廣東省廣州市天河外國語校2024年中考數(shù)學(xué)最后一模試卷含解析_第1頁
廣東省廣州市天河外國語校2024年中考數(shù)學(xué)最后一模試卷含解析_第2頁
廣東省廣州市天河外國語校2024年中考數(shù)學(xué)最后一模試卷含解析_第3頁
廣東省廣州市天河外國語校2024年中考數(shù)學(xué)最后一模試卷含解析_第4頁
廣東省廣州市天河外國語校2024年中考數(shù)學(xué)最后一模試卷含解析_第5頁
已閱讀5頁,還剩21頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

廣東省廣州市天河外國語校2024年中考數(shù)學(xué)最后一模試卷注意事項:1.答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.解分式方程時,去分母后變形為A. B.C. D.2.如圖,正六邊形ABCDEF內(nèi)接于⊙O,半徑為4,則這個正六邊形的邊心距OM的長為()A.2 B.2 C. D.43.?dāng)?shù)軸上有A,B,C,D四個點,其中絕對值大于2的點是()A.點A B.點B C.點C D.點D4.﹣23的相反數(shù)是()A.﹣8 B.8 C.﹣6 D.65.如圖,為等邊三角形,要在外部取一點,使得和全等,下面是兩名同學(xué)做法:()甲:①作的角平分線;②以為圓心,長為半徑畫弧,交于點,點即為所求;乙:①過點作平行于的直線;②過點作平行于的直線,交于點,點即為所求.A.兩人都正確 B.兩人都錯誤 C.甲正確,乙錯誤 D.甲錯誤,乙正確6.下列運算正確的是()A.(a2)5=a7B.(x﹣1)2=x2﹣1C.3a2b﹣3ab2=3D.a(chǎn)2?a4=a67.如圖,AB是⊙O的直徑,D,E是半圓上任意兩點,連接AD,DE,AE與BD相交于點C,要使△ADC與△BDA相似,可以添加一個條件.下列添加的條件中錯誤的是()A.∠ACD=∠DAB B.AD=DE C.AD·AB=CD·BD D.AD2=BD·CD8.若點P(﹣3,y1)和點Q(﹣1,y2)在正比例函數(shù)y=﹣k2x(k≠0)圖象上,則y1與y2的大小關(guān)系為()A.y1>y2B.y1≥y2C.y1<y2D.y1≤y29.在圍棋盒中有x顆白色棋子和y顆黑色棋子,從盒中隨機取出一顆棋子,取得白色棋子的概率是,如再往盒中放進3顆黑色棋子,取得白色棋子的概率變?yōu)?,則原來盒里有白色棋子()A.1顆 B.2顆 C.3顆 D.4顆10.小桐把一副直角三角尺按如圖所示的方式擺放在一起,其中,,,,則等于A. B. C. D.11.把a?的根號外的a移到根號內(nèi)得()A. B.﹣ C.﹣ D.12.如圖,在等腰直角三角形ABC中,∠C=90°,D為BC的中點,將△ABC折疊,使點A與點D重合,EF為折痕,則sin∠BED的值是()A. B. C. D.二、填空題:(本大題共6個小題,每小題4分,共24分.)13.如圖,矩形ABCD中,AB=4,BC=8,P,Q分別是直線BC,AB上的兩個動點,AE=2,△AEQ沿EQ翻折形成△FEQ,連接PF,PD,則PF+PD的最小值是____.14.如圖,在矩形ABCD中,E、F分別是AD、CD的中點,沿著BE將△ABE折疊,點A剛好落在BF上,若AB=2,則AD=________.15.一個不透明的袋中裝有除顏色外均相同的8個黑球、4個白球和若干個紅球.每次搖勻后隨機摸出一個球,記下顏色后再放回袋中,通過大量重復(fù)摸球試驗后,發(fā)現(xiàn)摸到紅球的頻率穩(wěn)定于0.4,由此可估計袋中約有紅球_____個.16.在直角坐標(biāo)系平面內(nèi),拋物線y=3x2+2x在對稱軸的左側(cè)部分是_____的(填“上升”或“下降”)17.若am=2,an=3,則am+2n=______.18.如圖,在平面直角坐標(biāo)系中,將△ABO繞點A順時針旋轉(zhuǎn)到△AB1C1的位置,點B、O分別落在點B1、C1處,點B1在x軸上,再將△AB1C1繞點B1順時針旋轉(zhuǎn)到△A1B1C2的位置,點C2在x軸上,將△A1B1C2繞點C2順時針旋轉(zhuǎn)到△A2B2C2的位置,點A2在x軸上,依次進行下去….若點A(,0),B(0,4),則點B4的坐標(biāo)為_____,點B2017的坐標(biāo)為_____.三、解答題:(本大題共9個小題,共78分,解答應(yīng)寫出文字說明、證明過程或演算步驟.19.(6分)某中學(xué)九年級甲、乙兩班商定舉行一次遠足活動,、兩地相距10千米,甲班從地出發(fā)勻速步行到地,乙班從地出發(fā)勻速步行到地.兩班同時出發(fā),相向而行.