曲靖市沾益區(qū)大坡鄉(xiāng)2025年初三5月中考沖刺數(shù)學(xué)試題含解析_第1頁(yè)
曲靖市沾益區(qū)大坡鄉(xiāng)2025年初三5月中考沖刺數(shù)學(xué)試題含解析_第2頁(yè)
曲靖市沾益區(qū)大坡鄉(xiāng)2025年初三5月中考沖刺數(shù)學(xué)試題含解析_第3頁(yè)
曲靖市沾益區(qū)大坡鄉(xiāng)2025年初三5月中考沖刺數(shù)學(xué)試題含解析_第4頁(yè)
曲靖市沾益區(qū)大坡鄉(xiāng)2025年初三5月中考沖刺數(shù)學(xué)試題含解析_第5頁(yè)
已閱讀5頁(yè),還剩16頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

曲靖市沾益區(qū)大坡鄉(xiāng)2025年初三5月中考沖刺數(shù)學(xué)試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫(xiě)在“答題紙”相應(yīng)位置上。2.請(qǐng)用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫(xiě)姓名和準(zhǔn)考證號(hào)。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無(wú)效。一、選擇題(共10小題,每小題3分,共30分)1.如圖顯示了用計(jì)算機(jī)模擬隨機(jī)投擲一枚圖釘?shù)哪炒螌?shí)驗(yàn)的結(jié)果.下面有三個(gè)推斷:①當(dāng)投擲次數(shù)是500時(shí),計(jì)算機(jī)記錄“釘尖向上”的次數(shù)是308,所以“釘尖向上”的概率是0.616;②隨著試驗(yàn)次數(shù)的增加,“釘尖向上”的頻率總在0.618附近擺動(dòng),顯示出一定的穩(wěn)定性,可以估計(jì)“釘尖向上”的概率是0.618;③若再次用計(jì)算機(jī)模擬此實(shí)驗(yàn),則當(dāng)投擲次數(shù)為1000時(shí),“釘尖向上”的頻率一定是0.1.其中合理的是()A.① B.② C.①② D.①③2.點(diǎn)A(m﹣4,1﹣2m)在第四象限,則m的取值范圍是()A.m> B.m>4C.m<4 D.<m<43.有若干個(gè)完全相同的小正方體堆成一個(gè)如圖所示幾何體,若現(xiàn)在你手頭還有一些相同的小正方體,如果保持俯視圖和左視圖不變,最多可以再添加小正方體的個(gè)數(shù)為()A.2 B.3 C.4 D.54.下列博物院的標(biāo)識(shí)中不是軸對(duì)稱(chēng)圖形的是()A. B.C. D.5.某工程隊(duì)開(kāi)挖一條480米的隧道,開(kāi)工后,每天比原計(jì)劃多挖20米,結(jié)果提前4天完成任務(wù),若設(shè)原計(jì)劃每天挖米,那么求時(shí)所列方程正確的是()A. B.C. D.6.在直角坐標(biāo)平面內(nèi),已知點(diǎn)M(4,3),以M為圓心,r為半徑的圓與x軸相交,與y軸相離,那么r的取值范圍為()A. B. C. D.7.下列圖形是我國(guó)國(guó)產(chǎn)品牌汽車(chē)的標(biāo)識(shí),在這些汽車(chē)標(biāo)識(shí)中,是中心對(duì)稱(chēng)圖形的是()A. B. C. D.8.納米是一種長(zhǎng)度單位,1納米=10-9米,已知某種植物花粉的直徑約為35000納米,那么用科學(xué)記數(shù)法表示該種花粉的直徑為()A.米 B.米 C.米 D.米9.如圖,在△ABC中,AB=AC=10,CB=16,分別以AB、AC為直徑作半圓,則圖中陰影部分面積是()A.50π﹣48 B.25π﹣48 C.50π﹣24 D.10.如圖,A、B、C、D四個(gè)點(diǎn)均在⊙O上,∠AOD=50°,AO∥DC,則∠B的度數(shù)為()A.50°B.55°C.60°D.65°二、填空題(本大題共6個(gè)小題,每小題3分,共18分)11.如圖,用10m長(zhǎng)的鐵絲網(wǎng)圍成一個(gè)一面靠墻的矩形養(yǎng)殖場(chǎng),其養(yǎng)殖場(chǎng)的最大面積________m1.12.如圖,李明從A點(diǎn)出發(fā)沿直線(xiàn)前進(jìn)5米到達(dá)B點(diǎn)后向左旋轉(zhuǎn)的角度為α,再沿直線(xiàn)前進(jìn)5米,到達(dá)點(diǎn)C后,又向左旋轉(zhuǎn)α角度,照這樣走下去,第一次回到出發(fā)地點(diǎn)時(shí),他共走了45米,則每次旋轉(zhuǎn)的角度α為_(kāi)____.13.