北京市五十七中學(xué)2025年高三3月高考模擬考試數(shù)學(xué)試題試卷含解析_第1頁(yè)
北京市五十七中學(xué)2025年高三3月高考模擬考試數(shù)學(xué)試題試卷含解析_第2頁(yè)
北京市五十七中學(xué)2025年高三3月高考模擬考試數(shù)學(xué)試題試卷含解析_第3頁(yè)
北京市五十七中學(xué)2025年高三3月高考模擬考試數(shù)學(xué)試題試卷含解析_第4頁(yè)
北京市五十七中學(xué)2025年高三3月高考模擬考試數(shù)學(xué)試題試卷含解析_第5頁(yè)
已閱讀5頁(yè),還剩14頁(yè)未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

北京市五十七中學(xué)2025年高三3月高考模擬考試數(shù)學(xué)試題試卷考生請(qǐng)注意:1.答題前請(qǐng)將考場(chǎng)、試室號(hào)、座位號(hào)、考生號(hào)、姓名寫(xiě)在試卷密封線內(nèi),不得在試卷上作任何標(biāo)記。2.第一部分選擇題每小題選出答案后,需將答案寫(xiě)在試卷指定的括號(hào)內(nèi),第二部分非選擇題答案寫(xiě)在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請(qǐng)將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.設(shè)命題p:>1,n2>2n,則p為()A. B.C. D.2.已知實(shí)數(shù),滿足約束條件,則的取值范圍是()A. B. C. D.3.如圖,網(wǎng)格紙是由邊長(zhǎng)為1的小正方形構(gòu)成,若粗實(shí)線畫(huà)出的是某幾何體的三視圖,則該幾何體的表面積為()A. B. C. D.4.設(shè),,是非零向量.若,則()A. B. C. D.5.執(zhí)行如下的程序框圖,則輸出的是()A. B.C. D.6.已知三棱錐中,為的中點(diǎn),平面,,,則有下列四個(gè)結(jié)論:①若為的外心,則;②若為等邊三角形,則;③當(dāng)時(shí),與平面所成的角的范圍為;④當(dāng)時(shí),為平面內(nèi)一動(dòng)點(diǎn),若OM∥平面,則在內(nèi)軌跡的長(zhǎng)度為1.其中正確的個(gè)數(shù)是().A.1 B.1 C.3 D.47.已知函數(shù)的圖象與直線的相鄰交點(diǎn)間的距離為,若定義,則函數(shù),在區(qū)間內(nèi)的圖象是()A. B.C. D.8.一個(gè)由兩個(gè)圓柱組合而成的密閉容器內(nèi)裝有部分液體,小圓柱底面半徑為,大圓柱底面半徑為,如圖1放置容器時(shí),液面以上空余部分的高為,如圖2放置容器時(shí),液面以上空余部分的高為,則()A. B. C. D.9.如圖,網(wǎng)格紙上小正方形的邊長(zhǎng)為1,粗線畫(huà)出的是某幾何體的三視圖,則該幾何體的表面積()A. B. C. D.10.已知中,,則()A.1 B. C. D.11.我國(guó)南北朝時(shí)的數(shù)學(xué)著作《張邱建算經(jīng)》有一道題為:“今有十等人,每等一人,宮賜金以等次差降之,上三人先入,得金四斤,持出,下三人后入得金三斤,持出,中間四人未到者,亦依次更給,問(wèn)各得金幾何?”則在該問(wèn)題中,等級(jí)較高的二等人所得黃金比等級(jí)較低的九等人所得黃金()A.多1斤 B.少1斤 C.多斤 D.少斤12.