版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
江蘇省海安八校2021-2022學(xué)年中考數(shù)學(xué)最后一模試卷注意事項1.考試結(jié)束后,請將本試卷和答題卡一并交回.2.答題前,請務(wù)必將自己的姓名、準(zhǔn)考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認(rèn)真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準(zhǔn)考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應(yīng)選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.下列圖形是中心對稱圖形的是()A. B. C. D.2.小麗只帶2元和5元的兩種面額的鈔票(數(shù)量足夠多),她要買27元的商品,而商店不找零錢,要她剛好付27元,她的付款方式有()種.A.1 B.2 C.3 D.43.有五名射擊運動員,教練為了分析他們成績的波動程度,應(yīng)選擇下列統(tǒng)計量中的()A.方差 B.中位數(shù) C.眾數(shù) D.平均數(shù)4.a(chǎn)、b是實數(shù),點A(2,a)、B(3,b)在反比例函數(shù)y=﹣的圖象上,則()A.a(chǎn)<b<0 B.b<a<0 C.a(chǎn)<0<b D.b<0<a5.某小組7名同學(xué)在一周內(nèi)參加家務(wù)勞動的時間如下表所示,關(guān)于“勞動時間”的這組數(shù)據(jù),以下說法正確的是()勞動時間(小時)33.544.5人數(shù)1132A.中位數(shù)是4,眾數(shù)是4 B.中位數(shù)是3.5,眾數(shù)是4C.平均數(shù)是3.5,眾數(shù)是4 D.平均數(shù)是4,眾數(shù)是3.56.內(nèi)角和為540°的多邊形是()A. B. C. D.7.若代數(shù)式有意義,則實數(shù)x的取值范圍是()A.x=0 B.x=3 C.x≠0 D.x≠38.如圖,⊙O的直徑AB的長為10,弦AC長為6,∠ACB的平分線交⊙O于D,則CD長為()A.7 B. C. D.99.下表是某校合唱團(tuán)成員的年齡分布,對于不同的x,下列關(guān)于年齡的統(tǒng)計量不會發(fā)生改變的是()年齡/歲13141516頻數(shù)515x10-xA.平均數(shù)、中位數(shù) B.眾數(shù)、方差 C.平均數(shù)、方差 D.眾數(shù)、中位數(shù)10.在Rt△ABC中,∠C=90°,AB=4,AC=1,則cosB的值為()A. B. C. D.11.某校有35名同學(xué)參加眉山市的三蘇文化知識競賽,預(yù)賽分?jǐn)?shù)各不相同,取前18名同學(xué)參加決賽.其中一名同學(xué)知道自己的分?jǐn)?shù)后,要判斷自己能否進(jìn)入決賽,只需要知道這35名同學(xué)分?jǐn)?shù)的(
).A.眾數(shù) B.中位數(shù) C.平均數(shù) D.方差12.tan45°的值等于()A. B. C. D.1二、填空題:(本大題共6個小題,每小題4分,共24分.)13.在平面直角坐標(biāo)系xOy中,點A(4,3)為⊙O上一點,B為⊙O內(nèi)一點,請寫出一個符合條件要求的點B的坐標(biāo)______.14.在函數(shù)中,自變量x的取值范圍是_________.15.如圖,在菱形ABCD中,AB=,∠B=120°,點E是AD邊上的一個動點(不與A,D重合),EF∥AB交BC于點F,點G在CD上,DG=DE.若△EFG是等腰三角形,則DE的長為_____.16.二次函數(shù)y=(a-1)x2-x+a2-1
