版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)
文檔簡介
PAGE專題09二次函數(shù)中最值、變換、新定義型問題通用的解題思路:第一步:先判定函數(shù)的增減性:一次函數(shù)、反比例函數(shù)看SKIPIF1<0,二次函數(shù)看對稱軸與區(qū)間的位置關(guān)系;第二步:當(dāng)SKIPIF1<0時,SKIPIF1<0;當(dāng)SKIPIF1<0時,SKIPIF1<0;所以SKIPIF1<0.二次函數(shù)求取值范圍之動軸定區(qū)間或者定軸動區(qū)間的分類方法:分對稱軸在區(qū)間的左邊、右邊、中間三種情況。若自變量SKIPIF1<0的取值范圍為全體實數(shù),如圖①,函數(shù)在頂點處SKIPIF1<0時,取到最值.若SKIPIF1<0,如圖②,當(dāng)SKIPIF1<0時,SKIPIF1<0;當(dāng)SKIPIF1<0時,SKIPIF1<0.若SKIPIF1<0,如圖③,當(dāng)SKIPIF1<0,SKIPIF1<0;當(dāng)SKIPIF1<0,SKIPIF1<0.若SKIPIF1<0,且SKIPIF1<0,SKIPIF1<0,如圖④,當(dāng)SKIPIF1<0,SKIPIF1<0;當(dāng)SKIPIF1<0,SKIPIF1<0.1.(2023·廣東·中考真題)如圖,拋物線SKIPIF1<0經(jīng)過正方形SKIPIF1<0的三個頂點A,B,C,點B在SKIPIF1<0軸上,則SKIPIF1<0的值為(
)
A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】B【分析】連接SKIPIF1<0,交y軸于點D,根據(jù)正方形的性質(zhì)可知SKIPIF1<0,然后可得點SKIPIF1<0,進而代入求解即可.【詳解】解:連接SKIPIF1<0,交y軸于點D,如圖所示:
當(dāng)SKIPIF1<0時,則SKIPIF1<0,即SKIPIF1<0,∵四邊形SKIPIF1<0是正方形,∴SKIPIF1<0,SKIPIF1<0,∴點SKIPIF1<0,∴SKIPIF1<0,解得:SKIPIF1<0,故選B.【點睛】本題主要考查二次函數(shù)的圖象與性質(zhì)及正方形的性質(zhì),熟練掌握二次函數(shù)的圖象與性質(zhì)及正方形的性質(zhì)是解題的關(guān)鍵.2.(2022·廣東廣州·中考真題)如圖,拋物線SKIPIF1<0的對稱軸為SKIPIF1<0,下列結(jié)論正確的是(
)A.SKIPIF1<0 B.SKIPIF1<0C.當(dāng)SKIPIF1<0時,SKIPIF1<0隨SKIPIF1<0的增大而減小 D.當(dāng)SKIPIF1<0時,SKIPIF1<0隨SKIPIF1<0的增大而減小【答案】C【分析】由圖像可知,拋物線開口向上,因此a>0.由圖像與y軸的交點在y軸負(fù)半軸上得c<0.根據(jù)圖像可知,在對稱軸左側(cè)y隨x的增大而減小,在對稱軸右側(cè)y隨x的增大而增大.【詳解】拋物線開口向上,因此a>0,故A選項不符合題意.拋物線與y軸的交點在y軸的負(fù)半軸上,因此c<0,故B選項不符合題意.拋物線開口向上,因此在對稱軸左側(cè),y隨x的增大而減小,故C選項符合題意.拋物線開口向上,因此在對稱軸右側(cè)y隨x的增大而增大,故D選項不符合題意.故選C【點睛】本題考查了二次函數(shù)圖像的性質(zhì),掌握二次函數(shù)圖像的性質(zhì)是解題的關(guān)鍵.3.(2022·廣東·中考真題)如圖,拋物線SKIPIF1<0(b,c是常數(shù))的頂點為C,與x軸交于A,B兩點,SKIPIF1<0,SKIPIF1<0,點P為線段SKIPIF1<0上的動點,過P作SKIPIF1<0//SKIPIF1<0交SKIPIF1<0于點Q.(1)求該拋物線的解析式;(2)求SKIPIF1<0面積的最大值,并求此時P點坐標(biāo).【答案】(1)SKIPIF1<0(2)2;P(-1,0)【分析】(1)用待定系數(shù)法將A,B的坐標(biāo)代入函數(shù)一般式中,即可求出函數(shù)的解析式;(2)分別求出C點坐標(biāo),直線AC,BC的解析式,PQ的解析式為:y=-2x+n,進而求出P,Q的坐標(biāo)以及n的取值范圍,由SKIPIF1<0列出函數(shù)式求解即可.【詳解】(1)解:∵點A(1,0),AB=4,∴點B的坐標(biāo)為(-3,0),將點A(1,0),B(-3,0)代入函數(shù)解析式中得:SKIPIF1<0,解得:b=2,c=-3,∴拋物線的解析式為SKIPIF1<0;(2)解:由(1)得拋物線的解析式為SKIPIF1<0,頂點式為:SKIPIF1<0,則C點坐標(biāo)為:(-1,-4),由B(-3,0),C(-1,-4)可求直線BC的解析式為:y=-2x-6,由A(1,0),C(-1,-4)可求直線AC的解析式為:y=2x-2,∵PQ∥BC,設(shè)直線PQ的解析式為:y=-2x+n,與x軸交點PSKIPIF1<0,由SKIPIF1<0解得:SKIPIF1<0,∵P在線段AB上,∴SKIPIF1<0,∴n的取值范圍為-6<n<2,則SKIPIF1<0SKIPIF1<0SKIPIF1<0∴當(dāng)n=-2時,即P(-1,0)時,SKIPIF1<0最大,最大值為2.