已知等差數(shù)列的前項(xiàng)和為,若,則等差數(shù)列公差()A.2 B. C.3 D.4二、填空題:本題共4小題,每小題5分,共20分。13.已知函數(shù)恰好有3個(gè)不同的零點(diǎn),則實(shí)數(shù)的取值范圍為_(kāi)___14.復(fù)數(shù)(其中i為虛數(shù)單位)的共軛復(fù)數(shù)為_(kāi)_______.15.拋物線的焦點(diǎn)到準(zhǔn)線的距離為.16.已知等差數(shù)列的前n項(xiàng)和為,,,則=_______.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)如圖,在正四棱錐中,底面正方形的對(duì)角線交于點(diǎn)且(1)求直線與平面所成角的正弦值;(2)求銳二面角的大小.18.(12分)某超市計(jì)劃按月訂購(gòu)一種酸奶,每天進(jìn)貨量相同,進(jìn)貨成本每瓶4元,售價(jià)每瓶6元,未售出的酸奶降價(jià)處理,以每瓶2元的價(jià)格當(dāng)天全部處理完.根據(jù)往年銷(xiāo)售經(jīng)驗(yàn),每天需求量與當(dāng)天最高氣溫(單位:℃)有關(guān).如果最高氣溫不低于25,需求量為500瓶;如果最高氣溫位于區(qū)間[20,25),需求量為300瓶;如果最高氣溫低于20,需求量為200瓶.為了確定六月份的訂購(gòu)計(jì)劃,統(tǒng)計(jì)了前三年六月份各天的最高氣溫?cái)?shù)據(jù),得下面的頻數(shù)分布表:最高氣溫[10,15)[15,20)[20,25)[25,30)[30,35)[35,40)天數(shù)216362574以最高氣溫位于各區(qū)間的頻率估計(jì)最高氣溫位于該區(qū)間的概率.(1)求六月份這種酸奶一天的需求量不超過(guò)300瓶的概率;(2)設(shè)六月份一天銷(xiāo)售這種酸奶的利潤(rùn)為Y(單位:元),當(dāng)六月份這種酸奶一天的進(jìn)貨量為450瓶時(shí),寫(xiě)出Y的所有可能值,并估計(jì)Y大于零的概率.19.(12分)已知數(shù)列的前項(xiàng)和為,且滿足,各項(xiàng)均為正數(shù)的等比數(shù)列滿足(1)求數(shù)列的通項(xiàng)公式;(2)若,求數(shù)列的前項(xiàng)和20.(12分)已知數(shù)列滿足(),數(shù)列的前項(xiàng)和,(),且,.(1)求數(shù)列的通項(xiàng)公式:(2)求數(shù)列的通項(xiàng)公式.(3)設(shè),記是數(shù)列的前項(xiàng)和,求正整數(shù),使得對(duì)于任意的均有.21.(12分)如圖,在三棱柱中,平面平面,側(cè)面為平行四邊形,側(cè)面為正方形,,,為的中點(diǎn).(1)求證:平面;(2)求二面角的大小.22.(10分)設(shè)為坐標(biāo)原點(diǎn),動(dòng)點(diǎn)在橢圓:上,該橢圓的左頂點(diǎn)到直線的距離為.(1)求橢圓的標(biāo)準(zhǔn)方程;(2)若橢圓外一點(diǎn)滿足,平行于軸,,動(dòng)點(diǎn)在直線上,滿足.設(shè)過(guò)點(diǎn)且垂直的直線,試問(wèn)直線是否過(guò)定點(diǎn)?若過(guò)定點(diǎn),請(qǐng)寫(xiě)出該定點(diǎn),若不過(guò)定點(diǎn)請(qǐng)說(shuō)明理由.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.C【解析】根據(jù)命題的否定,可以寫(xiě)出:,所以選C.2.B【解析】