的圖象經(jīng)過原點,則a的值為______.17.如圖,在平面直角坐標(biāo)系中,點O為坐標(biāo)原點,點P在第一象限,⊙P與x軸交于O,A兩點,點A的坐標(biāo)為(6,0),⊙P的半徑為,則點P的坐標(biāo)為_______.18.如圖,利用圖形面積的不同表示方法,能夠得到的代數(shù)恒等式是____________________(寫出一個即可).三、解答題:(本大題共9個小題,共78分,解答應(yīng)寫出文字說明、證明過程或演算步驟.19.(6分)已知:如圖,在菱形ABCD中,F(xiàn)為邊BC的中點,DF與對角線AC交于點M,過M作ME⊥CD于點E,∠1=∠1.(1)若CE=1,求BC的長;(1)求證:AM=DF+ME.20.(6分)在平面直角坐標(biāo)系中,一次函數(shù)(a≠0)的圖象與反比例函數(shù)的圖象交于第二、第四象限內(nèi)的A、B兩點,與軸交于點C,過點A作AH⊥軸,垂足為點H,OH=3,tan∠AOH=,點B的坐標(biāo)為(,-2).求該反比例函數(shù)和一次函數(shù)的解析式;求△AHO的周長.21.(6分)-()-1+3tan60°22.(8分)某學(xué)校為增加體育館觀眾坐席數(shù)量,決定對體育館進(jìn)行施工改造.如圖,為體育館改造的截面示意圖.已知原座位區(qū)最高點A到地面的鉛直高度AC長度為15米,原坡面AB的傾斜角∠ABC為45°,原坡腳B與場館中央的運動區(qū)邊界的安全距離BD為5米.如果按照施工方提供的設(shè)計方案施工,新座位區(qū)最高點E到地面的鉛直高度EG長度保持15米不變,使A、E兩點間距離為2米,使改造后坡面EF的傾斜角∠EFG為37°.若學(xué)校要求新坡腳F需與場館中央的運動區(qū)邊界的安全距離FD至少保持2.5米(即FD≥2.5),請問施工方提供的設(shè)計方案是否滿足安全要求呢?請說明理由.(參考數(shù)據(jù):sin37°≈,tan37°≈)23.(8分)如圖,在?ABCD中,∠BAC=90°,對角線AC,BD相交于點P,以AB為直徑的⊙O分別交BC,BD于點E,Q,連接EP并延長交AD于點F.(1)求證:EF是⊙O的切線;(2)求證:=4BP?QP.24.(10分)閱讀下列材料:數(shù)學(xué)課上老師布置一道作圖題:已知:直線l和l外一點P.求作:過點P的直線m,使得m∥l.小東的作法如下:作法:如圖2,(1)在直線l上任取點A,連接PA;(2)以點A為圓心,適當(dāng)長為半徑作弧,分別交線段PA于點B,直線l于點C;(3)以點P為圓心,AB長為半徑作弧DQ,交線段PA于點D;(4)以點D為圓心,BC長為半徑作弧,交弧DQ于點E,作直線PE.所以直線PE就是所求作的直線m.老師說:“小東的作法是正確的.”請回答:小東的作圖依據(jù)是________.25.(10分)在平面直角坐標(biāo)系xOy中,將拋物線(m≠0)向右平移個單位長度后得到拋物線G2,點A是拋物線G2的頂點.(1)直接寫出點A的坐標(biāo);(2)過點(0,)且平行于x軸的直線l與拋物線G2交于B,C兩點.①當(dāng)∠BAC=90°時.求拋物線G2的表達(dá)式;②若60°<∠BAC<120°,直接寫出m的取值范圍.26.(12分)九(1)班同學(xué)分成甲、乙兩組,開展“四個城市建設(shè)”知識競賽,滿分得5分,得分均為整數(shù).小馬虎根據(jù)競賽成績,繪制了如圖所示的統(tǒng)計圖.經(jīng)確認(rèn),扇形統(tǒng)計圖是正確的,條形統(tǒng)計圖也只有乙組成績統(tǒng)計有一處錯誤.(1)指出條形統(tǒng)計圖中存在的錯誤,并求出正確值;(2)若成績達(dá)到3分及以上為合格,該校九年級有800名學(xué)生,請估計成績未達(dá)到合格的有多少名?(3)九(1)班張明、李剛兩位成績優(yōu)秀的同學(xué)被選中參加市里組織的“四個城市建設(shè)”知識競賽.預(yù)賽分為A、B、C、D四組進(jìn)行,選手由抽簽確定.張明、李剛兩名同學(xué)恰好分在同一組的概率是多少?27.(12分)如圖,在Rt△ABC中,∠C=90°,AC,tanB,半徑為2的⊙C分別交AC,BC于點D、E,得到DE?。笞C:AB為⊙C的切線.求圖中陰影部分的面積.
