版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
安徽省淮北市同仁中學(xué)2024屆高三八月模擬數(shù)學(xué)試題考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標(biāo)記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.設(shè)分別是雙線的左、右焦點(diǎn),為坐標(biāo)原點(diǎn),以為直徑的圓與該雙曲線的兩條漸近線分別交于兩點(diǎn)(位于軸右側(cè)),且四邊形為菱形,則該雙曲線的漸近線方程為()A. B. C. D.2.在中,角的對邊分別為,,若,,且,則的面積為()A. B. C. D.3.在天文學(xué)中,天體的明暗程度可以用星等或亮度來描述.兩顆星的星等與亮度滿足,其中星等為mk的星的亮度為Ek(k=1,2).已知太陽的星等是–26.7,天狼星的星等是–1.45,則太陽與天狼星的亮度的比值為()A.1010.1 B.10.1 C.lg10.1 D.10–10.14.是拋物線上一點(diǎn),是圓關(guān)于直線的對稱圓上的一點(diǎn),則最小值是()A. B. C. D.5.設(shè)分別為的三邊的中點(diǎn),則()A. B. C. D.6.若函數(shù)f(x)=x3+x2-在區(qū)間(a,a+5)上存在最小值,則實(shí)數(shù)a的取值范圍是A.[-5,0) B.(-5,0) C.[-3,0) D.(-3,0)7.新聞出版業(yè)不斷推進(jìn)供給側(cè)結(jié)構(gòu)性改革,深入推動優(yōu)化升級和融合發(fā)展,持續(xù)提高優(yōu)質(zhì)出口產(chǎn)品供給,實(shí)現(xiàn)了行業(yè)的良性發(fā)展.下面是2012年至2016年我國新聞出版業(yè)和數(shù)字出版業(yè)營收增長情況,則下列說法錯(cuò)誤的是()A.2012年至2016年我國新聞出版業(yè)和數(shù)字出版業(yè)營收均逐年增加B.2016年我國數(shù)字出版業(yè)營收超過2012年我國數(shù)字出版業(yè)營收的2倍C.2016年我國新聞出版業(yè)營收超過2012年我國新聞出版業(yè)營收的1.5倍D.2016年我國數(shù)字出版營收占新聞出版營收的比例未超過三分之一8.已知圓:,圓:,點(diǎn)、分別是圓、圓上的動點(diǎn),為軸上的動點(diǎn),則的最大值是()A. B.9 C.7 D.9.已知非零向量滿足,若夾角的余弦值為,且,則實(shí)數(shù)的值為()A. B. C.或 D.10.已知雙曲線的一個(gè)焦點(diǎn)為,且與雙曲線的漸近線相同,則雙曲線的標(biāo)準(zhǔn)方程為()A. B. C. D.11.已知復(fù)數(shù),為的共軛復(fù)數(shù),則()A. B. C. D.12.在中,角所對的邊分別為,已知,則()A.或 B. C. D.或二、填空題:本題共4小題,每小題5分,共20分。13.已知橢圓,,若橢圓上存在點(diǎn)使得為等邊三角形(為原點(diǎn)),則橢圓的離心率為_________.14.某種產(chǎn)品的質(zhì)量指標(biāo)值服從正態(tài)分布,且.某用戶購買了件這種產(chǎn)品,則這件產(chǎn)品中質(zhì)量指標(biāo)值位于區(qū)間之外的產(chǎn)品件數(shù)為_________.15.若一個(gè)正四面體的棱長為1,四個(gè)頂點(diǎn)在同一個(gè)球面上,則此球的表面積為_________.16.