分.)13、1.【解析】
先根據(jù)分式混合運算順序和運算法則化簡原式,再將a的值代入計算可得.【詳解】原式=÷=?=,當a=3時,原式==1,故答案為:1.【點睛】本題主要考查分式的化簡求值,解題的關(guān)鍵是熟練掌握分式的混合運算順序和運算法則.14、【解析】分析:由題意可知,從,0,π,3.14,6這五個數(shù)中隨機抽取一個數(shù),共有5種等可能結(jié)果,其中是有理數(shù)的有3種,由此即可得到所求概率了.詳解:∵從,0,π,3.14,6這五個數(shù)中隨機抽取一個數(shù),共有5種等可能結(jié)果,其中有理數(shù)有0,3.14,6共3個,∴抽到有理數(shù)的概率是:.故答案為.點睛:知道“從,0,π,3.14,6這五個數(shù)中隨機抽取一個數(shù),共有5種等可能結(jié)果”并能識別其中“0,3.14,6”是有理數(shù)是解答本題的關(guān)鍵.15、﹣4≤m≤﹣1【解析】
先求出直線y=7與直線y=﹣2x﹣1的交點為(﹣4,7),再分類討論:當點B在點A的右側(cè),則m≤﹣4≤3m﹣1,當點B在點A的左側(cè),則3m﹣1≤﹣4≤m,然后分別解關(guān)于m的不等式組即可.【詳解】解:當y=7時,﹣2x﹣1=7,解得x=﹣4,所以直線y=7與直線y=﹣2x﹣1的交點為(﹣4,7),當點B在點A的右側(cè),則m≤﹣4≤3m﹣1,無解;當點B在點A的左側(cè),則3m﹣1≤﹣4≤m,解得﹣4≤m≤﹣1,所以m的取值范圍為﹣4≤m≤﹣1,故答案為﹣4≤m≤﹣1.【點睛】本題考查了一次函數(shù)圖象上點的坐標特征,根據(jù)直線y=﹣2x﹣1與線段AB有公共點找出關(guān)于m的一元一次不等式組是解題的關(guān)鍵.16、.【解析】
試題分析:在線段、等邊三角形、圓、矩形、正六邊形這五個圖形中,既是中心對稱圖形又是軸對稱圖形的有線段、圓、矩形、正六邊形,共4個,所以取到的圖形既是中心對稱圖形又是軸對稱圖形的概率為.【點睛】本題考查概率公式,掌握圖形特點是解題關(guān)鍵,難度不大.17、k≠1【解析】試題分析:因為1-xx-2+2=k2-x,所以1-x+2(x-2)=-k,所以1-x+2x-4=-k,所以x=3-k,所以x=3-k,因為原方程有解,所以考點:分式方程.18、60°【解析】
先根據(jù)多邊形的內(nèi)角和公式求出正六邊形每個內(nèi)角的度數(shù),然后用正六邊形內(nèi)角的度數(shù)減去正三角形內(nèi)角的度數(shù)即可.【詳解】(6-2)×180°÷6=120°,∠1=120°-60°=60°.故答案為:60°.【點睛】題考查了多邊形的內(nèi)角和公式,熟記多邊形的內(nèi)角和公式為(n-2)×180°是解答本題的關(guān)鍵.三、解答題:(本大題共9個小題,共78分,解答應(yīng)寫出文字說明、證明過程或演算步驟.19、問題拓展:(x﹣a)1+(y﹣b)1=r1綜合應(yīng)用:①見解析②點Q的坐標為(4,3),方程為(x﹣4)1+(y﹣3)1=15.【解析】試題分析:問題拓展:設(shè)A(x,y)為⊙P上任意一點,則有AP=r,根據(jù)閱讀材料中的兩點之間距離公式即可求出⊙P的方程;綜合應(yīng)用:①由PO=PA,PD⊥OA可得∠OPD=∠APD,從而可證到△POB≌△PAB,則有∠POB=∠PAB.由⊙P與x軸相切于原點O可得∠POB=90°,即可得到∠PAB=90°,由此可得AB是⊙P的切線;②當點Q在線段BP中點時,根據(jù)直角三角形斜邊上的中線等于斜邊的一半可得QO=QP=BQ=AQ.易證∠OBP=∠POA,則有tan∠OBP==.由P點坐標可求出OP、OB.過點Q作QH⊥OB于H,易證△BHQ∽△BOP,根據(jù)相似三角形的性質(zhì)可求出QH、BH,進而求出OH,就可得到點Q的坐標,然后運用問題拓展中的結(jié)論就可解決問題.試題解析:解:問題拓展:設(shè)A(x,y)為⊙P上任意一點,∵P(a,b),半徑為r,∴AP1=(x﹣a)1+(y﹣b)1=r1.故答案為(x﹣a)1+(y﹣b)1=r1;綜合應(yīng)用:①∵PO=PA,PD⊥OA,∴∠OPD=∠APD.