參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、B【解析】
根據(jù)中心對稱圖形的概念,軸對稱圖形與中心對稱圖形是圖形沿對稱中心旋轉(zhuǎn)180度后與原圖重合,即可解題.A、不是中心對稱圖形,故本選項錯誤;B、是中心對稱圖形,故本選項正確;C、不是中心對稱圖形,故本選項錯誤;D、不是中心對稱圖形,故本選項錯誤.故選B.考點:中心對稱圖形.【詳解】請在此輸入詳解!2、C【解析】分析:先根據(jù)題意列出二元一次方程,再根據(jù)x,y都是非負(fù)整數(shù)可求得x,y的值.詳解:解:設(shè)2元的共有x張,5元的共有y張,由題意,2x+5y=27∴x=(27-5y)∵x,y是非負(fù)整數(shù),∴或或,∴付款的方式共有3種.故選C.點睛:本題考查二元一次方程的應(yīng)用,解題關(guān)鍵是要讀懂題目的意思,根據(jù)題目給出的條件,找出合適的等量關(guān)系,列出方程,再根據(jù)實際意義求解.3、A【解析】試題分析:方差是用來衡量一組數(shù)據(jù)波動大小的量,體現(xiàn)數(shù)據(jù)的穩(wěn)定性,集中程度;方差越大,即波動越大,數(shù)據(jù)越不穩(wěn)定;反之,方差越小,數(shù)據(jù)越穩(wěn)定.故教練要分析射擊運動員成績的波動程度,只需要知道訓(xùn)練成績的方差即可.故選A.考點:1、計算器-平均數(shù),2、中位數(shù),3、眾數(shù),4、方差4、A【解析】解:∵,∴反比例函數(shù)的圖象位于第二、四象限,在每個象限內(nèi),y隨x的增大而增大,∵點A(2,a)、B(3,b)在反比例函數(shù)的圖象上,∴a<b<0,故選A.5、A【解析】
根據(jù)眾數(shù)和中位數(shù)的概念求解.【詳解】這組數(shù)據(jù)中4出現(xiàn)的次數(shù)最多,眾數(shù)為4,∵共有7個人,∴第4個人的勞動時間為中位數(shù),所以中位數(shù)為4,故選A.【點睛】本題考查眾數(shù)與中位數(shù)的意義,一組數(shù)據(jù)中出現(xiàn)次數(shù)最多的數(shù)據(jù)叫做眾數(shù);中位數(shù)是將一組數(shù)據(jù)從小到大(或從大到?。┲匦屡帕泻?,最中間的那個數(shù)(最中間兩個數(shù)的平均數(shù)),叫做這組數(shù)據(jù)的中位數(shù),如果中位數(shù)的概念掌握得不好,不把數(shù)據(jù)按要求重新排列,就會出錯.6、C【解析】試題分析:設(shè)它是n邊形,根據(jù)題意得,(n﹣2)?180°=140°,解得n=1.故選C.考點:多邊形內(nèi)角與外角.7、D【解析】分析:根據(jù)分式有意義的條件進(jìn)行求解即可.詳解:由題意得,x﹣3≠0,解得,x≠3,故選D.點睛:此題考查了分式有意義的條件.注意:分式有意義的條件事分母不等于零,分式無意義的條件是分母等于零.8、B【解析】
作DF⊥CA,交CA的延長線于點F,作DG⊥CB于點G,連接DA,DB.由CD平分∠ACB,根據(jù)角平分線的性質(zhì)得出DF=DG,由HL證明△AFD≌△BGD,△CDF≌△CDG,得出CF=7,又△CDF是等腰直角三角形,從而求出CD=.【詳解】解:作DF⊥CA,垂足F在CA的延長線上,作DG⊥CB于點G,連接DA,DB.∵CD平分∠ACB,∴∠ACD=∠BCD∴DF=DG,弧AD=弧BD,∴DA=DB.∵∠AFD=∠BGD=90°,∴△AFD≌△BGD,∴AF=BG.易證△CDF≌△CDG,∴CF=CG.∵AC=6,BC=8,∴AF=1,(也可以:設(shè)AF=BG=x,BC=8,AC=6,得8-x=6+x,解x=1)∴CF=7,∵△CDF是等腰直角三角形,(這里由CFDG是正方形也可得).∴CD=.故選B.9、D【解析】