某種賭博每局的規(guī)則是:賭客先在標(biāo)記有1,2,3,4,5的卡片中隨機(jī)摸取一張,將卡片上的數(shù)字作為其賭金;隨后放回該卡片,再隨機(jī)摸取兩張,將這兩張卡片上數(shù)字之差的絕對值的1.4倍作為其獎金.若隨機(jī)變量ξ1和ξ2分別表示賭客在一局賭博中的賭金和獎金,則D(ξ1)=_____,E(ξ1)﹣E(ξ2)=_____.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)如圖1,在邊長為4的正方形中,是的中點(diǎn),是的中點(diǎn),現(xiàn)將三角形沿翻折成如圖2所示的五棱錐.(1)求證:平面;(2)若平面平面,求直線與平面所成角的正弦值.18.(12分)已知函數(shù)(Ⅰ)若,求曲線在點(diǎn)處的切線方程;(Ⅱ)若在上恒成立,求實(shí)數(shù)的取值范圍;(Ⅲ)若數(shù)列的前項(xiàng)和,,求證:數(shù)列的前項(xiàng)和.19.(12分)如圖1,在等腰梯形中,兩腰,底邊,,,是的三等分點(diǎn),是的中點(diǎn).分別沿,將四邊形和折起,使,重合于點(diǎn),得到如圖2所示的幾何體.在圖2中,,分別為,的中點(diǎn).(1)證明:平面.(2)求直線與平面所成角的正弦值.20.(12分)已知函數(shù).(1)若,求不等式的解集;(2)已知,若對于任意恒成立,求的取值范圍.21.(12分)直線與拋物線相交于,兩點(diǎn),且,若,到軸距離的乘積為.(1)求的方程;(2)設(shè)點(diǎn)為拋物線的焦點(diǎn),當(dāng)面積最小時(shí),求直線的方程.22.(10分)已知各項(xiàng)均不相等的等差數(shù)列的前項(xiàng)和為,且成等比數(shù)列.(1)求數(shù)列的通項(xiàng)公式;(2)求數(shù)列的前項(xiàng)和.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、B【解析】
由于四邊形為菱形,且,所以為等邊三角形,從而可得漸近線的傾斜角,求出其斜率.【詳解】如圖,因?yàn)樗倪呅螢榱庑?,,所以為等邊三角形,,兩漸近線的斜率分別為和.故選:B【點(diǎn)睛】此題考查的是求雙曲線的漸近線方程,利用了數(shù)形結(jié)合的思想,屬于基礎(chǔ)題.2、C【解析】
由,可得,化簡利用余弦定理可得,解得.即可得出三角形面積.【詳解】解:,,且,,化為:.,解得..故選:.【點(diǎn)睛】本題考查了向量共線定理、余弦定理、三角形面積計(jì)算公式,考查了推理能力與計(jì)算能力,屬于中檔題.3、A【解析】
由題意得到關(guān)于的等式,結(jié)合對數(shù)的運(yùn)算法則可得亮度的比值.【詳解】兩顆星的星等與亮度滿足,令,.故選A.【點(diǎn)睛】本題以天文學(xué)問題為背景,考查考生的數(shù)學(xué)應(yīng)用意識?信息處理能力?閱讀理解能力以及指數(shù)對數(shù)運(yùn)算.4、C【解析】
求出點(diǎn)關(guān)于直線的對稱點(diǎn)的坐標(biāo),進(jìn)而可得出圓關(guān)于直線的對稱圓的方程,利用二次函數(shù)的基本性質(zhì)求出的最小值,由此可得出,即可得解.【詳解】如下圖所示:設(shè)點(diǎn)關(guān)于直線的對稱點(diǎn)為點(diǎn),則,整理得,解得,即點(diǎn),所以,圓關(guān)于直線的對稱圓的方程為,設(shè)點(diǎn),則,當(dāng)時(shí),取最小值,因此,.故選:C.【點(diǎn)睛】本題考查拋物線上一點(diǎn)到圓上一點(diǎn)最值的計(jì)算,同時(shí)也考查了兩圓關(guān)于直線對稱性的應(yīng)用,考查計(jì)算能力,屬于中等題.5、B【解析】