【點睛】本題考查二次函數(shù)的面積最值問題,二次函數(shù)的圖象與解析式間的關(guān)系,一次函數(shù)的解析式與圖象,熟練掌握數(shù)形結(jié)合思想是解決本題的關(guān)鍵.4.(2022·廣東廣州·中考真題)已知直線SKIPIF1<0:SKIPIF1<0經(jīng)過點(0,7)和點(1,6).(1)求直線SKIPIF1<0的解析式;(2)若點P(SKIPIF1<0,SKIPIF1<0)在直線SKIPIF1<0上,以P為頂點的拋物線G過點(0,-3),且開口向下①求SKIPIF1<0的取值范圍;②設(shè)拋物線G與直線SKIPIF1<0的另一個交點為Q,當(dāng)點Q向左平移1個單長度后得到的點Q'也在G上時,求G在SKIPIF1<0≤SKIPIF1<0≤SKIPIF1<0的圖象的最高點的坐標(biāo).【答案】(1)直線SKIPIF1<0解析式為:SKIPIF1<0;(2)①m<10,且m≠0;②最高點的坐標(biāo)為(-2,9)或(2,5)【分析】(1)根據(jù)待定系數(shù)法求出解析式即可;(2)①設(shè)G的頂點式,根據(jù)點P在直線SKIPIF1<0上得出G的關(guān)系式,根據(jù)題意得出點(0,-3)不能成為拋物線G的頂點,進而得出點P必須位于直線SKIPIF1<0的上方,可求m的取值范圍,然后結(jié)合點P不能在SKIPIF1<0軸上得出答案;②先根據(jù)點Q,點SKIPIF1<0的對稱,得QQ'=1,可表示點Q和SKIPIF1<0的坐標(biāo),再將點SKIPIF1<0的坐標(biāo)的代入關(guān)系式,求出a,再將點(0,-3)代入可求出m的值,然后分兩種情況結(jié)合取值范圍,求出函數(shù)最大值時,最高點的坐標(biāo)即可.【詳解】(1)解:∵直線SKIPIF1<0經(jīng)過點(0,7)和點(1,6),∴SKIPIF1<0,解得SKIPIF1<0,∴直線SKIPIF1<0解析式為:SKIPIF1<0;(2)解:①設(shè)G:SKIPIF1<0(SKIPIF1<0),∵點P(SKIPIF1<0,SKIPIF1<0)在直線SKIPIF1<0上,∴SKIPIF1<0;∴G:SKIPIF1<0(SKIPIF1<0)∵(0,-3)不在直線SKIPIF1<0上,∴(0,-3)不能成為拋物線G的頂點,而以P為頂點的拋物線G開口向下,且經(jīng)過(0,-3),∴點P必須位于直線SKIPIF1<0的上方,則SKIPIF1<0,SKIPIF1<0,另一方面,點P不能在SKIPIF1<0軸上,∴SKIPIF1<0,∴所求SKIPIF1<0取值范圍為:SKIPIF1<0,且SKIPIF1<0;②如圖,QQ'關(guān)于直線SKIPIF1<0對稱,且QQ'=1,∴點Q橫坐標(biāo)為SKIPIF1<0,而點Q在SKIPIF1<0上,∴Q(SKIPIF1<0,SKIPIF1<0),Q'(SKIPIF1<0,SKIPIF1<0);∵Q'(SKIPIF1<0,SKIPIF1<0)在G:SKIPIF1<0上,∴SKIPIF1<0,SKIPIF1<0,∴G:SKIPIF1<0,或SKIPIF1<0.∵拋物線G過點(0,-3),∴SKIPIF1<0,即SKIPIF1<0,SKIPIF1<0,SKIPIF1<0;當(dāng)SKIPIF1<0時,拋物線G為SKIPIF1<0,對稱軸為直線SKIPIF1<0,對應(yīng)區(qū)間為-2≤SKIPIF1<0≤-1,整個區(qū)間在對稱軸SKIPIF1<0的右側(cè),此時,函數(shù)值SKIPIF1<0隨著SKIPIF1<0的增大而減小,如圖,∴當(dāng)SKIPIF1<0取區(qū)間左端點SKIPIF1<0時,SKIPIF1<0達最大值9,最高點坐標(biāo)為(-2,9);當(dāng)SKIPIF1<0時,對應(yīng)區(qū)間為SKIPIF1<0≤SKIPIF1<0≤SKIPIF1<0,最高點為頂點P(2,5),如圖,∴G在指定區(qū)間圖象最高點的坐標(biāo)為(-2,9)或(2,5).【點睛】本題考查了二次函數(shù)的綜合問題,考查了待定系數(shù)法求二次函數(shù)的關(guān)系式,求二次函數(shù)的極值等.解題的關(guān)鍵是掌握當(dāng)SKIPIF1<0時,頂點在直線SKIPIF1<0與SKIPIF1<0軸的交點(0,7),此時拋物線不可能過點(0,-3),因此,SKIPIF1<0可能會被忽視.題型一二次函數(shù)圖象與系數(shù)a,b,c的關(guān)系1.已知二次函數(shù)SKIPIF1<0圖象的一部分如圖所示,該函數(shù)圖象經(jīng)過點SKIPIF1<0,對稱軸為直線SKIPIF1<0.對于下列結(jié)論:SKIPIF1<0;②SKIPIF1<0;③多項式SKIPIF1<0可因式分解為SKIPIF1<0;④無論m為何值時,SKIPIF1<0.其中正確個數(shù)有(