在△POB和△PAB中,,∴△POB≌△PAB,∴∠POB=∠PAB.∵⊙P與x軸相切于原點O,∴∠POB=90°,∴∠PAB=90°,∴AB是⊙P的切線;②存在到四點O,P,A,B距離都相等的點Q.當點Q在線段BP中點時,∵∠POB=∠PAB=90°,∴QO=QP=BQ=AQ.此時點Q到四點O,P,A,B距離都相等.∵∠POB=90°,OA⊥PB,∴∠OBP=90°﹣∠DOB=∠POA,∴tan∠OBP==tan∠POA=.∵P點坐標為(0,6),∴OP=6,OB=OP=3.過點Q作QH⊥OB于H,如圖3,則有∠QHB=∠POB=90°,∴QH∥PO,∴△BHQ∽△BOP,∴===,∴QH=OP=3,BH=OB=4,∴OH=3﹣4=4,∴點Q的坐標為(4,3),∴OQ==5,∴以Q為圓心,以O(shè)Q為半徑的⊙O的方程為(x﹣4)1+(y﹣3)1=15.考點:圓的綜合題;全等三角形的判定與性質(zhì);等腰三角形的性質(zhì);直角三角形斜邊上的中線;勾股定理;切線的判定與性質(zhì);相似三角形的判定與性質(zhì);銳角三角函數(shù)的定義.20、見解析【解析】
(1)二次函數(shù)圖象經(jīng)過A(2,0)、B(0,-6)兩點,兩點代入y=-x2+bx+c,算出b和c,即可得解析式;(2)先求出對稱軸方程,寫出C點的坐標,計算出AC,然后由面積公式計算值.【詳解】(1)把,代入得,解得.∴這個二次函數(shù)解析式為.(2)∵拋物線對稱軸為直線,∴的坐標為,∴,∴.【點睛】本題是二次函數(shù)的綜合題,要會求二次函數(shù)的對稱軸,會運用面積公式.21、(1)當CC'=時,四邊形MCND'是菱形,理由見解析;(2)①AD'=BE',理由見解析;②.【解析】
(1)先判斷出四邊形MCND'為平行四邊形,再由菱形的性質(zhì)得出CN=CM,即可求出CC';(2)①分兩種情況,利用旋轉(zhuǎn)的性質(zhì),即可判斷出△ACD≌△BCE'即可得出結(jié)論;②先判斷出點A,C,P三點共線,先求出CP,AP,最后用勾股定理即可得出結(jié)論.【詳解】(1)當CC'=時,四邊形MCND'是菱形.理由:由平移的性質(zhì)得,CD∥C'D',DE∥D'E',∵△ABC是等邊三角形,∴∠B=∠ACB=60°,∴∠ACC'=180°-∠ACB=120°,∵CN是∠ACC'的角平分線,∴∠D'E'C'=∠ACC'=60°=∠B,∴∠D'E'C'=∠NCC',∴D'E'∥CN,∴四邊形MCND'是平行四邊形,∵∠ME'C'=∠MCE'=60°,∠NCC'=∠NC'C=60°,∴△MCE'和△NCC'是等邊三角形,∴MC=CE',NC=CC',∵E'C'=2,∵四邊形MCND'是菱形,∴CN=CM,∴CC'=E'C'=;(2)①AD'=BE',理由:當α≠180°時,由旋轉(zhuǎn)的性質(zhì)得,∠ACD'=∠BCE',由(1)知,AC=BC,CD'=CE',∴△ACD'≌△BCE',∴AD'=BE',當α=180°時,AD'=AC+CD',BE'=BC+CE',即:AD'=BE',綜上可知:AD'=BE'.②如圖連接CP,在△ACP中,由三角形三邊關(guān)系得,AP<AC+CP,∴當點A,C,P三點共線時,AP最大,如圖1,在△D'CE'中,由P為D'E的中點,得AP⊥D'E',PD'=,∴CP=3,∴AP=6+3=9,在Rt△APD'中,由勾股定理得,AD'=.【點睛】此題是四邊形綜合題,主要考查了平行四邊形的判定和性質(zhì),菱形的性質(zhì),平移和旋轉(zhuǎn)的性質(zhì),等邊三角形的判定和性質(zhì),勾股定理,解(1)的關(guān)鍵是四邊形MCND'是平行四邊形,解(2)的關(guān)鍵是判斷出點A,C,P三點共線時,AP最大.22、【解析】
先把分式方程化為整式方程,解整式方程求得x的值,檢驗即可得分式方程的解.【詳解】原方程變形為,方程兩邊同乘以(2x﹣1),得2x﹣5=1(2x﹣1),解得.檢驗:把代入(2x﹣1),(2x﹣1)≠0,∴是原方程的解,∴原方程的.【點睛】本題考查了分式方程的解法,把分式方程化為整式方程是解決問題的關(guān)鍵,解分式方程時,要注意驗根.23、(1)1213;(2)5π;(3)PB的值為10526或【解析】