根據(jù)題意,畫出幾何圖形,根據(jù)向量加法的線性運(yùn)算即可求解.【詳解】根據(jù)題意,可得幾何關(guān)系如下圖所示:,故選:B【點(diǎn)睛】本題考查了向量加法的線性運(yùn)算,屬于基礎(chǔ)題.6、C【解析】
求函數(shù)導(dǎo)數(shù),分析函數(shù)單調(diào)性得到函數(shù)的簡圖,得到a滿足的不等式組,從而得解.【詳解】由題意,f′(x)=x2+2x=x(x+2),故f(x)在(-∞,-2),(0,+∞)上是增函數(shù),在(-2,0)上是減函數(shù),作出其圖象如圖所示.令x3+x2-=-,得x=0或x=-3,則結(jié)合圖象可知,解得a∈[-3,0),故選C.【點(diǎn)睛】本題主要考查了利用函數(shù)導(dǎo)數(shù)研究函數(shù)的單調(diào)性,進(jìn)而研究函數(shù)的最值,屬于??碱}型.7、C【解析】
通過圖表所給數(shù)據(jù),逐個(gè)選項(xiàng)驗(yàn)證.【詳解】根據(jù)圖示數(shù)據(jù)可知選項(xiàng)A正確;對于選項(xiàng)B:,正確;對于選項(xiàng)C:,故C不正確;對于選項(xiàng)D:,正確.選C.【點(diǎn)睛】本題主要考查柱狀圖是識別和數(shù)據(jù)分析,題目較為簡單.8、B【解析】試題分析:圓的圓心,半徑為,圓的圓心,半徑是.要使最大,需最大,且最小,最大值為的最小值為,故最大值是;關(guān)于軸的對稱點(diǎn),,故的最大值為,故選B.考點(diǎn):圓與圓的位置關(guān)系及其判定.【思路點(diǎn)睛】先根據(jù)兩圓的方程求出圓心和半徑,要使最大,需最大,且最小,最大值為的最小值為,故最大值是,再利用對稱性,求出所求式子的最大值.9、D【解析】
根據(jù)向量垂直則數(shù)量積為零,結(jié)合以及夾角的余弦值,即可求得參數(shù)值.【詳解】依題意,得,即.將代入可得,,解得(舍去).故選:D.【點(diǎn)睛】本題考查向量數(shù)量積的應(yīng)用,涉及由向量垂直求參數(shù)值,屬基礎(chǔ)題.10、B【解析】
根據(jù)焦點(diǎn)所在坐標(biāo)軸和漸近線方程設(shè)出雙曲線的標(biāo)準(zhǔn)方程,結(jié)合焦點(diǎn)坐標(biāo)求解.【詳解】∵雙曲線與的漸近線相同,且焦點(diǎn)在軸上,∴可設(shè)雙曲線的方程為,一個(gè)焦點(diǎn)為,∴,∴,故的標(biāo)準(zhǔn)方程為.故選:B【點(diǎn)睛】此題考查根據(jù)雙曲線的漸近線和焦點(diǎn)求解雙曲線的標(biāo)準(zhǔn)方程,易錯(cuò)點(diǎn)在于漏掉考慮焦點(diǎn)所在坐標(biāo)軸導(dǎo)致方程形式出錯(cuò).11、C【解析】
求出,直接由復(fù)數(shù)的代數(shù)形式的乘除運(yùn)算化簡復(fù)數(shù).【詳解】.故選:C【點(diǎn)睛】本題考查復(fù)數(shù)的代數(shù)形式的四則運(yùn)算,共軛復(fù)數(shù),屬于基礎(chǔ)題.12、D【解析】
根據(jù)正弦定理得到,化簡得到答案.【詳解】由,得,∴,∴或,∴或.故選:【點(diǎn)睛】本題考查了正弦定理解三角形,意在考查學(xué)生的計(jì)算能力.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
根據(jù)題意求出點(diǎn)N的坐標(biāo),將其代入橢圓的方程,求出參數(shù)m的值,再根據(jù)離心率的定義求值.【詳解】由題意得,將其代入橢圓方程得,所以.故答案為:.【點(diǎn)睛】本題考查了橢圓的標(biāo)準(zhǔn)方程及幾何性質(zhì),屬于中檔題.14、【解析】