設(shè)步行時間為小時,甲、乙兩班離地的距離分別為千米、千米,、與的函數(shù)關(guān)系圖象如圖所示,根據(jù)圖象解答下列問題:直接寫出、與的函數(shù)關(guān)系式;求甲、乙兩班學(xué)生出發(fā)后,幾小時相遇?相遇時乙班離地多少千米?甲、乙兩班相距4千米時所用時間是多少小時?20.(6分)如圖,在?ABCD中,點O是對角線AC、BD的交點,點E是邊CD的中點,點F在BC的延長線上,且CF=BC,求證:四邊形OCFE是平行四邊形.21.(6分)在平面直角坐標(biāo)系xOy中,拋物線y=ax2+2ax+c(其中a、c為常數(shù),且a<0)與x軸交于點A(﹣3,0),與y軸交于點B,此拋物線頂點C到x軸的距離為1.(1)求拋物線的表達式;(2)求∠CAB的正切值;(3)如果點P是x軸上的一點,且∠ABP=∠CAO,直接寫出點P的坐標(biāo).22.(8分)如圖,已知點A,B,C在半徑為4的⊙O上,過點C作⊙O的切線交OA的延長線于點D.(Ⅰ)若∠ABC=29°,求∠D的大?。唬á颍┤簟螪=30°,∠BAO=15°,作CE⊥AB于點E,求:①BE的長;②四邊形ABCD的面積.23.(8分)如圖,已知□ABCD的面積為S,點P、Q時是?ABCD對角線BD的三等分點,延長AQ、AP,分別交BC,CD于點E,F(xiàn),連結(jié)EF。甲,乙兩位同學(xué)對條件進行分析后,甲得到結(jié)論①:“E是BC中點”.乙得到結(jié)論②:“四邊形QEFP的面積為S”。請判斷甲乙兩位同學(xué)的結(jié)論是否正確,并說明理由.24.(10分)(1)(﹣2)2+2sin45°﹣(2)解不等式組,并將其解集在如圖所示的數(shù)軸上表示出來.25.(10分)“機動車行駛到斑馬線要禮讓行人”等交通法規(guī)實施后,某校數(shù)學(xué)課外實踐小組就對這些交通法規(guī)的了解情況在全校隨機調(diào)查了部分學(xué)生,調(diào)查結(jié)果分為四種:A.非常了解,B.比較了解,C.基本了解,D.不太了解,實踐小組把此次調(diào)查結(jié)果整理并繪制成下面不完整的條形統(tǒng)計圖和扇形統(tǒng)計圖.請結(jié)合圖中所給信息解答下列問題:(1)本次共調(diào)查名學(xué)生;扇形統(tǒng)計圖中C所對應(yīng)扇形的圓心角度數(shù)是;(2)補全條形統(tǒng)計圖;(3)該校共有800名學(xué)生,根據(jù)以上信息,請你估計全校學(xué)生中對這些交通法規(guī)“非常了解”的有多少名?(4)通過此次調(diào)查,數(shù)學(xué)課外實踐小組的學(xué)生對交通法規(guī)有了更多的認識,學(xué)校準備從組內(nèi)的甲、乙、丙、丁四位學(xué)生中隨機抽取兩名學(xué)生參加市區(qū)交通法規(guī)競賽,請用列表或畫樹狀圖的方法求甲和乙兩名學(xué)生同時被選中的概率.26.(12分)某工廠生產(chǎn)部門為了解本部門工人的生產(chǎn)能力情況,進行了抽樣調(diào)查.該部門隨機抽取了30名工人某天每人加工零件的個數(shù),數(shù)據(jù)如下:202119162718312921222520192235331917182918352215181831311922整理上面數(shù)據(jù),得到條形統(tǒng)計圖:樣本數(shù)據(jù)的平均數(shù)、眾數(shù)、中位數(shù)如下表所示:統(tǒng)計量平均數(shù)眾數(shù)中位數(shù)數(shù)值23m21根據(jù)以上信息,解答下列問題:上表中眾數(shù)m的值為;為調(diào)動工人的積極性,該部門根據(jù)工人每天加工零件的個數(shù)制定了獎勵標(biāo)準,凡達到或超過這個標(biāo)準的工人將獲得獎勵.如果想讓一半左右的工人能獲獎,應(yīng)根據(jù)來確定獎勵標(biāo)準比較合適.(填“平均數(shù)”、“眾數(shù)”或“中位數(shù)”)該部門規(guī)定:每天加工零件的個數(shù)達到或超過25個的工人為生產(chǎn)能手.若該部門有300名工人,試估計該部門生產(chǎn)能手的人數(shù).27.(12分)如圖,在平面直角坐標(biāo)系中,矩形OABC的頂點A,C分別在x軸,y軸的正半軸上,且OA=4,OC=3,若拋物線經(jīng)過O,A兩點,且頂點在BC邊上,對稱軸交BE于點F,點D,E的坐標(biāo)分別為(3,0),(0,1).(1)求拋物線的解析式;(2)猜想△EDB的形狀并加以證明;(3)點M在對稱軸右側(cè)的拋物線上,點N在x軸上,請問是否存在以點A,F(xiàn),M,N為頂點的四邊形是平行四邊形?若存在,請求出所有符合條件的點M的坐標(biāo);若不存在,請說明理由.