由表易得x+(10-x)=10,所以總?cè)藬?shù)不變,14歲的人最多,眾數(shù)不變,中位數(shù)也可以確定.【詳解】∵年齡為15歲和16歲的同學(xué)人數(shù)之和為:x+(10-x)=10,∴由表中數(shù)據(jù)可知人數(shù)最多的是年齡為14歲的,共有15人,合唱團(tuán)總?cè)藬?shù)為30人,∴合唱團(tuán)成員的年齡的中位數(shù)是14,眾數(shù)也是14,這兩個統(tǒng)計量不會隨著x的變化而變化.故選D.10、A【解析】∵在Rt△ABC中,∠C=90°,AB=4,AC=1,∴BC==,則cosB==,故選A11、B【解析】分析:由于比賽取前18名參加決賽,共有35名選手參加,根據(jù)中位數(shù)的意義分析即可.詳解:35個不同的成績按從小到大排序后,中位數(shù)及中位數(shù)之后的共有18個數(shù),故只要知道自己的成績和中位數(shù)就可以知道是否進(jìn)入決賽了.故選B.點睛:本題考查了統(tǒng)計量的選擇,以及中位數(shù)意義,解題的關(guān)鍵是正確的求出這組數(shù)據(jù)的中位數(shù)12、D【解析】
根據(jù)特殊角三角函數(shù)值,可得答案.【詳解】解:tan45°=1,故選D.【點睛】本題考查了特殊角三角函數(shù)值,熟記特殊角三角函數(shù)值是解題關(guān)鍵.二、填空題:(本大題共6個小題,每小題4分,共24分.)13、(2,2).【解析】
連結(jié)OA,根據(jù)勾股定理可求OA,再根據(jù)點與圓的位置關(guān)系可得一個符合要求的點B的坐標(biāo).【詳解】如圖,連結(jié)OA,OA==5,∵B為⊙O內(nèi)一點,∴符合要求的點B的坐標(biāo)(2,2)答案不唯一.故答案為:(2,2).【點睛】考查了點與圓的位置關(guān)系,坐標(biāo)與圖形性質(zhì),關(guān)鍵是根據(jù)勾股定理得到OA的長.14、x≤1且x≠﹣1【解析】試題分析:根據(jù)二次根式有意義,分式有意義得:1﹣x≥0且x+1≠0,解得:x≤1且x≠﹣1.故答案為x≤1且x≠﹣1.考點:函數(shù)自變量的取值范圍;分式有意義的條件;二次根式有意義的條件.15、1或【解析】
由四邊形ABCD是菱形,得到BC∥AD,由于EF∥AB,得到四邊形ABFE是平行四邊形,根據(jù)平行四邊形的性質(zhì)得到EF∥AB,于是得到EF=AB=,當(dāng)△EFG為等腰三角形時,①EF=GE=時,于是得到DE=DG=AD÷=1,②GE=GF時,根據(jù)勾股定理得到DE=.【詳解】解:∵四邊形ABCD是菱形,∠B=120°,∴∠D=∠B=120°,∠A=180°-120°=60°,BC∥AD,∵EF∥AB,∴四邊形ABFE是平行四邊形,∴EF∥AB,∴EF=AB=,∠DEF=∠A=60°,∠EFC=∠B=120°,∵DE=DG,∴∠DEG=∠DGE=30°,∴∠FEG=30°,當(dāng)△EFG為等腰三角形時,當(dāng)EF=EG時,EG=,如圖1,過點D作DH⊥EG于H,∴EH=EG=,在Rt△DEH中,DE==1,GE=GF時,如圖2,過點G作GQ⊥EF,∴EQ=EF=,在Rt△EQG中,∠QEG=30°,∴EG=1,過點D作DP⊥EG于P,∴PE=EG=,同①的方法得,DE=,當(dāng)EF=FG時,由∠EFG=180°-2×30°=120°=∠CFE,此時,點C和點G重合,點F和點B重合,不符合題意,故答案為1或.【點睛】本題考查了菱形的性質(zhì),平行四邊形的性質(zhì),等腰三角形的性質(zhì)以及勾股定理,熟練掌握各性質(zhì)是解題的關(guān)鍵.16、-1【解析】