)
A.1個 B.2個 C.3個 D.4個【答案】B【分析】本題主要考查了二次函數(shù)圖象與系數(shù)的關(guān)系,二次函數(shù)圖象的性質(zhì)等等:先根據(jù)圖像的開口方向和對稱軸可判斷①;由拋物線的對稱軸為SKIPIF1<0可得拋物線與x軸的另一個交點為SKIPIF1<0,由此可判斷②;根據(jù)拋物線與x軸的兩個交點坐標(biāo)可判斷③;根據(jù)函數(shù)的對稱軸為SKIPIF1<0可知SKIPIF1<0時y有最大值,由此可判斷④.【詳解】解:∵拋物線開口向下,∴SKIPIF1<0,∵對稱軸為直線SKIPIF1<0,∴SKIPIF1<0,結(jié)論①正確;∵拋物線與x軸的一個交點為SKIPIF1<0,且對稱軸為直線SKIPIF1<0,∴拋物線與x軸的另一個交點為SKIPIF1<0,即當(dāng)SKIPIF1<0時,SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,結(jié)論②錯誤;∵拋物線SKIPIF1<0與x軸的兩個交點為SKIPIF1<0,SKIPIF1<0,∴多項式SKIPIF1<0可因式分解為SKIPIF1<0,結(jié)論③錯誤;∵對稱軸為直線SKIPIF1<0,且函數(shù)開口向下,∴當(dāng)SKIPIF1<0時,y有最大值,由SKIPIF1<0得,當(dāng)SKIPIF1<0時,SKIPIF1<0,當(dāng)SKIPIF1<0時,SKIPIF1<0,∴無論m為何值時,SKIPIF1<0,∴SKIPIF1<0,結(jié)論④正確;綜上:正確的有①④.故選:B.2.如圖是二次函數(shù)SKIPIF1<0的圖象,對稱軸是直線SKIPIF1<0.關(guān)于下列結(jié)論:①SKIPIF1<0;②SKIPIF1<0,③SKIPIF1<0;④SKIPIF1<0;⑤方程SKIPIF1<0兩個根為SKIPIF1<0,SKIPIF1<0,其中正確的結(jié)論有(
)A.①③④ B.②④⑤ C.①②⑤ D.②③⑤【答案】B【分析】本題考查了二次函數(shù)圖像與性質(zhì),由拋物線的開口方向判斷a與0的關(guān)系,由拋物線與y軸的交點判斷c與0的關(guān)系,然后根據(jù)對稱軸及拋物線與x軸交點情況進行推理,進而對所得結(jié)論進行判斷.根據(jù)二次函數(shù)圖像判定代數(shù)式的正負(fù)和數(shù)形結(jié)合思想是解題的關(guān)鍵.【詳解】解:由圖象可得:拋物線開口向下,∴SKIPIF1<0,對稱軸在y軸左側(cè),根據(jù)左同右異,∴SKIPIF1<0,∴SKIPIF1<0,故①錯;由圖象可得:拋物線與x軸有兩個交點,∴SKIPIF1<0,故②正確;由圖象可得:SKIPIF1<0時,SKIPIF1<0,∴SKIPIF1<0,故③錯;由圖象可得:SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,故④正確;由圖象可得:SKIPIF1<0的兩根分別為SKIPIF1<0,SKIPIF1<0,∴方程SKIPIF1<0兩個根為SKIPIF1<0,SKIPIF1<0,故⑤正確;故選:B.3.拋物線SKIPIF1<0上部分點的橫坐標(biāo)x和縱坐標(biāo)y的對應(yīng)值如下表,下列說法正確的有(
).x…SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<001…y…SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<033…①當(dāng)SKIPIF1<0時,y隨x的增大而減??;②拋物線的對稱軸為直線SKIPIF1<0;③當(dāng)SKIPIF1<0時,SKIPIF1<0;
④方程SKIPIF1<0的一個正數(shù)解SKIPIF1<0滿足SKIPIF1<0.A.①② B.①②③ C.②③④ D.①②④【答案】D【分析】本題主要考查了二次函數(shù)圖像的性質(zhì)和二次函數(shù)圖像上點的特征,理解二次函數(shù)圖像的性質(zhì)是解題的關(guān)鍵.根據(jù)表格信息,先確定出拋物線的對稱軸,然后根據(jù)二次函數(shù)的性質(zhì)逐項判斷即可.