參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、D【解析】試題分析:方程,兩邊都乘以x-1去分母后得:2-(x+2)=3(x-1),故選D.考點:解分式方程的步驟.2、B【解析】分析:連接OC、OB,證出△BOC是等邊三角形,根據(jù)銳角三角函數(shù)的定義求解即可.詳解:如圖所示,連接OC、OB

∵多邊形ABCDEF是正六邊形,∴∠BOC=60°,∵OC=OB,∴△BOC是等邊三角形,∴∠OBM=60°,∴OM=OBsin∠OBM=4×=2.故選B.點睛:考查的是正六邊形的性質(zhì)、等邊三角形的判定與性質(zhì)、三角函數(shù);熟練掌握正六邊形的性質(zhì),由三角函數(shù)求出OM是解決問題的關(guān)鍵.3、A【解析】

根據(jù)絕對值的含義和求法,判斷出絕對值等于2的數(shù)是﹣2和2,據(jù)此判斷出絕對值等于2的點是哪個點即可.【詳解】解:∵絕對值等于2的數(shù)是﹣2和2,∴絕對值等于2的點是點A.故選A.【點睛】此題主要考查了絕對值的含義和求法,要熟練掌握,解答此題的關(guān)鍵要明確:①互為相反數(shù)的兩個數(shù)絕對值相等;②絕對值等于一個正數(shù)的數(shù)有兩個,絕對值等于0的數(shù)有一個,沒有絕對值等于負數(shù)的數(shù).③有理數(shù)的絕對值都是非負數(shù).4、B【解析】∵=﹣8,﹣8的相反數(shù)是8,∴的相反數(shù)是8,故選B.5、A【解析】