畫(huà)出可行域,根據(jù)可行域上的點(diǎn)到原點(diǎn)距離,求得的取值范圍.【詳解】由約束條件作出可行域是由,,三點(diǎn)所圍成的三角形及其內(nèi)部,如圖中陰影部分,而可理解為可行域內(nèi)的點(diǎn)到原點(diǎn)距離的平方,顯然原點(diǎn)到所在的直線的距離是可行域內(nèi)的點(diǎn)到原點(diǎn)距離的最小值,此時(shí),點(diǎn)到原點(diǎn)的距離是可行域內(nèi)的點(diǎn)到原點(diǎn)距離的最大值,此時(shí).所以的取值范圍是.故選:B本小題考查線性規(guī)劃,兩點(diǎn)間距離公式等基礎(chǔ)知識(shí);考查運(yùn)算求解能力,數(shù)形結(jié)合思想,應(yīng)用意識(shí).3.C【解析】

根據(jù)三視圖還原為幾何體,結(jié)合組合體的結(jié)構(gòu)特征求解表面積.【詳解】由三視圖可知,該幾何體可看作是半個(gè)圓柱和一個(gè)長(zhǎng)方體的組合體,其中半圓柱的底面半圓半徑為1,高為4,長(zhǎng)方體的底面四邊形相鄰邊長(zhǎng)分別為1,2,高為4,所以該幾何體的表面積,故選C.本題主要考查三視圖的識(shí)別,利用三視圖還原成幾何體是求解關(guān)鍵,側(cè)重考查直觀想象和數(shù)學(xué)運(yùn)算的核心素養(yǎng).4.D【解析】試題分析:由題意得:若,則;若,則由可知,,故也成立,故選D.考點(diǎn):平面向量數(shù)量積.【思路點(diǎn)睛】幾何圖形中向量的數(shù)量積問(wèn)題是近幾年高考的又一熱點(diǎn),作為一類(lèi)既能考查向量的線性運(yùn)算、坐標(biāo)運(yùn)算、數(shù)量積及平面幾何知識(shí),又能考查學(xué)生的數(shù)形結(jié)合能力及轉(zhuǎn)化與化歸能力的問(wèn)題,實(shí)有其合理之處.解決此類(lèi)問(wèn)題的常用方法是:①利用已知條件,結(jié)合平面幾何知識(shí)及向量數(shù)量積的基本概念直接求解(較易);②將條件通過(guò)向量的線性運(yùn)算進(jìn)行轉(zhuǎn)化,再利用①求解(較難);③建系,借助向量的坐標(biāo)運(yùn)算,此法對(duì)解含垂直關(guān)系的問(wèn)題往往有很好效果.5.A【解析】

列出每一步算法循環(huán),可得出輸出結(jié)果的值.【詳解】滿足,執(zhí)行第一次循環(huán),,;成立,執(zhí)行第二次循環(huán),,;成立,執(zhí)行第三次循環(huán),,;成立,執(zhí)行第四次循環(huán),,;成立,執(zhí)行第五次循環(huán),,;成立,執(zhí)行第六次循環(huán),,;成立,執(zhí)行第七次循環(huán),,;成立,執(zhí)行第八次循環(huán),,;不成立,跳出循環(huán)體,輸出的值為,故選:A.本題考查算法與程序框圖的計(jì)算,解題時(shí)要根據(jù)算法框圖計(jì)算出算法的每一步,考查分析問(wèn)題和計(jì)算能力,屬于中等題.6.C【解析】

由線面垂直的性質(zhì),結(jié)合勾股定理可判斷①正確;反證法由線面垂直的判斷和性質(zhì)可判斷②錯(cuò)誤;由線面角的定義和轉(zhuǎn)化為三棱錐的體積,求得C到平面PAB的距離的范圍,可判斷③正確;由面面平行的性質(zhì)定理可得線面平行,可得④正確.【詳解】畫(huà)出圖形:若為的外心,則,平面,可得,即,①正確;若為等邊三角形,,又可得平面,即,由可得,矛盾,②錯(cuò)誤;若,設(shè)與平面所成角為可得,設(shè)到平面的距離為由可得即有,當(dāng)且僅當(dāng)取等號(hào).可得的最大值為,即的范圍為,③正確;取中點(diǎn),的中點(diǎn),連接由中位線定理可得平面平面可得在線段上,而,可得④正確;所以正確的是:①③④故選:C此題考查立體幾何中與點(diǎn)、線、面位置關(guān)系有關(guān)的命題的真假判斷,處理這類(lèi)問(wèn)題,可以用已知的定理或性質(zhì)來(lái)證明,也可以用反證法來(lái)說(shuō)明命題的不成立.屬于一般性題目.7.A【解析】

由題知,利用求出,再根據(jù)題給定義,化簡(jiǎn)求出的解析式,結(jié)合正弦函數(shù)和正切函數(shù)圖象判斷,即可得出答案.【詳解】根據(jù)題意,的圖象與直線的相鄰交點(diǎn)間的距離為,所以的周期為,則,所以,由正弦函數(shù)和正切函數(shù)圖象可知正確.故選:A.本題考查三角函數(shù)中正切函數(shù)的周期和圖象,以及正弦函數(shù)的圖象,解題關(guān)鍵是對(duì)新定義的理解.8.B【解析】

根據(jù)空余部分體積相等列出等式即可求解.【詳解】在圖1中,液面以上空余部分的體積為;在圖2中,液面以上空余部分的體積為.因?yàn)椋?故選:B本題考查圓柱的體積,屬于基礎(chǔ)題.9.C【解析】