【詳解】解:①由表格看出,這個拋物線的對稱軸為直線SKIPIF1<0且當(dāng)SKIPIF1<0時,y隨x的增大而增大,根據(jù)二次函數(shù)圖像的對稱性可得當(dāng)SKIPIF1<0時,y隨x的增大而減小,故①的說法正確;②由表格看出,這個拋物線的對稱軸為直線SKIPIF1<0,故②的說法正確;③當(dāng)SKIPIF1<0時的函數(shù)值與SKIPIF1<0時的函數(shù)值相同為SKIPIF1<0,即,故③的說法錯誤;④當(dāng)SKIPIF1<0時,SKIPIF1<0,當(dāng)SKIPIF1<0時,SKIPIF1<0,根據(jù)二次函數(shù)的對稱性可得當(dāng)SKIPIF1<0時,SKIPIF1<0,當(dāng)SKIPIF1<0時,SKIPIF1<0,故方程SKIPIF1<0的正數(shù)解滿足SKIPIF1<0,故④的說法正確.故選:D.題型二二次函數(shù)中線段最小值1.如題,在平面直角坐標(biāo)系SKIPIF1<0中,拋物線SKIPIF1<0與SKIPIF1<0軸交于點SKIPIF1<0,點SKIPIF1<0,與SKIPIF1<0軸交于點SKIPIF1<0,連接SKIPIF1<0,SKIPIF1<0.(1)求拋物線的解析式.(2)點SKIPIF1<0為拋物線的對稱軸上一動點,當(dāng)SKIPIF1<0周長最小時,求點SKIPIF1<0的坐標(biāo).(3)點SKIPIF1<0是SKIPIF1<0的中點,射線SKIPIF1<0交拋物線于點SKIPIF1<0,SKIPIF1<0是拋物線上一動點,過點SKIPIF1<0作SKIPIF1<0軸的平行線,交射線SKIPIF1<0與點SKIPIF1<0,是否存在點SKIPIF1<0使得SKIPIF1<0與SKIPIF1<0相似?若存在,求出點SKIPIF1<0的坐標(biāo);若不存在,請說明理由.【答案】(1)SKIPIF1<0(2)SKIPIF1<0(3)存在,點SKIPIF1<0的坐標(biāo)為SKIPIF1<0或SKIPIF1<0【分析】(1)待定系數(shù)法求解析式即可求解;(2)點SKIPIF1<0關(guān)于對稱軸的對稱點為點SKIPIF1<0,連接SKIPIF1<0交對稱軸于點SKIPIF1<0,連接SKIPIF1<0,此時SKIPIF1<0最小,得出直線SKIPIF1<0的解析式為SKIPIF1<0,當(dāng)SKIPIF1<0時,SKIPIF1<0,得出SKIPIF1<0即可求解;(3)分兩種情況:SKIPIF1<0,SKIPIF1<0,根據(jù)相似三角形的性質(zhì),即可求解.【詳解】(1)解:把點SKIPIF1<0,SKIPIF1<0分別代入SKIPIF1<0,得SKIPIF1<0解得SKIPIF1<0∴拋物線的解析式為SKIPIF1<0.(2)∵SKIPIF1<0,SKIPIF1<0∴對稱軸為直線SKIPIF1<0點SKIPIF1<0關(guān)于對稱軸的對稱點為點SKIPIF1<0,連接SKIPIF1<0交對稱軸于點SKIPIF1<0,連接SKIPIF1<0,此時SKIPIF1<0最小,當(dāng)SKIPIF1<0時,SKIPIF1<0,∴點SKIPIF1<0.設(shè)直線SKIPIF1<0的解析式為SKIPIF1<0,代入SKIPIF1<0得SKIPIF1<0∴SKIPIF1<0∴直線SKIPIF1<0的解析式為SKIPIF1<0當(dāng)SKIPIF1<0時,SKIPIF1<0,∴點SKIPIF1<0.(3)存在.∵SKIPIF1<0,SKIPIF1<0是SKIPIF1<0的中點,SKIPIF1<0SKIPIF1<0.又SKIPIF1<0,∴直線SKIPIF1<0的解析式為SKIPIF1<0,SKIPIF1<0.聯(lián)立SKIPIF1<0得SKIPIF1<0.解得SKIPIF1<0,SKIPIF1<0(舍).當(dāng)SKIPIF1<0時,SKIPIF1<0.∴SKIPIF1<0.設(shè)SKIPIF1<0,則SKIPIF1<0.∴SKIPIF1<0.分以下兩種情況:①如圖2,若SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0.∴SKIPIF1<0軸.∴SKIPIF1<0.∴SKIPIF1<0.解得SKIPIF1<0或SKIPIF1<0(舍).∴SKIPIF1<0.②如圖3,若SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0.過點SKIPIF1<0作SKIPIF1<0于點SKIPIF1<0,則SKIPIF1<0,即SKIPIF1<0.解得SKIPIF1<0或SKIPIF1<0(舍).∴SKIPIF1<0.綜上,點SKIPIF1<0的坐標(biāo)為SKIPIF1<0或SKIPIF1<0.【點睛】本題考查了二次函數(shù)的綜合運用,待定系數(shù)法求二次函數(shù)解析式,線段周長問題以及相似三角形的性質(zhì),解題的關(guān)鍵是求出二次函數(shù)解析式.2.如圖1,在平面直角坐標(biāo)系中,直線SKIPIF1<0與拋物線SKIPIF1<0(b,c是常數(shù))交于A、B兩點,點A在x軸上,點B在y軸上.設(shè)拋物線與x軸的另一個交點為點C.