根據(jù)題意先畫出相應(yīng)的圖形,然后進行推理論證即可得出結(jié)論.【詳解】甲的作法如圖一:∵為等邊三角形,AD是的角平分線∴由甲的作法可知,在和中,故甲的作法正確;乙的作法如圖二:在和中,故乙的作法正確;故選:A.【點睛】本題主要借助尺規(guī)作圖考查全等三角形的判定,掌握全等三角形的判定方法是解題的關(guān)鍵.6、D【解析】

根據(jù)冪的乘方法則:底數(shù)不變,指數(shù)相乘;完全平方公式:(a±b)2=a2±2ab+b2;合并同類項的法則:把同類項的系數(shù)相加,所得結(jié)果作為系數(shù),字母和字母的指數(shù)不變;同底數(shù)冪的乘法法則:同底數(shù)冪相乘,底數(shù)不變,指數(shù)相加分別進行計算即可.【詳解】A、(a2)5=a10,故原題計算錯誤;B、(x﹣1)2=x2﹣2x+1,故原題計算錯誤;C、3a2b和3ab2不是同類項,不能合并,故原題計算錯誤;D、a2?a4=a6,故原題計算正確;故選:D.【點睛】此題主要考查了冪的乘方、完全平方公式、合并同類項和同底數(shù)冪的乘法,關(guān)鍵是掌握各計算法則.7、D【解析】

解:∵∠ADC=∠ADB,∠ACD=∠DAB,∴△ADC∽△BDA,故A選項正確;∵AD=DE,∴,∴∠DAE=∠B,∴△ADC∽△BDA,∴故B選項正確;∵AD2=BD?CD,∴AD:BD=CD:AD,∴△ADC∽△BDA,故C選項正確;∵CD?AB=AC?BD,∴CD:AC=BD:AB,但∠ACD=∠ABD不是對應(yīng)夾角,故D選項錯誤,故選:D.考點:1.圓周角定理2.相似三角形的判定8、A【解析】

分別將點P(﹣3,y1)和點Q(﹣1,y2)代入正比例函數(shù)y=﹣k2x,求出y1與y2的值比較大小即可.【詳解】∵點P(﹣3,y1)和點Q(﹣1,y2)在正比例函數(shù)y=﹣k2x(k≠0)圖象上,∴y1=﹣k2×(-3)=3k2,y2=﹣k2×(-1)=k2,∵k≠0,∴y1>y2.故答案選A.【點睛】本題考查了正比例函數(shù),解題的關(guān)鍵是熟練的掌握正比例函數(shù)的知識點.9、B【解析】試題解析:由題意得,解得:.故選B.10、C【解析】

根據(jù)三角形的內(nèi)角和定理和三角形外角性質(zhì)進行解答即可.【詳解】如圖:,,,,∴==,故選C.【點睛】本題考查了三角形內(nèi)角和定理、三角形外角的性質(zhì)、熟練掌握相關(guān)定理及性質(zhì)以及一副三角板中各個角的度數(shù)是解題的關(guān)鍵.11、C【解析】

根據(jù)二次根式有意義的條件可得a<0,原式變形為﹣(﹣a)?,然后利用二次根式的性質(zhì)得到,再把根號內(nèi)化簡即可.【詳解】解:∵﹣>0,∴a<0,∴原式=﹣(﹣a)?,=,=﹣.故選C.【點睛】本題考查的是二次根式的化簡,主要是判斷根號有意義的條件,然后確定值的范圍再進行化簡,是常考題型.12、A【解析】∵△DEF是△AEF翻折而成,

∴△DEF≌△AEF,∠A=∠EDF,

∵△ABC是等腰直角三角形,

∴∠EDF=45°,由三角形外角性質(zhì)得∠CDF+45°=∠BED+45°,

∴∠BED=∠CDF,

設(shè)CD=1,CF=x,則CA=CB=2,

∴DF=FA=2-x,

∴在Rt△CDF中,由勾股定理得,CF2+CD2=DF2,即x2+1=(2-x)2,

解得x=,

∴sin∠BED=sin∠CDF=.