函數(shù)中,自變量的取值范圍是______.14.閱讀材料:如圖,C為線(xiàn)段BD上一動(dòng)點(diǎn),分別過(guò)點(diǎn)B、D作AB⊥BD,ED⊥BD,連接AC、EC.設(shè)CD=x,若AB=4,DE=2,BD=8,則可用含x的代數(shù)式表示AC+CE的長(zhǎng)為.然后利用幾何知識(shí)可知:當(dāng)A、C、E在一條直線(xiàn)上時(shí),x=時(shí),AC+CE的最小值為1.根據(jù)以上閱讀材料,可構(gòu)圖求出代數(shù)式的最小值為_(kāi)____.15.某菜農(nóng)搭建了一個(gè)橫截面為拋物線(xiàn)的大棚,尺寸如圖,若菜農(nóng)身高為1.8m,他在不彎腰的情況下,在棚內(nèi)的橫向活動(dòng)范圍是__m.16.分解因式:x3-9x三、解答題(共8題,共72分)17.(8分)規(guī)定:不相交的兩個(gè)函數(shù)圖象在豎直方向上的最短距離為這兩個(gè)函數(shù)的“親近距離”(1)求拋物線(xiàn)y=x2﹣2x+3與x軸的“親近距離”;(2)在探究問(wèn)題:求拋物線(xiàn)y=x2﹣2x+3與直線(xiàn)y=x﹣1的“親近距離”的過(guò)程中,有人提出:過(guò)拋物線(xiàn)的頂點(diǎn)向x軸作垂線(xiàn)與直線(xiàn)相交,則該問(wèn)題的“親近距離”一定是拋物線(xiàn)頂點(diǎn)與交點(diǎn)之間的距離,你同意他的看法嗎?請(qǐng)說(shuō)明理由.(3)若拋物線(xiàn)y=x2﹣2x+3與拋物線(xiàn)y=+c的“親近距離”為,求c的值.18.(8分)如圖,在△ABC中,∠BAC=90°,AB=AC,D為AB邊上一點(diǎn),連接CD,過(guò)點(diǎn)A作AE⊥CD于點(diǎn)E,且交BC于點(diǎn)F,AG平分∠BAC交CD于點(diǎn)G.求證:BF=AG.19.(8分)如圖,在△ABC中,BC=12,tanA=,∠B=30°;求AC和AB的長(zhǎng).20.(8分)如圖,拋物線(xiàn)y=﹣x2+bx+c與x軸交于點(diǎn)A(﹣1,0)和點(diǎn)B,與y軸交于C(0,3),直線(xiàn)y=+m經(jīng)過(guò)點(diǎn)C,與拋物線(xiàn)的另一交點(diǎn)為點(diǎn)D,點(diǎn)P是直線(xiàn)CD上方拋物線(xiàn)上的一個(gè)動(dòng)點(diǎn),過(guò)點(diǎn)P作PF⊥x軸于點(diǎn)F,交直線(xiàn)CD于點(diǎn)E,設(shè)點(diǎn)P的橫坐標(biāo)為m.(1)求拋物線(xiàn)解析式并求出點(diǎn)D的坐標(biāo);(2)連接PD,△CDP的面積是否存在最大值?若存在,請(qǐng)求出面積的最大值;若不存在,請(qǐng)說(shuō)明理由;(3)當(dāng)△CPE是等腰三角形時(shí),請(qǐng)直接寫(xiě)出m的值.21.(8分)(1)問(wèn)題發(fā)現(xiàn):如圖①,在等邊三角形ABC中,點(diǎn)M為BC邊上異于B、C的一點(diǎn),以AM為邊作等邊三角形AMN,連接CN,NC與AB的位置關(guān)系為;(2)深入探究:如圖②,在等腰三角形ABC中,BA=BC,點(diǎn)M為BC邊上異于B、C的一點(diǎn),以AM為邊作等腰三角形AMN,使∠ABC=∠AMN,AM=MN,連接CN,試探究∠ABC與∠ACN的數(shù)量關(guān)系,并說(shuō)明理由;(3)拓展延伸:如圖③,在正方形ADBC中,AD=AC,點(diǎn)M為BC邊上異于B、C的一點(diǎn),以AM為邊作正方形AMEF,點(diǎn)N為正方形AMEF的中點(diǎn),連接CN,若BC=10,CN=,試求EF的長(zhǎng).22.(10分)已知,如圖,在坡頂A處的同一水平面上有一座古塔BC,數(shù)學(xué)興趣小組的同學(xué)在斜坡底P處測(cè)得該塔的塔頂B的仰角為45°,然后他們沿著坡度為1:2.4的斜坡AP攀行了26米,在坡頂A處又測(cè)得該塔的塔頂B的仰角為76°.求:坡頂A到地面PO的距離;古塔BC的高度(結(jié)果精確到1米).23.(12分)兩個(gè)全等的等腰直角三角形按如圖方式放置在平面直角坐標(biāo)系中,OA在x軸上,已知∠COD=∠OAB=90°,OC=,反比例函數(shù)y=的圖象經(jīng)過(guò)點(diǎn)B.求k的值.把△OCD沿射線(xiàn)OB移動(dòng),當(dāng)點(diǎn)D落在y=圖象上時(shí),求點(diǎn)D經(jīng)過(guò)的路徑長(zhǎng).24.(1)計(jì)算:|﹣3|﹣﹣2sin30°+(﹣)﹣2(2)化簡(jiǎn):.