(1)求該拋物線的解析式;(2)若點M是拋物線對稱軸上的一個動點,當(dāng)SKIPIF1<0的值最小時,求點M的坐標(biāo);(3)P是拋物線上一動點(不與點A、B重合),如圖2,若點P在直線SKIPIF1<0上方,連接SKIPIF1<0交SKIPIF1<0于點D,求SKIPIF1<0的最大值;【答案】(1)SKIPIF1<0(2)SKIPIF1<0(3)SKIPIF1<0【分析】(1)直線SKIPIF1<0與兩坐標(biāo)的交點坐標(biāo)為SKIPIF1<0,SKIPIF1<0,將A、B代入拋物線SKIPIF1<0,利用待定系數(shù)法即可求解;(2)根據(jù)拋物線解析式確定與x軸的交點坐標(biāo),再由對稱的性質(zhì)及兩點之間線段最短即可確定點M的位置,然后代入一次函數(shù)解析式求解即可;(3)過點P作SKIPIF1<0交直線SKIPIF1<0于點E,則SKIPIF1<0,所以SKIPIF1<0,當(dāng)SKIPIF1<0取最大值時,SKIPIF1<0有最大值.【詳解】(1)解:SKIPIF1<0直線SKIPIF1<0與坐標(biāo)軸交于A、B兩點,當(dāng)SKIPIF1<0時,SKIPIF1<0,當(dāng)SKIPIF1<0時,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,將A、B代入拋物線SKIPIF1<0,得SKIPIF1<0,解得SKIPIF1<0,SKIPIF1<0拋物線的解析式為:SKIPIF1<0.(2)∵拋物線的解析式為:SKIPIF1<0.∴當(dāng)SKIPIF1<0時,解得SKIPIF1<0,∴SKIPIF1<0,∴拋物線的對稱軸為SKIPIF1<0,
∵點SKIPIF1<0關(guān)于SKIPIF1<0對稱,連接SKIPIF1<0交對稱軸于點M,∴SKIPIF1<0,此時SKIPIF1<0取得最小值,∴當(dāng)SKIPIF1<0時,SKIPIF1<0,∴SKIPIF1<0;(3)過點P作SKIPIF1<0交直線SKIPIF1<0于點E,則SKIPIF1<0,
SKIPIF1<0設(shè)點SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0代數(shù)式SKIPIF1<0,當(dāng)SKIPIF1<0時有最大值,SKIPIF1<0的最大值為SKIPIF1<0.【點睛】本題是二次函數(shù)與一次函數(shù)的交點問題,考查了用待定系數(shù)法求二次函數(shù)的解析式,三角形相似的判定和性質(zhì),解題的關(guān)鍵是構(gòu)造輔助線證SKIPIF1<0.3.在平面直角坐標(biāo)系SKIPIF1<0中,拋物線SKIPIF1<0與SKIPIF1<0軸交于點SKIPIF1<0,與SKIPIF1<0軸交于SKIPIF1<0、SKIPIF1<0兩點SKIPIF1<0點SKIPIF1<0在點SKIPIF1<0的左側(cè)SKIPIF1<0,其中SKIPIF1<0SKIPIF1<0,SKIPIF1<0,SKIPIF1<0.(1)求拋物線的解析式;(2)線段SKIPIF1<0上有一動點SKIPIF1<0,連接SKIPIF1<0,當(dāng)SKIPIF1<0SKIPIF1<0SKIPIF1<0的值最小時,請直接寫出此時點SKIPIF1<0的坐標(biāo)和SKIPIF1<0SKIPIF1<0SKIPIF1<0的最小值.(3)如圖2,點SKIPIF1<0為直線SKIPIF1<0上方拋物線上一點,連接SKIPIF1<0、SKIPIF1<0交于點SKIPIF1<0,連接SKIPIF1<0,記SKIPIF1<0的面積為SKIPIF1<0,SKIPIF1<0的面積為SKIPIF1<0,求SKIPIF1<0的最大值.【答案】(1)拋物線的解析式為:SKIPIF1<0(2)SKIPIF1<0,CSKIPIF1<0SKIPIF1<0SKIPIF1<0的最小值為SKIPIF1<0(3)最大值為SKIPIF1<0【分析】(1)根據(jù)點SKIPIF1<0的坐標(biāo)和SKIPIF1<0的值可得出點SKIPIF1<0的坐標(biāo),將點SKIPIF1<0,SKIPIF1<0的坐標(biāo)代入拋物線,組成方程組,解之即可得出結(jié)論;(2)令SKIPIF1<0,可得點SKIPIF1<0的坐標(biāo),由此可得SKIPIF1<0,過點SKIPIF1<0作SKIPIF1<0,則SKIPIF1<0SKIPIF1<0SKIPIF1<0,則SKIPIF1<0SKIPIF1<0SKIPIF1<0,作點SKIPIF1<0關(guān)于SKIPIF1<0軸的對稱點SKIPIF1<0,過點SKIPIF1<0作SKIPIF1<0SKIPIF1<0于點SKIPIF1<0,SKIPIF1<0SKIPIF1<0與SKIPIF1<0軸的交點即為所求點SKIPIF1<0,再根據(jù)直角三角形的三邊關(guān)系可得出結(jié)論;(3)過點SKIPIF1<0作SKIPIF1<0軸于點SKIPIF1<0,交SKIPIF1<0于點SKIPIF1<0,過點SKIPIF1<0作SKIPIF1<0軸交SKIPIF1<0的延長線于點SKIPIF1<0,由此可得SKIPIF1<0,則SKIPIF1<0,設(shè)點SKIPIF1<0的坐標(biāo),表達SKIPIF1<0的長,再根據(jù)二次函數(shù)的性質(zhì)可得結(jié)論.【詳解】(1)解:∵SKIPIF1<0
∴SKIPIF1<0∵SKIPIF1<0