故選:A.二、填空題:(本大題共6個小題,每小題4分,共24分.)13、1【解析】

如圖作點D關(guān)于BC的對稱點D′,連接PD′,ED′,由DP=PD′,推出PD+PF=PD′+PF,又EF=EA=2是定值,即可推出當(dāng)E、F、P、D′共線時,PF+PD′定值最小,最小值=ED′﹣EF.【詳解】如圖作點D關(guān)于BC的對稱點D′,連接PD′,ED′,在Rt△EDD′中,∵DE=6,DD′=1,∴ED′==10,∵DP=PD′,∴PD+PF=PD′+PF,∵EF=EA=2是定值,∴當(dāng)E、F、P、D′共線時,PF+PD′定值最小,最小值=10﹣2=1,∴PF+PD的最小值為1,故答案為1.【點睛】本題考查翻折變換、矩形的性質(zhì)、勾股定理等知識,解題的關(guān)鍵是學(xué)會利用軸對稱,根據(jù)兩點之間線段最短解決最短問題.14、【解析】如圖,連接EF,∵點E、點F是AD、DC的中點,∴AE=ED,CF=DF=CD=AB=1,由折疊的性質(zhì)可得AE=A′E,∴A′E=DE,在Rt△EA′F和Rt△EDF中,,∴Rt△EA′F≌Rt△EDF(HL),∴A′F=DF=1,∴BF=BA′+A′F=AB+DF=2+1=3,在Rt△BCF中,BC=.∴AD=BC=2.點睛:本題考查了翻折變換的知識,解答本題的關(guān)鍵是連接EF,證明Rt△EA′F≌Rt△EDF,得出BF的長,再利用勾股定理解答即可.15、8【解析】試題分析:設(shè)紅球有x個,根據(jù)概率公式可得,解得:x=8.考點:概率.16、下降【解析】

根據(jù)拋物線y=3x2+2x圖像性質(zhì)可得,在對稱軸的左側(cè)部分是下降的.【詳解】解:∵在中,,∴拋物線開口向上,∴在對稱軸左側(cè)部分y隨x的增大而減小,即圖象是下降的,故答案為下降.【點睛】本題考查二次函數(shù)的圖像及性質(zhì).根據(jù)拋物線開口方向和對稱軸的位置即可得出結(jié)論.17、18【解析】

運用冪的乘方和積的乘方的運算法則求解即可.【詳解】解:∵am=2,an=3,∴a3m+2n=(am)3×(an)2=23×32=1.故答案為1.【點睛】本題考查了冪的乘方和積的乘方,掌握運算法則是解答本題的關(guān)鍵.18、(20,4)(10086,0)【解析】

首先利用勾股定理得出AB的長,進而得出三角形的周長,進而求出B2,B4的橫坐標(biāo),進而得出變化規(guī)律,即可得出答案.【詳解】解:由題意可得:∵AO=,BO=4,∴AB=,∴OA+AB1+B1C2=++4=6+4=10,∴B2的橫坐標(biāo)為:10,B4的橫坐標(biāo)為:2×10=20,B2016的橫坐標(biāo)為:×10=1.∵B2C2=B4C4=OB=4,∴點B4的坐標(biāo)為(20,4),∴B2017的橫坐標(biāo)為1++=10086,縱坐標(biāo)為0,∴點B2017的坐標(biāo)為:(10086,0).故答案為(20,4)、(10086,0).【點睛】本題主要考查了點的坐標(biāo)以及圖形變化類,根據(jù)題意得出B點橫坐標(biāo)變化規(guī)律是解題的關(guān)鍵.三、解答題:(本大題共9個小題,共78分,解答應(yīng)寫出文字說明、證明過程或演算步驟.19、(1)y1=4x,y2=-5x+1.(2)km.(3)h.【解析】