直接計(jì)算,可得結(jié)果.【詳解】由題可知:則質(zhì)量指標(biāo)值位于區(qū)間之外的產(chǎn)品件數(shù):故答案為:【點(diǎn)睛】本題考查正太分布中原則,審清題意,簡單計(jì)算,屬基礎(chǔ)題.15、【解析】
將四面體補(bǔ)成一個(gè)正方體,通過正方體的對角線與球的半徑的關(guān)系,得到球的半徑,利用球的表面積公式,即可求解.【詳解】如圖所示,將正四面體補(bǔ)形成一個(gè)正方體,則正四面體的外接球與正方體的外接球表示同一個(gè)球,因?yàn)檎拿骟w的棱長為1,所以正方體的棱長為,設(shè)球的半徑為,因?yàn)榍虻闹睆绞钦襟w的對角線,即,解得,所以球的表面積為.【點(diǎn)睛】本題主要考查了有關(guān)求得組合體的結(jié)構(gòu)特征,以及球的表面積的計(jì)算,其中巧妙構(gòu)造正方體,利用正方體的外接球的直徑等于正方體的對角線長,得到球的半徑是解答的關(guān)鍵,著重考查了空間想象能力,以及運(yùn)算與求解能力,屬于基礎(chǔ)題.16、20.2【解析】
分別求出隨機(jī)變量ξ1和ξ2的分布列,根據(jù)期望和方差公式計(jì)算得解.【詳解】設(shè)a,b∈{1,2,1,4,5},則p(ξ1=a),其ξ1分布列為:ξ112145PE(ξ1)(1+2+1+4+5)=1.D(ξ1)[(1﹣1)2+(2﹣1)2+(1﹣1)2+(4﹣1)2+(5﹣1)2]=2.ξ2=1.4|a﹣b|的可能取值分別為:1.4,2.3,4.2,5.6,P(ξ2=1.4),P(ξ2=2.3),P(ξ2=4.2),P(ξ2=5.6),可得分布列.ξ21.42.34.25.6PE(ξ2)=1.42.34.25.62.3.∴E(ξ1)﹣E(ξ2)=0.2.故答案為:2,0.2.【點(diǎn)睛】此題考查隨機(jī)變量及其分布,關(guān)鍵在于準(zhǔn)確求出隨機(jī)變量取值的概率,根據(jù)公式準(zhǔn)確計(jì)算期望和方差.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)證明見解析;(2).【解析】
(1)利用線面平行的定義證明即可(2)取的中點(diǎn),并分別連接,,然后,證明相應(yīng)的線面垂直關(guān)系,分別以,,為軸,軸,軸建立空間直角坐標(biāo)系,利用坐標(biāo)運(yùn)算進(jìn)行求解即可【詳解】證明:(1)在圖1中,連接.又,分別為,中點(diǎn),所以.即圖2中有.又平面,平面,所以平面.解:(2)在圖2中,取的中點(diǎn),并分別連接,.分析知,,.又平面平面,平面平面,平面,所以平面.又,所以,,.分別以,,為軸,軸,軸建立如圖所示的空間直角坐標(biāo)系,則,,,,,所以,,.設(shè)平面的一個(gè)法向量,則,取,則,,所以.又,所以.分析知,直線與平面所成角的正弦值為.【點(diǎn)睛】本題考查線面平行的證明以及利用空間向量求解線面角問題,屬于基礎(chǔ)題18、(Ⅰ);(Ⅱ);(Ⅲ)證明見解析.【解析】試題分析:將,求出切線方程求導(dǎo)后討論當(dāng)時(shí)和時(shí)的單調(diào)性證明,求出實(shí)數(shù)的取值范圍先求出、的通項(xiàng)公式,利用當(dāng)時(shí),得,下面證明:解析:(Ⅰ)因?yàn)?,所以,,切點(diǎn)為.由,所以,所以曲線在處的切線方程為,即(Ⅱ)由,令,則(當(dāng)且僅當(dāng)取等號).故在上為增函數(shù).