∴SKIPIF1<0,SKIPIF1<0將SKIPIF1<0、SKIPIF1<0的坐標(biāo)代入SKIPIF1<0得:SKIPIF1<0
∴SKIPIF1<0∴拋物線的解析式為:SKIPIF1<0;(2)解:由SKIPIF1<0,令SKIPIF1<0,即SKIPIF1<0,解得:SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0SKIPIF1<0作點SKIPIF1<0關(guān)于SKIPIF1<0軸的對稱點SKIPIF1<0,過點SKIPIF1<0作SKIPIF1<0SKIPIF1<0于點SKIPIF1<0,SKIPIF1<0SKIPIF1<0與SKIPIF1<0軸的交點即為所求點SKIPIF1<0,連接SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,綜上所述,當(dāng)SKIPIF1<0時,SKIPIF1<0SKIPIF1<0SKIPIF1<0的最小值為SKIPIF1<0;(3)如圖,過SKIPIF1<0作SKIPIF1<0軸于點SKIPIF1<0,交SKIPIF1<0于SKIPIF1<0,過SKIPIF1<0作SKIPIF1<0軸交SKIPIF1<0延長線于SKIPIF1<0,設(shè)直線SKIPIF1<0解析式為:SKIPIF1<0,由(1)得:SKIPIF1<0,將SKIPIF1<0,SKIPIF1<0分別代入SKIPIF1<0得:SKIPIF1<0,解得:SKIPIF1<0,SKIPIF1<0直線SKIPIF1<0的表達式為:SKIPIF1<0,SKIPIF1<0SKIPIF1<0,故SKIPIF1<0的橫坐標(biāo)SKIPIF1<0,代入SKIPIF1<0,得:SKIPIF1<0,SKIPIF1<0SKIPIF1<0,SKIPIF1<0SKIPIF1<0,設(shè)SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0SKIPIF1<0,SKIPIF1<0軸于點SKIPIF1<0,SKIPIF1<0軸,SKIPIF1<0SKIPIF1<0,SKIPIF1<0SKIPIF1<0,SKIPIF1<0SKIPIF1<0,將SKIPIF1<0、SKIPIF1<0分別看作SKIPIF1<0、SKIPIF1<0為底邊,則它們的高相同,SKIPIF1<0SKIPIF1<0,SKIPIF1<0,SKIPIF1<0SKIPIF1<0時,SKIPIF1<0有最大值,最大值為SKIPIF1<0【點睛】本題主要考查了二次函數(shù)綜合,待定系數(shù)法,解直角三角形,相似三角形的性質(zhì)與判定問題,解本題的關(guān)鍵是設(shè)出點SKIPIF1<0的橫坐標(biāo),并正確表達面積的比值.題型三二次函數(shù)中面積最值問題1.如圖,拋物線SKIPIF1<0與SKIPIF1<0軸交于點SKIPIF1<0和點SKIPIF1<0,與SKIPIF1<0軸交于點SKIPIF1<0,連接SKIPIF1<0,點SKIPIF1<0在拋物線上.(1)求拋物線的解析式;(2)如圖1,點D在第一象限內(nèi)的拋物線上,連接SKIPIF1<0,SKIPIF1<0,請求出SKIPIF1<0面積的最大值;(3)點SKIPIF1<0在拋物線上移動,連接SKIPIF1<0,存在SKIPIF1<0,請直接寫出點SKIPIF1<0的坐標(biāo).【答案】(1)SKIPIF1<0(2)4(3)點SKIPIF1<0的坐標(biāo)為:SKIPIF1<0或SKIPIF1<0.【分析】(1)由待定系數(shù)法即可求解;(2)由SKIPIF1<0面積SKIPIF1<0,即可求解;(3)當(dāng)點SKIPIF1<0在SKIPIF1<0軸上方時,則點SKIPIF1<0和點SKIPIF1<0關(guān)于拋物線對稱軸對稱,即可求解;當(dāng)點SKIPIF1<0在SKIPIF1<0軸下方時,由SKIPIF1<0,求出點SKIPIF1<0,即可求解.【詳解】(1)解:拋物線的表達式為:SKIPIF1<0,則SKIPIF1<0,解得:SKIPIF1<0,則拋物線的表達式為:SKIPIF1<0①;(2)解:過點SKIPIF1<0作SKIPIF1<0軸交SKIPIF1<0于點SKIPIF1<0,由點SKIPIF1<0、SKIPIF1<0的坐標(biāo)得,直線SKIPIF1<0的表達式為:SKIPIF1<0,設(shè)點SKIPIF1<0,則點SKIPIF1<0,則SKIPIF1<0面積SKIPIF1<0,SKIPIF1<0,故SKIPIF1<0面積有最大值,當(dāng)SKIPIF1<0時,SKIPIF1<0面積的最大值為4;(3)解:當(dāng)點SKIPIF1<0在SKIPIF1<0軸上方時,SKIPIF1<0所以SKIPIF1<0平行于x軸則點SKIPIF1<0和點SKIPIF1<0關(guān)于拋物線對稱軸對稱,則點SKIPIF1<0;當(dāng)點SKIPIF1<0在SKIPIF1<0軸下方時,設(shè)SKIPIF1<0交SKIPIF1<0軸于點SKIPIF1<0,設(shè)點SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0,則SKIPIF1<0,解得:SKIPIF1<0,即點SKIPIF1<0,由點SKIPIF1<0、SKIPIF1<0的坐標(biāo)得,直線SKIPIF1<0的表達式為:SKIPIF1<0②,聯(lián)立①②得:SKIPIF1<0,解得:SKIPIF1<0(舍去)或SKIPIF1<0,即點SKIPIF1<0的坐標(biāo)為:SKIPIF1<0;綜上,點SKIPIF1<0的坐標(biāo)為:SKIPIF1<0或SKIPIF1<0.