(1)由圖象直接寫出函數(shù)關(guān)系式;(2)若相遇,甲乙走的總路程之和等于兩地的距離.【詳解】(1)根據(jù)圖可以得到甲2.5小時,走1千米,則每小時走4千米,則函數(shù)關(guān)系是:y1=4x,乙班從B地出發(fā)勻速步行到A地,2小時走了1千米,則每小時走5千米,則函數(shù)關(guān)系式是:y2=?5x+1.(2)由圖象可知甲班速度為4km/h,乙班速度為5km/h,設(shè)甲、乙兩班學(xué)生出發(fā)后,x小時相遇,則4x+5x=1,解得x=.當(dāng)x=時,y2=?5×+1=,∴相遇時乙班離A地為km.(3)甲、乙兩班首次相距4千米,即兩班走的路程之和為6km,故4x+5x=6,解得x=h.∴甲、乙兩班首次相距4千米時所用時間是h.20、證明見解析.【解析】

利用三角形中位線定理判定OE∥BC,且OE=BC.結(jié)合已知條件CF=BC,則OE//CF,由“有一組對邊平行且相等的四邊形為平行四邊形”證得結(jié)論.【詳解】∵四邊形ABCD是平行四邊形,∴點O是BD的中點.又∵點E是邊CD的中點,∴OE是△BCD的中位線,∴OE∥BC,且OE=BC.又∵CF=BC,∴OE=CF.又∵點F在BC的延長線上,∴OE∥CF,∴四邊形OCFE是平行四邊形.【點睛】本題考查了平行四邊形的性質(zhì)和三角形中位線定理.此題利用了“平行四邊形的對角線互相平分”的性質(zhì)和“有一組對邊平行且相等的四邊形為平行四邊形”的判定定理.熟記相關(guān)定理并能應(yīng)用是解題的關(guān)鍵.21、(4)y=﹣x4﹣4x+3;(4);(3)點P的坐標(biāo)是(4,0)【解析】

(4)先求得拋物線的對稱軸方程,然后再求得點C的坐標(biāo),設(shè)拋物線的解析式為y=a(x+4)4+4,將點(-3,0)代入求得a的值即可;(4)先求得A、B、C的坐標(biāo),然后依據(jù)兩點間的距離公式可得到BC、AB,AC的長,然后依據(jù)勾股定理的逆定理可證明∠ABC=90°,最后,依據(jù)銳角三角函數(shù)的定義求解即可;(3)連接BC,可證得△AOB是等腰直角三角形,△ACB∽△BPO,可得代入個數(shù)據(jù)可得OP的值,可得P點坐標(biāo).【詳解】解:(4)由題意得,拋物線y=ax4+4ax+c的對稱軸是直線,∵a<0,拋物線開口向下,又與x軸有交點,∴拋物線的頂點C在x軸的上方,由于拋物線頂點C到x軸的距離為4,因此頂點C的坐標(biāo)是(﹣4,4).可設(shè)此拋物線的表達式是y=a(x+4)4+4,由于此拋物線與x軸的交點A的坐標(biāo)是(﹣3,0),可得a=﹣4.因此,拋物線的表達式是y=﹣x4﹣4x+3.(4)如圖4,點B的坐標(biāo)是(0,3).連接BC.∵AB4=34+34=48,BC4=44+44=4,AC4=44+44=40,得AB4+BC4=AC4.∴△ABC為直角三角形,∠ABC=90°,所以tan∠CAB=.即∠CAB的正切值等于.(3)如圖4,連接BC,∵OA=OB=3,∠AOB=90°,∴△AOB是等腰直角三角形,∴∠BAP=∠ABO=45°,∵∠CAO=∠ABP,∴∠CAB=∠OBP,∵∠ABC=∠BOP=90°,∴△ACB∽△BPO,∴,∴,OP=4,∴點P的坐標(biāo)是(4,0).【點睛】本題主要考查二次函數(shù)的圖像與性質(zhì),綜合性大.22、(1)∠D=32°;(2)①BE=;②【解析】