將(2,2)代入y=(a-1)x2-x+a2-1即可得出a的值.【詳解】解:∵二次函數(shù)y=(a-1)x2-x+a2-1的圖象經(jīng)過原點,∴a2-1=2,∴a=±1,∵a-1≠2,∴a≠1,∴a的值為-1.故答案為-1.【點睛】本題考查了二次函數(shù)圖象上點的坐標(biāo)特征,圖象過原點,可得出x=2時,y=2.17、(3,2).【解析】
過點P作PD⊥x軸于點D,連接OP,先由垂徑定理求出OD的長,再根據(jù)勾股定理求出PD的長,故可得出答案.【詳解】過點P作PD⊥x軸于點D,連接OP,∵A(6,0),PD⊥OA,∴OD=OA=3,在Rt△OPD中∵OP=OD=3,∴PD=2∴P(3,2).故答案為(3,2).【點睛】本題考查的是垂徑定理,根據(jù)題意作出輔助線,構(gòu)造出直角三角形是解答此題的關(guān)鍵.18、(a+b)2=a2+2ab+b2【解析】
完全平方公式的幾何背景,即乘法公式的幾何驗證.此類題型可從整體和部分兩個方面分析問題.本題從整體來看,整個圖形為一個正方形,找到邊長,表示出面積,從部分來看,該圖形的面積可用兩個小正方形的面積加上2個矩形的面積表示,從不同角度思考,但是同一圖形,所以它們面積相等,列出等式.【詳解】解:,【點睛】此題考查了完全平方公式的幾何意義,從不同角度思考,用不同的方法表示相應(yīng)的面積是解題的關(guān)鍵.三、解答題:(本大題共9個小題,共78分,解答應(yīng)寫出文字說明、證明過程或演算步驟.19、(1)1;(1)見解析.【解析】試題分析:(1)根據(jù)菱形的對邊平行可得AB∥CD,再根據(jù)兩直線平行,內(nèi)錯角相等可得∠1=∠ACD,所以∠ACD=∠1,根據(jù)等角對等邊的性質(zhì)可得CM=DM,再根據(jù)等腰三角形三線合一的性質(zhì)可得CE=DE,然后求出CD的長度,即為菱形的邊長BC的長度;
(1)先利用“邊角邊”證明△CEM和△CFM全等,根據(jù)全等三角形對應(yīng)邊相等可得ME=MF,延長AB交DF于點G,然后證明∠1=∠G,根據(jù)等角對等邊的性質(zhì)可得AM=GM,再利用“角角邊”證明△CDF和△BGF全等,根據(jù)全等三角形對應(yīng)邊相等可得GF=DF,最后結(jié)合圖形GM=GF+MF即可得證.試題解析:(1)∵四邊形ABCD是菱形,
∴AB∥CD,
∴∠1=∠ACD,
∵∠1=∠1,
∴∠ACD=∠1,
∴MC=MD,
∵M(jìn)E⊥CD,
∴CD=1CE,
∵CE=1,
∴CD=1,
∴BC=CD=1;
(1)AM=DF+ME證明:如圖,∵F為邊BC的中點,
∴BF=CF=BC,
∴CF=CE,
在菱形ABCD中,AC平分∠BCD,
∴∠ACB=∠ACD,
在△CEM和△CFM中,
∵,
∴△CEM≌△CFM(SAS),
∴ME=MF,
延長AB交DF的延長線于點G,
∵AB∥CD,
∴∠G=∠1,
∵∠1=∠1,
∴∠1=∠G,
∴AM=MG,
在△CDF和△BGF中,
∵∴△CDF≌△BGF(AAS),
∴GF=DF,
由圖形可知,GM=GF+MF,