【點睛】本題考查的是二次函數(shù)綜合運用,涉及到等腰三角形的性質(zhì)、面積的計算等,分類求解是解題的關(guān)鍵.2.如圖,在直角坐標(biāo)系中有一直角三角形SKIPIF1<0,SKIPIF1<0為坐標(biāo)原點,SKIPIF1<0,SKIPIF1<0,將此三角形繞原點SKIPIF1<0逆時針旋轉(zhuǎn)SKIPIF1<0,得到SKIPIF1<0,拋物線SKIPIF1<0經(jīng)過點SKIPIF1<0、SKIPIF1<0、SKIPIF1<0.(1)求拋物線的解析式;(2)若點P是第二象限內(nèi)拋物線上的動點,其橫坐標(biāo)為t,①是否存在一點P,使SKIPIF1<0的面積最大?若存在,求出SKIPIF1<0的面積的最大值;若不存在,請說明理由.②設(shè)拋物線對稱軸l與x軸交于一點E,連接SKIPIF1<0,交SKIPIF1<0于SKIPIF1<0,直接寫出當(dāng)SKIPIF1<0與SKIPIF1<0相似時,點P的坐標(biāo).【答案】(1)SKIPIF1<0(2)①存在,最大值為SKIPIF1<0,理由見解析;②SKIPIF1<0或SKIPIF1<0【分析】(1)根據(jù)正切函數(shù),可得SKIPIF1<0,根據(jù)旋轉(zhuǎn)的性質(zhì)可得SKIPIF1<0,據(jù)此求出A、B、C的坐標(biāo),再利用待定系數(shù)法即可求出函數(shù)解析式;(2)①可求得直線SKIPIF1<0的解析式,過SKIPIF1<0作SKIPIF1<0軸于點SKIPIF1<0,交SKIPIF1<0于點SKIPIF1<0,可用SKIPIF1<0表示出SKIPIF1<0的長,當(dāng)SKIPIF1<0取最大值時,則SKIPIF1<0的面積最大,可求得其最大值;②當(dāng)SKIPIF1<0時,SKIPIF1<0,過點SKIPIF1<0作SKIPIF1<0軸于SKIPIF1<0點,證明SKIPIF1<0,得到SKIPIF1<0,進而推出SKIPIF1<0,則SKIPIF1<0,解方程即可;當(dāng)SKIPIF1<0時,SKIPIF1<0,此時,SKIPIF1<0軸,則SKIPIF1<0.【詳解】(1)解:在SKIPIF1<0中,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0是由SKIPIF1<0繞點SKIPIF1<0逆時針旋轉(zhuǎn)SKIPIF1<0而得到的,SKIPIF1<0.SKIPIF1<0,SKIPIF1<0,SKIPIF1<0的坐標(biāo)分別為SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,代入解析式得:SKIPIF1<0,解得:SKIPIF1<0,SKIPIF1<0拋物線的解析式為SKIPIF1<0;(2)解:SKIPIF1<0存在點SKIPIF1<0使SKIPIF1<0的面積最大,SKIPIF1<0的面積有最大值為SKIPIF1<0理由如下:設(shè)直線SKIPIF1<0解析式為SKIPIF1<0,把SKIPIF1<0、SKIPIF1<0兩點坐標(biāo)代入可得:SKIPIF1<0,解得:SKIPIF1<0,SKIPIF1<0直線SKIPIF1<0解析式為SKIPIF1<0,如圖SKIPIF1<0,過SKIPIF1<0作SKIPIF1<0軸,交SKIPIF1<0軸于點SKIPIF1<0,交直線SKIPIF1<0于點SKIPIF1<0,SKIPIF1<0點橫坐標(biāo)為SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0點在第二象限,SKIPIF1<0點在SKIPIF1<0點上方,SKIPIF1<0,SKIPIF1<0當(dāng)SKIPIF1<0時,SKIPIF1<0有最大值,最大值為SKIPIF1<0,SKIPIF1<0,SKIPIF1<0當(dāng)SKIPIF1<0有最大值時,SKIPIF1<0的面積有最大值,SKIPIF1<0,綜上可知,存在點SKIPIF1<0使SKIPIF1<0的面積最大,SKIPIF1<0的面積有最大值為SKIPIF1<0;SKIPIF1<0當(dāng)SKIPIF1<0時,SKIPIF1<0,過點SKIPIF1<0作SKIPIF1<0軸于SKIPIF1<0點,∴SKIPIF1<0,又∵SKIPIF1<0,∴SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0點SKIPIF1<0的橫坐標(biāo)為SKIPIF1<0,SKIPIF1<0,SKIPIF1<0在第二象限,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,解得SKIPIF1<0,SKIPIF1<0,與SKIPIF1<0在二象限,橫坐標(biāo)小于SKIPIF1<0矛盾,舍去,當(dāng)SKIPIF1<0時,SKIPIF1<0,SKIPIF1<0,當(dāng)SKIPIF1<0時,SKIPIF1<0,此時,SKIPIF1<0軸,SKIPIF1<0SKIPIF1<0當(dāng)SKIPIF1<0與SKIPIF1<0相似時,SKIPIF1<0點的坐標(biāo)為SKIPIF1<0或SKIPIF1<0.