畫(huà)出幾何體的直觀圖,利用三視圖的數(shù)據(jù)求解幾何體的表面積即可.【詳解】解:幾何體的直觀圖如圖,是正方體的一部分,P?ABC,正方體的棱長(zhǎng)為2,

該幾何體的表面積:.故選C.本題考查三視圖求解幾何體的直觀圖的表面積,判斷幾何體的形狀是解題的關(guān)鍵.10.C【解析】

以為基底,將用基底表示,根據(jù)向量數(shù)量積的運(yùn)算律,即可求解.【詳解】,,.故選:C.本題考查向量的線性運(yùn)算以及向量的基本定理,考查向量數(shù)量積運(yùn)算,屬于中檔題.11.C【解析】設(shè)這十等人所得黃金的重量從大到小依次組成等差數(shù)列則由等差數(shù)列的性質(zhì)得,故選C12.C【解析】

根據(jù)等差數(shù)列的求和公式即可得出.【詳解】∵a1=12,S5=90,∴5×12+d=90,解得d=1.故選C.本題主要考查了等差數(shù)列的求和公式,考查了推理能力與計(jì)算能力,屬于中檔題.二、填空題:本題共4小題,每小題5分,共20分。13.【解析】

恰好有3個(gè)不同的零點(diǎn)恰有三個(gè)根,然后轉(zhuǎn)化成求函數(shù)值域即可.【詳解】解:恰好有3個(gè)不同的零點(diǎn)恰有三個(gè)根,令,,在遞增;,遞減,遞增,時(shí),在有一個(gè)零點(diǎn),在有2個(gè)零點(diǎn);故答案為:.已知函數(shù)的零點(diǎn)個(gè)數(shù)求參數(shù)的取值范圍是重點(diǎn)也是難點(diǎn),這類(lèi)題一般用分離參數(shù)的方法,中檔題.14.【解析】

利用復(fù)數(shù)的乘法運(yùn)算求出,再利用共軛復(fù)數(shù)的概念即可求解.【詳解】由,則.故答案為:本題考查了復(fù)數(shù)的四則運(yùn)算以及共軛復(fù)數(shù)的概念,屬于基礎(chǔ)題.15.【解析】試題分析:由題意得,因?yàn)閽佄锞€,即,即焦點(diǎn)到準(zhǔn)線的距離為.考點(diǎn):拋物線的性質(zhì).16.【解析】

利用求出公差,結(jié)合等差數(shù)列的通項(xiàng)公式可求.【詳解】設(shè)公差為,因?yàn)椋?,?所以.故答案為:本題主要考查等差數(shù)列通項(xiàng)公式的求解,利用等差數(shù)列的基本量是求解這類(lèi)問(wèn)題的通性通法,側(cè)重考查數(shù)學(xué)運(yùn)算的核心素養(yǎng).三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17.(1);(2).【解析】

(1)以分別為軸,軸,軸,建立空間直角坐標(biāo)系,設(shè)底面正方形邊長(zhǎng)為再求解與平面的法向量,繼而求得直線與平面所成角的正弦值即可.(2)分別求解平面與平面的法向量,再求二面角的余弦值判斷二面角大小即可.【詳解】解:在正四棱錐中,底面正方形的對(duì)角線交于點(diǎn)所以平面取的中點(diǎn)的中點(diǎn)所以兩兩垂直,故以點(diǎn)為坐標(biāo)原點(diǎn),以分別為軸,軸,軸,建立空間直角坐標(biāo)系.設(shè)底面正方形邊長(zhǎng)為因?yàn)樗运?所以,設(shè)平面的法向量是,因?yàn)?,所以,,取則,所以所以,所以直線與平面所成角的正弦值為.設(shè)平面的法向量是,因?yàn)?,所以,取則所以,由知平面的法向量是,所以所以,所以銳二面角的大小為.本題主要考查了建立平面直角坐標(biāo)系求解線面夾角以及二面角的問(wèn)題,屬于中檔題.18.(1).(2).【解析】