∴AM=DF+ME.20、(1)一次函數(shù)為,反比例函數(shù)為;(2)△AHO的周長為12【解析】分析:(1)根據(jù)正切函數(shù)可得AH=4,根據(jù)反比例函數(shù)的特點k=xy為定值,列出方程,求出k的值,便可求出反比例函數(shù)的解析式;根據(jù)k的值求出B兩點的坐標(biāo),用待定系數(shù)法便可求出一次函數(shù)的解析式.(2)由(1)知AH的長,根據(jù)勾股定理,可得AO的長,根據(jù)三角形的周長,可得答案.詳解:(1)∵tan∠AOH==∴AH=OH=4∴A(-4,3),代入,得k=-4×3=-12∴反比例函數(shù)為∴∴m=6∴B(6,-2)∴∴=,b=1∴一次函數(shù)為(2)△AHO的周長為:3+4+5=12點睛:此題考查的是反比例函數(shù)圖象上點的坐標(biāo)特點及用待定系數(shù)法求一次函數(shù)及反比例函數(shù)的解析式.21、0【解析】
根據(jù)二次根式的乘法、絕對值、負(fù)整數(shù)指數(shù)冪和特殊角的三角函數(shù)值計算,然后進(jìn)行加減運算.【詳解】原式=-2+2--2+3=0.【點睛】本題考查了二次根式的混合運算:先把各二次根式化為最簡二次根式,在進(jìn)行二次根式的乘除運算,然后合并同類二次根式.也考查了零指數(shù)冪、負(fù)整數(shù)指數(shù)冪和特殊角的三角函數(shù)值.22、不滿足安全要求,理由見解析.【解析】
在Rt△ABC中,由∠ACB=90°,AC=15m,∠ABC=45°可求得BC=15m;在Rt△EGD中,由∠EGD=90°,EG=15m,∠EFG=37°,可解得GF=20m;通過已知條件可證得四邊形EACG是矩形,從而可得GC=AE=2m;這樣可解得:DF=GC+BC+BD-GF=2+15+5-20=2<2.5,由此可知:“設(shè)計方案不滿足安全要求”.【詳解】解:施工方提供的設(shè)計方案不滿足安全要求,理由如下:在Rt△ABC中,AC=15m,∠ABC=45°,∴BC==15m.在Rt△EFG中,EG=15m,∠EFG=37°,∴GF=≈=20m.∵EG=AC=15m,AC⊥BC,EG⊥BC,∴EG∥AC,∴四邊形EGCA是矩形,∴GC=EA=2m,∴DF=GC+BC+BD-GF=2+15+5-20=2<2.5.∴施工方提供的設(shè)計方案不滿足安全要求.23、(1)證明見解析;(2)證明見解析.【解析】試題分析:(1)連接OE,AE,由AB是⊙O的直徑,得到∠AEB=∠AEC=90°,根據(jù)四邊形ABCD是平行四邊形,得到PA=PC推出∠OEP=∠OAC=90°,根據(jù)切線的判定定理即可得到結(jié)論;(2)由AB是⊙O的直徑,得到∠AQB=90°根據(jù)相似三角形的性質(zhì)得到=PB?PQ,根據(jù)全等三角形的性質(zhì)得到PF=PE,求得PA=PE=EF,等量代換即可得到結(jié)論.試題解析:(1)連接OE,AE,∵AB是⊙O的直徑,∴∠AEB=∠AEC=90°,∵四邊形ABCD是平行四邊形,∴PA=PC,∴PA=PC=PE,∴∠PAE=∠PEA,∵OA=OE,∴∠OAE=∠OEA,∴∠OEP=∠OAC=90°,∴EF是⊙O的切線;(2)∵AB是⊙O的直徑,∴∠AQB=90°,∴△APQ∽△BPA,∴,∴=PB?PQ,在△AFP與△CEP中,∵∠PAF=∠PCE,∠APF=∠CPE,PA=PC,∴△AFP≌△CEP,∴PF=PE,∴PA=PE=EF,∴=4BP?QP.考點:切線的判定;平行四邊形的性質(zhì);相似三角形的判定與性質(zhì).24、內(nèi)錯角相等,兩直線平行【解析】