(Ⅰ)連接OC,CD為切線,根據(jù)切線的性質(zhì)可得∠OCD=90°,根據(jù)圓周角定理可得∠AOC=2∠ABC=29°×2=58°,根據(jù)直角三角形的性質(zhì)可得∠D的大小.(Ⅱ)①根據(jù)∠D=30°,得到∠DOC=60°,根據(jù)∠BAO=15°,可以得出∠AOB=150°,進而證明△OBC為等腰直角三角形,根據(jù)等腰直角三角形的性質(zhì)得出根據(jù)圓周角定理得出根據(jù)含角的直角三角形的性質(zhì)即可求出BE的長;②根據(jù)四邊形ABCD的面積=S△OBC+S△OCD﹣S△OAB進行計算即可.【詳解】(Ⅰ)連接OC,∵CD為切線,∴OC⊥CD,∴∠OCD=90°,∵∠AOC=2∠ABC=29°×2=58°,∴∠D=90°﹣58°=32°;(Ⅱ)①連接OB,在Rt△OCD中,∵∠D=30°,∴∠DOC=60°,∵∠BAO=15°,∴∠OBA=15°,∴∠AOB=150°,∴∠OBC=150°﹣60°=90°,∴△OBC為等腰直角三角形,∴∵在Rt△CBE中,∴②作BH⊥OA于H,如圖,∵∠BOH=180°﹣∠AOB=30°,∴∴四邊形ABCD的面積=S△OBC+S△OCD﹣S△OAB【點睛】考查切線的性質(zhì),圓周角定理,等腰直角三角形的判定與性質(zhì),含角的等腰直角三角形的性質(zhì),三角形的面積公式等,題目比較典型,綜合性比較強,難度適中.23、①結(jié)論一正確,理由見解析;②結(jié)論二正確,S四QEFP=S【解析】試題分析:(1)由已知條件易得△BEQ∽△DAQ,結(jié)合點Q是BD的三等分點可得BE:AD=BQ:DQ=1:2,再結(jié)合AD=BC即可得到BE:BC=1:2,從而可得點E是BC的中點,由此即可說明甲同學(xué)的結(jié)論①成立;(2)同(1)易證點F是CD的中點,由此可得EF∥BD,EF=BD,從而可得△CEF∽△CBD,則可得得到S△CEF=S△CBD=S平行四邊形ABCD=S,結(jié)合S四邊形AECF=S可得S△AEF=S,由QP=BD,EF=BD可得QP:EF=2:3,結(jié)合△AQP∽△AEF可得S△AQP=S△AEF=,由此可得S四邊形QEFP=S△AEF-S△AQP=S,從而說明乙的結(jié)論②正確;試題解析:甲和乙的結(jié)論都成立,理由如下:(1)∵在平行四邊形ABCD中,AD∥BC,∴△BEQ∽△DAQ,又∵點P、Q是線段BD的三等分點,∴BE:AD=BQ:DQ=1:2,∵AD=BC,∴BE:BC=1:2,∴點E是BC的中點,即結(jié)論①正確;(2)和(1)同理可得點F是CD的中點,∴EF∥BD,EF=BD,∴△CEF∽△CBD,∴S△CEF=S△CBD=S平行四邊形ABCD=S,∵S四邊形AECF=S△ACE+S△ACF=S平行四邊形ABCD=S,∴S△AEF=S四邊形AECF-S△CEF=S,∵EF∥BD,∴△AQP∽△AEF,又∵EF=BD,PQ=BD,∴QP:EF=2:3,∴S△AQP=S△AEF=,∴S四邊形QEFP=S△AEF-S△AQP=S-=S,即結(jié)論②正確.綜上所述,甲、乙兩位同學(xué)的結(jié)論都正確.24、(1)4﹣5;﹣<x≤2,在數(shù)軸上表示見解析【解析】