(1)如圖1中,作AM⊥CB用M,DN⊥BC于N,根據(jù)題意易證Rt△ABM≌Rt△DCN,再根據(jù)全等三角形的性質(zhì)可得出對應(yīng)邊相等,根據(jù)勾股定理可求出AM的值,即可得出結(jié)論;(2)連接AC,根據(jù)勾股定理求出AC的長,再根據(jù)弧長計算公式即可得出結(jié)論;(3)當點Q落在直線AB上時,根據(jù)相似三角形的性質(zhì)可得對應(yīng)邊成比例,即可求出PB的值;當點Q在DA的延長線上時,作PH⊥AD交DA的延長線于H,延長HP交BC于G,設(shè)PB=x,則AP=13﹣x,再根據(jù)全等三角形的性質(zhì)可得對應(yīng)邊相等,即可求出PB的值.【詳解】解:(1)如圖1中,作AM⊥CB用M,DN⊥BC于N.∴∠DNM=∠AMN=90°,∵AD∥BC,∴∠DAM=∠AMN=∠DNM=90°,∴四邊形AMND是矩形,∴AM=DN,∵AB=CD=13,∴Rt△ABM≌Rt△DCN,∴BM=CN,∵AD=11,BC=21,∴BM=CN=5,∴AM==12,在Rt△ABM中,sinB==.(2)如圖2中,連接AC.在Rt△ACM中,AC===20,∵PB=PA,BE=EC,∴PE=AC=10,∴的長==5π.(3)如圖3中,當點Q落在直線AB上時,∵△EPB∽△AMB,∴==,∴==,∴PB=.如圖4中,當點Q在DA的延長線上時,作PH⊥AD交DA的延長線于H,延長HP交BC于G.設(shè)PB=x,則AP=13﹣x.∵AD∥BC,∴∠B=∠HAP,∴PG=x,PH=(13﹣x),∴BG=x,∵△PGE≌△QHP,∴EG=PH,∴﹣x=(13﹣x),∴BP=.綜上所述,滿足條件的PB的值為或.【點睛】本題考查了相似三角形與全等三角形的性質(zhì),解題的關(guān)鍵是熟練的掌握相似三角形與全等三角形的判定與性質(zhì).24、(1)45;(m,﹣m);(2)相似;(3)①;②.【解析】試題分析:(1)由B與C的坐標求出OB與OC的長,進一步表示出BC的長,再證三角形AOB為等腰直角三角形,即可求出所求角的度數(shù);由旋轉(zhuǎn)的性質(zhì)得,即可確定出A′坐標;(2)△D′OE∽△ABC.表示出A與B的坐標,由,表示出P坐標,由拋物線的頂點為A′,表示出拋物線解析式,把點E坐標代入即可得到m與n的關(guān)系式,利用三角形相似即可得證;(3)①當E與原點重合時,把A與E坐標代入,整理即可得到a,b,m的關(guān)系式;②拋物線與四邊形ABCD有公共點,可得出拋物線過點C時的開口最大,過點A時的開口最小,分兩種情況考慮:若拋物線過點C(3m,0),此時MN的最大值為10,求出此時a的值;若拋物線過點A(2m,2m),求出此時a的值,即可確定出拋物線與四邊形ABCD有公共點時a的范圍.試題解析:(1)∵B(2m,0),C(3m,0),∴OB=2m,OC=3m,即BC=m,∵AB=2BC,∴AB=2m=0B,∵∠ABO=90°,∴△ABO為等腰直角三角形,∴∠AOB=45°,由旋轉(zhuǎn)的性質(zhì)得:OD′=D′A′=m,即A′(m,﹣m);故答案為45;m,﹣m;(2)△D′OE∽△ABC,理由如下:由已知得:A(2m,2m),B(2m,0),∵,∴P(2m,m),∵A′為拋物線的頂點,∴設(shè)拋物線解析式為,∵拋物線過點E(0,n),∴,即m=2n,∴OE:OD′=BC:AB=1:2,∵∠EOD′=∠ABC=90°,∴△D′OE∽△ABC;(3)①當點E與點O重合時,E(0,0),∵拋物線過點E,A,∴,整理得:,即;②∵拋物線與四邊形ABCD有公共點,∴拋物線過點C時的開口最大,過點A時的開口最小,若拋物線過點C(3m,0),此時MN的最大值為10,∴a(3m)2﹣(1+am)?3m=0,整理得:am=,即拋物線解析式為,由A(2m,2m),可得直線OA解析式為y=x,聯(lián)立拋物線與直線OA解析式得:,解得:x=5m,y=5m,即M(5m,5m),令5m=10,即m=2,當m=2時,a=;若拋物線過點A(2m,2m),則,解得:am=2,∵m=2,∴a=1,則拋物線與四邊形ABCD有公共點時a的范圍為.考點:1.二次函數(shù)綜合題;2.壓軸題;3.探究型;4.最值問題.25、(1)見解析;(2)y=4﹣x+(0≤x≤3);(3)當△AGQ與△CEP相似,線段AG的長為2或4﹣.【解析】