根據(jù)內(nèi)錯角相等,兩直線平行即可判斷.【詳解】∵∠EPA=∠CAP,∴m∥l(內(nèi)錯角相等,兩直線平行).故答案為:內(nèi)錯角相等,兩直線平行.【點睛】本題考查了作圖﹣復(fù)雜作圖,平行線的判定等知識,解題的關(guān)鍵是熟練掌握五種基本作圖,屬于中考常考題型.25、(1)(,2);(2)①y=(x-)2+2;②【解析】
(1)先求出平移后是拋物線G2的函數(shù)解析式,即可求得點A的坐標(biāo);(2)①由(1)可知G2的表達(dá)式,首先求出AD的值,利用等腰直角的性質(zhì)得出BD=AD=,從而求出點B的坐標(biāo),代入即可得解;②分別求出當(dāng)∠BAC=60°時,當(dāng)∠BAC=120°時m的值,即可得出m的取值范圍.【詳解】(1)∵將拋物線G1:y=mx2+2(m≠0)向右平移個單位長度后得到拋物線G2,∴拋物線G2:y=m(x-)2+2,∵點A是拋物線G2的頂點.∴點A的坐標(biāo)為(,2).(2)①設(shè)拋物線對稱軸與直線l交于點D,如圖1所示.∵點A是拋物線頂點,∴AB=AC.∵∠BAC=90°,∴△ABC為等腰直角三角形,∴CD=AD=,∴點C的坐標(biāo)為(2,).∵點C在拋物線G2上,∴=m(2-)2+2,解得:.②依照題意畫出圖形,如圖2所示.同理:當(dāng)
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 校園安全宣傳與應(yīng)急演練計劃
- 科研機(jī)構(gòu)保安工作總結(jié)與建議計劃
- 四年級語文下冊 第一單元達(dá)標(biāo)測試卷2(部編版)
- 經(jīng)管類論文寫作課程設(shè)計
- 手表包裝結(jié)構(gòu)課程設(shè)計
- 成都中醫(yī)藥大學(xué)《團(tuán)體操編排》2021-2022學(xué)年第一學(xué)期期末試卷
- 成都中醫(yī)藥大學(xué)《傳統(tǒng)運動養(yǎng)生學(xué)》2021-2022學(xué)年第一學(xué)期期末試卷
- 職工家屬樓轉(zhuǎn)讓合同(3篇)
- 食品定金購銷合同(3篇)
- 教學(xué)常規(guī)工作總結(jié)(共15篇)
- 大學(xué)生國防教育學(xué)國防知識做愛國青年課件
- 中醫(yī)人工智能
- 人教版(2024)八年級上冊物理第3章《物態(tài)變化》單元測試卷(含答案解析)
- Module 4 Unit 8 A trip to Hong Kong.(教學(xué)設(shè)計)-2024-2025學(xué)年教科版(廣州)英語六年級上冊
- 3公民意味著什么第一課時 教學(xué)設(shè)計-2024-2025學(xué)年道德與法治六年級上冊統(tǒng)編版
- 智能機(jī)器人設(shè)計與實踐智慧樹知到答案2024年北京航空航天大學(xué)
- 湖北機(jī)場集團(tuán)限公司2024年春季校園招聘【35人】(高頻重點提升專題訓(xùn)練)共500題附帶答案詳解
- 2024年秋季人教版新教材七年級上冊語文全冊教案(名師教學(xué)設(shè)計簡案)
- 2024中華人民共和國農(nóng)村集體經(jīng)濟(jì)組織法詳細(xì)解讀課件
- T-CPQS C010-2024 鑒賞收藏用潮流玩偶及類似用途產(chǎn)品
- 羅蘭貝格-正泰集團(tuán)品牌戰(zhàn)略項目-品牌戰(zhàn)略設(shè)計與高階落地建議報告-20180627a
評論
0/150
提交評論