




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
第九章統(tǒng)計9.2.3總體集中趨勢的估計
學習目標1.結合實例,能用樣本估計總體的集中趨勢參數(眾數、中位數、平均數).2.會求樣本數據的眾數、中位數、平均數.3.理解集中趨勢參數的統(tǒng)計含義.數學學科素養(yǎng)1.數學運算:求樣本數據的眾數、中位數、平均數;2.數據分析:頻率分布直方圖中的眾數、中位數、平均數.學習
重難點能用樣本估計總體的集中趨勢參數,平均數,中位數,眾數探索新知你還記得平均數、中位數、眾數是什么嗎?這些統(tǒng)計量刻畫了數據的什么特點?
眾
數:一組數據中出現次數最多的數中位數:一組數據按大小順序依次排序后,當數據個數是奇數時,處在最中間的數是中位數;當數據個數是偶數時,最中間兩個數的平均數是中位數。平均數:這些統(tǒng)計量刻畫了數據的“中心位置”,即數據的集中趨勢。問題解析探索新知思考一根據下表中100戶居民的月均用水量,計算樣本數據的平均數和中位數,并據此估計全市居民用戶月均用水量的平均數和中位數。9.013.614.95.94.07.16.45.419.42.02.28.613.85.410.24.96.814.02.010.52.15.75.116.86.011.11.311.27.74.92.310.016.712.012.47.85.213.62.422.43.67.18.825.63.218.35.12.03.012.022.210.85.52.024.39.93.65.64.47.95.124.56.47.54.720.55.515.72.65.75.56.016.02.49.53.717.03.84.12.35.37.88.14.313.36.81.37.04.91.87.128.010.213.817.910.15.54.63.221.6
探索新知思考二假設某個居民小區(qū)有2000戶,你能估計該小區(qū)的月用水總量嗎?根據上述思考可得:全市居民用戶的月均用水量約為8.79t,則2000戶居民的月用水總量為:2000×8.79=17580t小明用統(tǒng)計軟件計算了100戶居民用水量的平均數和中位數。但在錄入數據時,不小心把一個數據7.7錄成了77.請計算錄入數據的平均數和中位數。通過計算發(fā)現,平均數由原來的8.79t變?yōu)?.483t,中位數沒有變化,還是6.8t。思考三探索新知思考四與真實的樣本平均數和中位數作比較,哪個量的值變化更大?你能解釋其中的原因嗎?平均數變化較大。這是因為樣本平均數與每一個樣本數據有關,樣本中的任何一個數的改變都會引起平均數的改變;但中位數只利用了樣本數據中間位置的一個或兩個值,并未利用其他數據,所以不是任何一個樣本數據的改變都會引起中位數的改變。因此,與中位數比較,平均數反映出樣本數據中的更多信息,對樣本中的極端值更加敏感。探索新知思考五平均數和中位數都描述了數據的集中趨勢,它們的大小關系和數據分布的形態(tài)有關。在下圖的三種分布形態(tài)中,平均數和中位數的大小存在什么關系?如果直方圖的形狀是對稱的,那么平均數和中位數大體上差不多如果直方圖在右邊“拖尾”,那么平均數大于中位數;如果直方圖在左邊“拖尾”,那么平均數小于中位數。單峰平均數總是在“長尾巴”那邊。例一某學校要定制高一年級的校服,學生根據廠家提供的參考身高選擇校服規(guī)格。根據統(tǒng)計,高一年級女生需要不同規(guī)格校服的頻數如下表所示:校服規(guī)格155160165170175合計頻數39641679026386如果用一個量來代表該校高一年級女生所需校服的規(guī)格,那么在中位數、平均數和眾數中,哪個量比較合適?試討論上表數據估計全國高一年級女生校服規(guī)格的合理性。解:為了更直觀地觀察數據的特征,我們用條形圖來表示表中的數據??梢园l(fā)現,選擇校服規(guī)格為“165”的女生頻數最高,所以用眾數165作為該校高一年級女生校服的規(guī)格比較合適。由于全國各地的高一年級女生的身高存在一定的差異,所以用一個學校的數據估計全國高一年級女生的校服規(guī)格不合理。平均數中位數眾數在頻率分布直方圖中的含義特點探索新知思考六從上述思考題和例題中,你能總結出平均數、中位數、眾數各自的特點嗎?每個小矩形面積乘以小矩形底邊中點的橫坐標之和把頻率分布直方圖劃分左右兩個面積相等的分界線與x軸交點的橫坐標最高矩形的中點的橫坐標與每一個數據有關,任何一個數的改變都會引起它的改變只利用了樣本數據中間位置的一個或兩個值,并未利用其他數據只利用了出現次數最多的那個值的信息思考七根據平均數、中位數、眾數各自的特點,我們應如何選擇適合的統(tǒng)計量來表示數據的集中趨勢?一般地,對數值型數據(如用水量、身高、收入、產量等)集中趨勢的描述,可以用平均數、中位數;對分類型數據(如校服規(guī)格、性別、產品質量等級等)集中趨勢的描述,可以用眾數。描述集中趨勢統(tǒng)計量的選擇樣本的平均數、中位數和眾數可以分別作為總體的平均數、中位數和眾數的估計,但在某些情況下我們無法獲知原始的樣本數據。例如,我們在報紙、網絡上獲得的往往是已經整理好的統(tǒng)計表或統(tǒng)計圖。這時該如何估計樣本的平均數、中位數和眾數?你能以下面的頻率分布直方圖提供的信息為例,給出估計方法嗎?探索新知思考八例二根據下面的頻率分布直方圖,估計月均用水量樣本數據的平均數、中位數和眾數