(1)由前三年六月份各天的最高氣溫?cái)?shù)據(jù),求出最高氣溫位于區(qū)間[20,25)和最高氣溫低于20的天數(shù),由此能求出六月份這種酸奶一天的需求量不超過(guò)300瓶的概率.(2)當(dāng)溫度大于等于25℃時(shí),需求量為500,求出Y=900元;當(dāng)溫度在[20,25)℃時(shí),需求量為300,求出Y=300元;當(dāng)溫度低于20℃時(shí),需求量為200,求出Y=﹣100元,從而當(dāng)溫度大于等于20時(shí),Y>0,由此能估計(jì)估計(jì)Y大于零的概率.【詳解】解:(1)由前三年六月份各天的最高氣溫?cái)?shù)據(jù),得到最高氣溫位于區(qū)間[20,25)和最高氣溫低于20的天數(shù)為2+16+36=54,根據(jù)往年銷(xiāo)售經(jīng)驗(yàn),每天需求量與當(dāng)天最高氣溫(單位:℃)有關(guān).如果最高氣溫不低于25,需求量為500瓶,如果最高氣溫位于區(qū)間[20,25),需求量為300瓶,如果最高氣溫低于20,需求量為200瓶,∴六月份這種酸奶一天的需求量不超過(guò)300瓶的概率p.(2)當(dāng)溫度大于等于25℃時(shí),需求量為500,Y=450×2=900元,當(dāng)溫度在[20,25)℃時(shí),需求量為300,Y=300×2﹣(450﹣300)×2=300元,當(dāng)溫度低于20℃時(shí),需求量為200,Y=400﹣(450﹣200)×2=﹣100元,當(dāng)溫度大于等于20時(shí),Y>0,由前三年六月份各天的最高氣溫?cái)?shù)據(jù),得當(dāng)溫度大于等于20℃的天數(shù)有:90﹣(2+16)=72,∴估計(jì)Y大于零的概率P.本題考查概率的求法,考查利潤(rùn)的所有可能取值的求法,考查函數(shù)、古典概型等基礎(chǔ)知識(shí),考查推理論證能力、運(yùn)算求解能力、空間想象能力,考查數(shù)形結(jié)合思想、化歸與轉(zhuǎn)化思想,是中檔題.19.(1);(2)【解析】

(1)由化為,利用數(shù)列的通項(xiàng)公式和前n項(xiàng)和的關(guān)系,得到是首項(xiàng)為,公差為的等差數(shù)列求解.(2)由(1)得到,再利用錯(cuò)位相減法求解.【詳解】(1)可以化為,,,,又時(shí),數(shù)列從開(kāi)始成等差數(shù)列,,代入得是首項(xiàng)為,公差為的等差數(shù)列,,.(2)由(1)得,,,兩式相減得,,.本題主要考查數(shù)列的通項(xiàng)公式和前n項(xiàng)和的關(guān)系和錯(cuò)位相減法求和,還考查了運(yùn)算求解的能力,屬于中檔題.20.(1)().(2),.(3)【解析】

(1)依題意先求出,然后根據(jù),求出的通項(xiàng)公式為,再檢驗(yàn)的情況即可;(2)由遞推公式,得,結(jié)合數(shù)列性質(zhì)可得數(shù)列相鄰項(xiàng)之間的關(guān)系,從而可求出結(jié)果;(3)通過(guò)(1)、(2)可得,所以,,,,.記,利用函數(shù)單調(diào)性可求的范圍,從而列不等式可解.【詳解】解:(1)因?yàn)閿?shù)列滿足()①;②當(dāng)時(shí),.檢驗(yàn)當(dāng)時(shí),成立.所以,數(shù)列的通項(xiàng)公式為().(2)由,得,①所以,.②由①②,得,,即,,③所以,,.④由③④,得,,因?yàn)?所以,上式同除以,得,,即,所以,數(shù)列時(shí)首項(xiàng)為1,公差為1的等差數(shù)列,故,.(3)因?yàn)椋?,,,.記,當(dāng)時(shí),.所以,當(dāng)時(shí),數(shù)列為單調(diào)遞減,當(dāng)時(shí),.從而,當(dāng)時(shí),.因此,.所以,對(duì)任意的,.綜上,.本題考在數(shù)列通項(xiàng)公式的求法、等差數(shù)列的定義及通項(xiàng)公式、數(shù)列的單調(diào)性,考查考生的邏輯思維能力、運(yùn)算求解能力以及化歸與轉(zhuǎn)化思想、分類(lèi)討論思想.21.(1)證明見(jiàn)解析(2)【解析】

(1)連接,交與,連接,由,得出結(jié)論;(2)以為原點(diǎn),,,分別為,,軸建立空間直角坐標(biāo)系

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論