①當(dāng)時(shí),,故在上為增函數(shù),所以恒成立,故符合題意;②當(dāng)時(shí),由于,,根據(jù)零點(diǎn)存在定理,必存在,使得,由于在上為增函數(shù),故當(dāng)時(shí),,故在上為減函數(shù),所以當(dāng)時(shí),,故在上不恒成立,所以不符合題意.綜上所述,實(shí)數(shù)的取值范圍為(III)證明:由由(Ⅱ)知當(dāng)時(shí),,故當(dāng)時(shí),,故,故.下面證明:因?yàn)槎?,,即:點(diǎn)睛:本題考查了利用導(dǎo)數(shù)的幾何意義求出參數(shù)及證明不等式成立,借助第二問的證明過程,利用導(dǎo)數(shù)的單調(diào)性證明數(shù)列的不等式,在求解的過程中還要求出數(shù)列的和,計(jì)算較為復(fù)雜,本題屬于難題.19、(1)證明見解析(2)【解析】
(1)先證,再證,由可得平面,從而推出平面;(2)建立空間直角坐標(biāo)系,求出平面的法向量與,坐標(biāo)代入線面角的正弦值公式即可得解.【詳解】(1)證明:連接,,由圖1知,四邊形為菱形,且,所以是正三角形,從而.同理可證,,所以平面.又,所以平面,因?yàn)槠矫?,所以平面平?易知,且為的中點(diǎn),所以,所以平面.(2)解:由(1)可知,,且四邊形為正方形.設(shè)的中點(diǎn)為,以為原點(diǎn),以,,所在直線分別為,,軸,建立空間直角坐標(biāo)系,則,,,,,所以,,.設(shè)平面的法向量為,由得取.設(shè)直線與平面所成的角為,所以,所以直線與平面所成角的正弦值為.【點(diǎn)睛】本題考查線面垂直的證明,直線與平面所成的角,要求一定的空間想象能力、運(yùn)算求解能力和推理論證能力,屬于基礎(chǔ)題.20、(1)或;(2).【解析】
(1)時(shí),分類討論,去掉絕對值,分類討論解不等式.(2)時(shí),分類討論去絕對值,得到解析式,由函數(shù)的單調(diào)性可得的
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 體育(2)學(xué)習(xí)通超星期末考試答案章節(jié)答案2024年
- 幼兒園手足口病防控工作方案
- 勞工合同范本 寧波
- 春季防溺水國旗下講話稿(34篇)
- 貨物交付合同范本
- 五年級數(shù)學(xué)上冊 【單元AB卷】分層訓(xùn)練B卷第三單元 小數(shù)的意義和性質(zhì)(單元測試) (蘇教版含答案)(蘇教版)
- 墓地合同范本模板
- 轉(zhuǎn)正述職報(bào)告工作總結(jié)
- 五年級數(shù)學(xué)上冊 【題型突破】第五單元題型專項(xiàng)訓(xùn)練填空題(解題策略+專項(xiàng)秀場) 蘇教版(含答案)(蘇教版)
- 天津駕校 合同范本
- 江西省萍鄉(xiāng)市2024-2025學(xué)年高二上學(xué)期期中考試地理試題
- 江蘇省南京市玄武區(qū)2024-2025學(xué)年七年級上學(xué)期期中考試英語試卷
- 新版加油站安全操作規(guī)程
- 2023年貴州黔東南州州直機(jī)關(guān)遴選公務(wù)員考試真題
- 貨物質(zhì)量保證措施方案
- 黑龍江省龍東地區(qū)2024-2025學(xué)年高二上學(xué)期階段測試(二)(期中) 英語 含答案
- 4S店展廳改造裝修合同
- 公務(wù)員2022年國考申論試題(行政執(zhí)法卷)及參考答案
- (培訓(xùn)體系)2020年普通話測試培訓(xùn)材料
- 3-4單元測試-2024-2025學(xué)年統(tǒng)編版語文六年級上冊
- 北師版數(shù)學(xué)八年級上冊 5.8三元一次方程組課件
評論
0/150
提交評論