【點睛】本題考查了二次函數(shù)綜合題,相似三角形的性質(zhì)與判定,一次函數(shù)與幾何綜合,解直角三角形,旋轉(zhuǎn)的性質(zhì)等等,解(1)的關(guān)鍵是利用旋轉(zhuǎn)的性質(zhì)得出SKIPIF1<0,SKIPIF1<0的長,又利用了待定系數(shù)法;解(2)的關(guān)鍵是利用相似三角形的性質(zhì)得出SKIPIF1<0.3.如圖,在平面直角坐標(biāo)系中,已知拋物線SKIPIF1<0與直線SKIPIF1<0相交于A,B兩點,其中SKIPIF1<0.(1)求該拋物線的函數(shù)解析式;(2)點P為直線SKIPIF1<0下方拋物線上的任意一點,連接SKIPIF1<0,求SKIPIF1<0面積的最大值;(3)若點M為拋物線對稱軸上的點,拋物線上是否存在點N,使得以A、B、M、N為頂點的四邊形是平行四邊形?如果存在,請求出點N的坐標(biāo);如果不存在,請說明理由.【答案】(1)SKIPIF1<0(2)SKIPIF1<0(3)N的坐標(biāo)為SKIPIF1<0或SKIPIF1<0或SKIPIF1<0【分析】(1)用待定系數(shù)法可得拋物線的函數(shù)解析式為SKIPIF1<0;(2)過P作SKIPIF1<0軸交SKIPIF1<0于Q,求出直線SKIPIF1<0解析式為SKIPIF1<0,設(shè)SKIPIF1<0,則SKIPIF1<0可得SKIPIF1<0,故SKIPIF1<0,根據(jù)二次函數(shù)性質(zhì)可得SKIPIF1<0面積的最大值為SKIPIF1<0;(3)求出拋物線的對稱軸為直線SKIPIF1<0,設(shè)SKIPIF1<0,分三種情況:①當(dāng)SKIPIF1<0為對角線時,SKIPIF1<0的中點重合,SKIPIF1<0,②當(dāng)SKIPIF1<0為對角線時,SKIPIF1<0,③當(dāng)SKIPIF1<0為對角線時,SKIPIF1<0,分別解方程組可得答案.【詳解】(1)解:把SKIPIF1<0代入SKIPIF1<0得:SKIPIF1<0,解得SKIPIF1<0,∴拋物線的函數(shù)解析式為SKIPIF1<0;(2)解:過P作SKIPIF1<0軸交SKIPIF1<0于Q,如圖:由SKIPIF1<0得直線SKIPIF1<0解析式為SKIPIF1<0,設(shè)SKIPIF1<0,其中SKIPIF1<0,則SKIPIF1<0SKIPIF1<0,SKIPIF1<0,∵SKIPIF1<0,∴當(dāng)SKIPIF1<0時,SKIPIF1<0取最大值SKIPIF1<0,SKIPIF1<0面積的最大值為SKIPIF1<0;(3)解:拋物線上存在點N,使得以A、B、M、N為頂點的四邊形是平行四邊形,理由如下:SKIPIF1<0,∴拋物線SKIPIF1<0的對稱軸為直線SKIPIF1<0,設(shè)SKIPIF1<0,又SKIPIF1<0,①當(dāng)SKIPIF1<0為對角線時,SKIPIF1<0的中點重合,∴SKIPIF1<0,解得SKIPIF1<0,SKIPIF1<0;②當(dāng)SKIPIF1<0為對角線時,SKIPIF1<0,解得SKIPIF1<0,SKIPIF1<0;③當(dāng)SKIPIF1<0為對角線時,SKIPIF1<0,解得SKIPIF1<0,SKIPIF1<0;綜上所述,N的坐標(biāo)為SKIPIF1<0或SKIPIF1<0或SKIPIF1<0.【點睛】本題考查二次函數(shù)的綜合應(yīng)用,涉及待定系數(shù)法,三角形面積,平行四邊形等知識,解題的關(guān)鍵是分類討論思想和方程思想的應(yīng)用.題型四二次函數(shù)平移、翻折、旋轉(zhuǎn)問題1.如圖1,拋物線SKIPIF1<0與SKIPIF1<0軸相交于SKIPIF1<0,SKIPIF1<0兩點,與SK
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025至2031年中國L-肉堿富馬酸鹽行業(yè)投資前景及策略咨詢研究報告
- 2025至2030年中國鐵道罐車數(shù)據(jù)監(jiān)測研究報告
- 2025至2030年中國粉狀機用清洗劑數(shù)據(jù)監(jiān)測研究報告
- 2025至2030年中國電子管吉他音箱數(shù)據(jù)監(jiān)測研究報告
- 2025至2030年中國帳篷橡皮圈數(shù)據(jù)監(jiān)測研究報告
- 2025至2030年中國土壤蒸騰蒸散模擬器數(shù)據(jù)監(jiān)測研究報告
- 二零二五年度個人旅游貸款擔(dān)保合同范本2篇
- 二零二五年度個人房產(chǎn)買賣合同附稅費結(jié)算協(xié)議
- 二零二五年度個人車輛抵押債務(wù)清償協(xié)議書4篇
- 差旅費報銷管理制度8篇
- 練習(xí)20連加連減
- 五四制青島版數(shù)學(xué)五年級上冊期末測試題及答案(共3套)
- 土法吊裝施工方案
- 商法題庫(含答案)
- BLM戰(zhàn)略規(guī)劃培訓(xùn)與實戰(zhàn)
- 鋼結(jié)構(gòu)用高強度大六角頭螺栓連接副 編制說明
- 溝通與談判PPT完整全套教學(xué)課件
- 移動商務(wù)內(nèi)容運營(吳洪貴)項目四 移動商務(wù)運營內(nèi)容的傳播
- DB43T 2457-2022 烤煙采編烤分收包一體化作業(yè)規(guī)范
- GB/T 15945-1995電能質(zhì)量電力系統(tǒng)頻率允許偏差
- GB 32311-2015水電解制氫系統(tǒng)能效限定值及能效等級
評論
0/150
提交評論