參考答案一、選擇題(共10小題,每小題3分,共30分)1、B【解析】①當(dāng)頻數(shù)增大時(shí),頻率逐漸穩(wěn)定的值即為概率,500次的實(shí)驗(yàn)次數(shù)偏低,而頻率穩(wěn)定在了0.618,錯(cuò)誤;②由圖可知頻數(shù)穩(wěn)定在了0.618,所以估計(jì)頻率為0.618,正確;③.這個(gè)實(shí)驗(yàn)是一個(gè)隨機(jī)試驗(yàn),當(dāng)投擲次數(shù)為1000時(shí),釘尖向上”的概率不一定是0.1.錯(cuò)誤,故選B.【點(diǎn)睛】本題考查了利用頻率估計(jì)概率,能正確理解相關(guān)概念是解題的關(guān)鍵.2、B【解析】

根據(jù)第四象限內(nèi)點(diǎn)的橫坐標(biāo)是正數(shù),縱坐標(biāo)是負(fù)數(shù)列出不等式組,然后求解即可.【詳解】解:∵點(diǎn)A(m-1,1-2m)在第四象限,

∴解不等式①得,m>1,

解不等式②得,m>所以,不等式組的解集是m>1,

即m的取值范圍是m>1.

故選B.本題考查各象限內(nèi)點(diǎn)的坐標(biāo)的符號(hào)特征以及解不等式,記住各象限內(nèi)點(diǎn)的坐標(biāo)的符號(hào)是解決的關(guān)鍵,四個(gè)象限的符號(hào)特點(diǎn)分別是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).3、C【解析】若要保持俯視圖和左視圖不變,可以往第2排右側(cè)正方體上添加1個(gè),往第3排中間正方體上添加2個(gè)、右側(cè)兩個(gè)正方體上再添加1個(gè),即一共添加4個(gè)小正方體,故選C.4、A【解析】

如果一個(gè)圖形沿一條直線(xiàn)折疊,直線(xiàn)兩旁的部分能夠互相重合,這個(gè)圖形叫做軸對(duì)稱(chēng)圖形,這條直線(xiàn)叫做對(duì)稱(chēng)軸,對(duì)題中選項(xiàng)進(jìn)行分析即可.【詳解】A、不是軸對(duì)稱(chēng)圖形,符合題意;B、是軸對(duì)稱(chēng)圖形,不合題意;C、是軸對(duì)稱(chēng)圖形,不合題意;D、是軸對(duì)稱(chēng)圖形,不合題意;故選:A.此題考查軸對(duì)稱(chēng)圖形的概念,解題的關(guān)鍵在于利用軸對(duì)稱(chēng)圖形的概念判斷選項(xiàng)正誤5、C【解析】