因為樣本平均數可以表示為數據與它的頻率的乘積之和,所以在頻率分布直方圖中,樣本平均數可以用每個小矩形底邊中點的橫坐標與小矩形的面積的乘積之和近似代替。即每一組的平均數為該組小矩形底邊中點橫坐標。根據中位數的意義可得,在頻率分布直方圖中,中位數左邊和右邊的直方圖的面積應該相等。
由于0.077×3=0.231,(0.077+0.107)×3=0.552因此中位數落在區(qū)間[4.2,7.2)內。設中位數為x,由0.077×3+0.107×(x-4.2)=0.5,得到x≈6.71因此,中位數約為6.71。根據眾數定義得,出現次數最多數據是眾數。如上圖所示,月均用水量在區(qū)間[4.2,7.2)內的居民最多,可以將這個區(qū)間的中點5.7作為眾數的估計值。VS9.013.614.95.94.07.16.45.419.42.02.28.613.85.410.24.96.814.02.010.52.15.75.116.86.011.11.311.27.74.92.310.016.712.012.47.85.213.62.422.43.67.18.825.63.218.35.12.03.012.022.210.85.52.024.39.93.65.64.47.95.124.56.47.54.720.55.515.72.65.75.56.016.02.49.53.717.03.84.12.35.37.88.14.313.36.81.37.04.91.87.128.010.213.817.910.15.54.63.221.6探索新知思考九根據上述計算出的樣本平均數、中位數和眾數,你有什么結論?100戶居民的月均用水量的平均數8.79t.100戶居民的月均用水量的中位數是6.8t。100戶居民的月均用水量的平均數8.96t.100戶居民的月均用水量的中位數是6.71t。結果基本一致這句話是真實的,但它可能描述的是差異巨大的實際情況。例如,可能這個公司的工資水平普遍較高,也就是員工收入的中位數、眾數與平均數差不多;也可能是絕大多數員工的年收入較低,而少數員工的年收入很高;在這種情況下,年收入的平均數就比中位數大得多。盡管在后一種情況下,用中位數或眾數比用平均數更合理些,但這個企業(yè)的老板為了招攬員工,卻用了平均數。所以,我們要強調”用數據說話”,但同時又要防止被誤導。探索新知思考十假設你到人力市場去找工作,有一個企業(yè)老板告訴你,“我們企業(yè)員工的年平均收入是20萬元“。你如何理解這句話?你能總結用樣本的眾數、中位數和平均數來估計總體的數字特征各自的優(yōu)缺點嗎?受極端數據的影響較大.代表了樣本數據更多的信息.只能表達樣本數據中的少量信息.容易計算,不受少數幾個極端值的影響.平均數眾數和中位數缺點優(yōu)點探索新知在一次人才招聘會上,有一家公司的招聘員告訴你,“我們公司的收人水平很高”“去年,在50名員工中,最高年收入達到了200萬,員工年收人的平均數是10萬”,而你的預期是獲得9萬元年薪.(1)你是否能夠判斷年薪為9萬元的員工在這家公司算高收入者?(2)如果招聘員繼續(xù)告訴你,“員工年收入的變化范圍是從3萬到200萬”,這個信息是否足以使你作出自己是否受聘的決定?為什么?(3)如果招聘員繼續(xù)給你提供了如下信息,員工收入的第一四分位數為4.5萬,第三四分位數為9.5萬,你又該如何使用這條信息來作出是否受聘
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- GB/T 45190-2025道地藥材生產技術規(guī)程岷當歸
- 文化創(chuàng)意產業(yè)項目研發(fā)投資合同
- 農產品收購書合同
- 醫(yī)院裝修法律協(xié)議合同材料
- 外包項目勞動合同
- 全款二手房屋買賣合同書
- 焊接鋼管買賣合同
- 公司財務保密協(xié)議
- 三農產品電子商務推廣應用方案
- 電子支付系統(tǒng)服務協(xié)議
- 新疆維吾爾自治區(qū)2024年中考英語真題【附真題答案】
- 繼續(xù)醫(yī)學教育項目申報表
- 《工程地質學》孔憲立-石振明第五章(部編)課件
- 個人股份轉讓合同協(xié)議
- 供應商對比方案報告
- 兒童支氣管哮喘規(guī)范化診治建議(2020年版)
- ISO28000:2022供應鏈安全管理體系
- 臨床營養(yǎng)技術操作規(guī)范(2010版)
- 我國新零售業(yè)上市公司財務質量分析-以蘇寧易購為例
- 華為中基層管理者任職資格評價標準樣本
- 富氫水完整課件
評論
0/150
提交評論