(1)先判斷出△BEF'≌△CEF,得出BF'=CF,EF'=EF,進而得出∠BGE=∠EGF,即可得出結(jié)論;
(2)先判斷出△BEG∽△CFE進而得出CF=,即可得出結(jié)論;
(3)分兩種情況,①△AGQ∽△CEP時,判斷出∠BGE=60°,即可求出BG;
②△AGQ∽△CPE時,判斷出EG∥AC,進而得出△BEG∽△BCA即可得出BG,即可得出結(jié)論.【詳解】(1)如圖1,延長FE交AB的延長線于F',∵點E是BC的中點,∴BE=CE=2,∵四邊形ABCD是正方形,∴AB∥CD,∴∠F'=∠CFE,在△BEF'和△CEF中,,∴△BEF'≌△CEF,∴BF'=CF,EF'=EF,∵∠GEF=90°,∴GF'=GF,∴∠BGE=∠EGF,∵∠GBE=∠GEF=90°,∴△GBE∽△GEF;(2)∵∠FEG=90°,∴∠BEG+∠CEF=90°,∵∠BEG+∠BGE=90°,∴∠BGE=∠CEF,∵∠EBG=∠C=90°,∴△BEG∽△CFE,∴,由(1)知,BE=CE=2,∵AG=x,∴BG=4﹣x,∴,∴CF=,由(1)知,BF'=CF=,由(1)知,GF'=GF=y,∴y=GF'=BG+BF'=4﹣x+當CF=4時,即:=4,∴x=3,(0≤x≤3),即:y關(guān)于x的函數(shù)表達式為y=4﹣x+(0≤x≤3);(3)∵AC是正方形ABCD的對角線,∴∠BAC=∠BCA=45°,∵△AGQ與△CEP相似,∴①△AGQ∽△CEP,∴∠AGQ=∠CEP,由(2)知,∠CEP=∠BGE,∴∠AGQ=∠BGE,由(1)知,∠BGE=∠FGE,∴∠AGQ=∠BGQ=∠FGE,∴∠AGQ+∠BGQ+∠FGE=180°,∴∠BGE=60°,∴∠BEG=30°,在Rt△BEG中,BE=2,∴BG=,∴AG
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 西安建筑科技大學華清學院《安裝工程計量與計價實訓(xùn)》2023-2024學年第二學期期末試卷
- 鄭州輕工業(yè)大學《數(shù)據(jù)分析與大數(shù)據(jù)技術(shù)的數(shù)學基礎(chǔ)》2023-2024學年第二學期期末試卷
- 做賬實操-快遞公司加盟商保證金的賬務(wù)處理分錄
- 2025年江西省建筑安全員考試題庫附答案
- 四川建筑職業(yè)技術(shù)學院《建筑材料(B)》2023-2024學年第二學期期末試卷
- 中國地質(zhì)大學(北京)《熱力系統(tǒng)工程與仿真》2023-2024學年第二學期期末試卷
- 濟寧職業(yè)技術(shù)學院《植物營養(yǎng)與肥料學》2023-2024學年第二學期期末試卷
- 河南水利與環(huán)境職業(yè)學院《栽培與耕作學》2023-2024學年第二學期期末試卷
- 楊凌職業(yè)技術(shù)學院《飛行控制系統(tǒng)》2023-2024學年第二學期期末試卷
- 廣東文理職業(yè)學院《輻射防護課程設(shè)計》2023-2024學年第二學期期末試卷
- Unit7ArtLesson2BeijingOpera課件高中英語北師版
- 2023高考語文文言文復(fù)習:《說苑》練習題(含答案解析)
- 低血糖健康宣教
- 《煉油化工基本知識》課件
- 關(guān)于高中語文教學中“微課”的運用分析獲獎科研報告論文
- 《射頻同軸電纜》課件2
- 以工代賑政策培訓(xùn)課件
- 垃圾分類校本教材
- 中職學生開學心理知識講座
- 虛擬現(xiàn)實技術(shù)中的智能感知與識別技術(shù)應(yīng)用
- DD 2014-11 地面沉降干涉雷達數(shù)據(jù)處理技術(shù)規(guī)程
評論
0/150
提交評論