本題的關(guān)鍵描述語(yǔ)是:“提前1天完成任務(wù)”;等量關(guān)系為:原計(jì)劃用時(shí)?實(shí)際用時(shí)=1.【詳解】解:原計(jì)劃用時(shí)為:,實(shí)際用時(shí)為:.所列方程為:,故選C.本題考查列分式方程,分析題意,找到關(guān)鍵描述語(yǔ),找到合適的等量關(guān)系是解決問(wèn)題的關(guān)鍵.6、D【解析】

先求出點(diǎn)M到x軸、y軸的距離,再根據(jù)直線(xiàn)和圓的位置關(guān)系得出即可.【詳解】解:∵點(diǎn)M的坐標(biāo)是(4,3),

∴點(diǎn)M到x軸的距離是3,到y(tǒng)軸的距離是4,

∵點(diǎn)M(4,3),以M為圓心,r為半徑的圓與x軸相交,與y軸相離,

∴r的取值范圍是3<r<4,

故選:D.本題考查點(diǎn)的坐標(biāo)和直線(xiàn)與圓的位置關(guān)系,能熟記直線(xiàn)與圓的位置關(guān)系的內(nèi)容是解此題的關(guān)鍵.7、B【解析】由中心對(duì)稱(chēng)圖形的定義:“把一個(gè)圖形繞一個(gè)點(diǎn)旋轉(zhuǎn)180°后,能夠與自身完全重合,這樣的圖形叫做中心對(duì)稱(chēng)圖形”分析可知,上述圖形中,A、C、D都不是中心對(duì)稱(chēng)圖形,只有B是中心對(duì)稱(chēng)圖形.故選B.8、C【解析】

絕對(duì)值小于1的正數(shù)也可以利用科學(xué)記數(shù)法表示,一般形式為a×10-n,與較大數(shù)的科學(xué)記數(shù)法不同的是其所使用的是負(fù)指數(shù)冪,指數(shù)由原數(shù)左邊起第一個(gè)不為零的數(shù)字前面的0的個(gè)數(shù)所決定.【詳解】35000納米=35000×10-9米=3.5×10-5米.故選C.此題主要考查了用科學(xué)記數(shù)法表示較小的數(shù),一般形式為a×10-n,其中1≤|a|<10,n為由原數(shù)左邊起第一個(gè)不為零的數(shù)字前面的0的個(gè)數(shù)所決定.9、B【解析】

設(shè)以AB、AC為直徑作半圓交BC于D點(diǎn),連AD,如圖,∴AD⊥BC,∴BD=DC=BC=8,而AB=AC=10,CB=16,∴AD===6,∴陰影部分面積=半圓AC的面積+半圓AB的面積﹣△ABC的面積,=π?52﹣?16?6,=25π﹣1.故選B.10、D【解析】試題分析:連接OC,根據(jù)平行可得:∠ODC=∠AOD=50°,則∠DOC=80°,則∠AOC=130°,根據(jù)同弧所對(duì)的圓周角等于圓心角度數(shù)的一半可得:∠B=130°÷2=65°.考點(diǎn):圓的基本性質(zhì)二、填空題(本大題共6個(gè)小題,每小題3分,共18分)11、2【解析】設(shè)與墻平行的一邊長(zhǎng)為xm,則另一面為,其面積=,∴最大面積為;即最大面積是2m1.故答案是2.【點(diǎn)睛】求二次函數(shù)的最大(小)值有三種方法,第一種可由圖象直接得出,第二種是配方法,第三種是公式法,常用的是后兩種方法,當(dāng)二次系數(shù)a的絕對(duì)值是較小的整數(shù)時(shí),用配方法較好,如y=-x1-1x+5,y=3x1-6x+1等用配方法求解比較簡(jiǎn)單.12、.【解析】

根據(jù)共走了45米,每次前進(jìn)5米且左轉(zhuǎn)的角度相同,則可計(jì)算出該正多邊形的邊數(shù),再根據(jù)外角和計(jì)算左轉(zhuǎn)的角度.【詳解】連續(xù)左轉(zhuǎn)后形成的正多邊形邊數(shù)為:,則左轉(zhuǎn)的角度是.故答案是:.本題考查了多邊形的外角計(jì)算,正確理解多邊形的外角和是360°是關(guān)鍵.13、【解析】

根據(jù)分式有意義的條件是分母不為2;分析原函數(shù)式可得關(guān)系式x?1≠2,解得答案.【詳解】根據(jù)題意得x?1≠2,解得:x≠1;故答案為:x≠1.本題主要考查自變量得取值范圍的知識(shí)點(diǎn),當(dāng)函數(shù)表達(dá)式是分式時(shí),考慮分式的分母不能為2.14、4【解析】