(1)此題涉及乘方、特殊角的三角函數(shù)、負整數(shù)指數(shù)冪和二次根式的化簡,首先針對各知識點進行計算,再計算實數(shù)的加減即可;(2)首先解出兩個不等式的解集,再根據(jù)大小小大中間找確定不等式組的解集.【詳解】解:(1)原式=4+2×﹣2×3=4+﹣6=4﹣5;(2),解①得:x>﹣,解②得:x≤2,不等式組的解集為:﹣<x≤2,在數(shù)軸上表示為:.【點睛】此題主要考查了解一元一次不等式組,以實數(shù)的運算,關(guān)鍵是正確確定兩個不等式的解集,掌握特殊角的三角函數(shù)值.25、(1)60、90°;(2)補全條形圖見解析;(3)估計全校學(xué)生中對這些交通法規(guī)“非常了解”的有320名;(4)甲和乙兩名學(xué)生同時被選中的概率為.【解析】【分析】(1)用A的人數(shù)以及所占的百分比就可以求出調(diào)查的總?cè)藬?shù),用C的人數(shù)除以調(diào)查的總?cè)藬?shù)后再乘以360度即可得;(2)根據(jù)D的百分比求出D的人數(shù),繼而求出B的人數(shù),即可補全條形統(tǒng)計圖;(3)用“非常了解”所占的比例乘以800即可求得;(4)畫樹狀圖得到所有可能的情況,然后找出符合條件的情況用,利用概率公式進行求解即可得.【詳解】(1)本次調(diào)查的學(xué)生總?cè)藬?shù)為24÷40%=60人,扇形統(tǒng)計圖中C所對應(yīng)扇形的圓心角度數(shù)是360°×=90°,故答案為60、90°;(2)D類型人數(shù)為60×5%=3,則B類型人數(shù)為60﹣(24+15+3)=18,補全條形圖如下:(3)估計全校學(xué)生中對這些交通法規(guī)“非常了解”的有800×40%=320名;(4)畫樹狀圖為:共有12種等可能的結(jié)果數(shù),其中甲和乙兩名學(xué)生同時被選中的結(jié)果數(shù)為2,所以甲和乙兩名學(xué)生同時被選中的概率為.【點睛】本題考查了條形統(tǒng)計圖、扇形統(tǒng)計圖、列表法或樹狀圖法求概率、用樣本估計總體等,讀懂統(tǒng)計圖,從不同的統(tǒng)計圖中找到必要的有關(guān)聯(lián)的信息進行解題是關(guān)鍵.26、(1)18;(2)中位數(shù);(3)100名.【解析】【分析】(1)根據(jù)條形統(tǒng)計圖中的數(shù)據(jù)可以得到m的值;(2)根據(jù)題意可知應(yīng)選擇中位數(shù)比較合適;(3)根據(jù)統(tǒng)計圖中的數(shù)據(jù)可以計該部門生產(chǎn)能手的人數(shù).【詳解】(1)由圖可得,眾數(shù)m的值為18,故答案為:18;(2)由題意可得,如果想讓一半左右的工人能獲獎,應(yīng)根據(jù)中位數(shù)來確定獎勵標(biāo)準比較合適,故答案為:中位數(shù);(3)300×=100(名),答:該部門生產(chǎn)能手有100名工人.【點睛】本題考查了條形統(tǒng)計圖、用樣本估計總體、加權(quán)平均數(shù)、中位數(shù)和眾數(shù),解答本題的關(guān)鍵是明確題意,利用數(shù)形結(jié)合的思想解答.27、(1)y=﹣x2+3x;(2)△EDB為等腰直角三角形

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論