根據(jù)已知圖象,重新構(gòu)造直角三角形,利用三角形相似得出CD的長(zhǎng),進(jìn)而利用勾股定理得出最短路徑問(wèn)題.【詳解】如圖所示:C為線(xiàn)段BD上一動(dòng)點(diǎn),分別過(guò)點(diǎn)B、D作AB⊥BD,ED⊥BD,連接AC、EC.設(shè)CD=x,若AB=5,DE=3,BD=12,當(dāng)A,C,E,在一條直線(xiàn)上,AE最短,∵AB⊥BD,ED⊥BD,∴AB∥DE,∴△ABC∽EDC,∴,∴,解得:DC=.即當(dāng)x=時(shí),代數(shù)式有最小值,此時(shí)為:.故答案是:4.考查最短路線(xiàn)問(wèn)題,利用了數(shù)形結(jié)合的思想,可通過(guò)構(gòu)造直角三角形,利用勾股定理求解.15、1【解析】

設(shè)拋物線(xiàn)的解析式為:y=ax2+b,由圖得知點(diǎn)(0,2.4),(1,0)在拋物線(xiàn)上,列方程組得到拋物線(xiàn)的解析式為:y=﹣x2+2.4,根據(jù)題意求出y=1.8時(shí)x的值,進(jìn)而求出答案;【詳解】設(shè)拋物線(xiàn)的解析式為:y=ax2+b,由圖得知:點(diǎn)(0,2.4),(1,0)在拋物線(xiàn)上,∴,解得:,∴拋物線(xiàn)的解析式為:y=﹣x2+2.4,∵菜農(nóng)的身高為1.8m,即y=1.8,則1.8=﹣x2+2.4,解得:x=(負(fù)值舍去)故他在不彎腰的情況下,橫向活動(dòng)范圍是:1米,故答案為1.16、x【解析】試題分析:要將一個(gè)多項(xiàng)式分解因式的一般步驟是首先看各項(xiàng)有沒(méi)有公因式,若有公因式,則把它提取出來(lái),之后再觀察是否是完全平方公式或平方差公式,若是就考慮用公式法繼續(xù)分解因式。因此,先提取公因式x后繼續(xù)應(yīng)用平方差公式分解即可:x2三、解答題(共8題,共72分)17、(1)2;(2)不同意他的看法,理由詳見(jiàn)解析;(3)c=1.【解析】

(1)把y=x2﹣2x+3配成頂點(diǎn)式得到拋物線(xiàn)上的點(diǎn)到x軸的最短距離,然后根據(jù)題意解決問(wèn)題;(2)如圖,P點(diǎn)為拋物線(xiàn)y=x2﹣2x+3任意一點(diǎn),作PQ∥y軸交直線(xiàn)y=x﹣1于Q,設(shè)P(t,t2﹣2t+3),則Q(t,t﹣1),則PQ=t2﹣2t+3﹣(t﹣1),然后利用二次函數(shù)的性質(zhì)得到拋物線(xiàn)y=x2﹣2x+3與直線(xiàn)y=x﹣1的“親近距離”,然后對(duì)他的看法進(jìn)行判斷;(3)M點(diǎn)為拋物線(xiàn)y=x2﹣2x+3任意一點(diǎn),作MN∥y軸交拋物線(xiàn)于N,設(shè)M(t,t2﹣2t+3),則N(t,t2+c),與(2)方法一樣得到MN的最小值為﹣c,從而得到拋物線(xiàn)y=x2﹣2x+3與拋物線(xiàn)的“親近距離”,所以,然后解方程即可.【詳解】(1)∵y=x2﹣2x+3=(x﹣1)2+2,∴拋物線(xiàn)上的點(diǎn)到x軸的最短距離為2,∴拋物線(xiàn)y=x2﹣2x+3與x軸的“親近距離”為:2;(2)不同意他的看法.理由如下:如圖,P點(diǎn)為拋物線(xiàn)y=x2﹣2x+3任意一點(diǎn),作PQ∥y軸交直線(xiàn)y=x﹣1于Q,設(shè)P(t,t2﹣2t+3),則Q(t,t﹣1),∴PQ=t2﹣2t+3﹣(t﹣1)=t2﹣3t+4=(t﹣)2+,當(dāng)t=時(shí),PQ有最小值,最小值為,∴拋物線(xiàn)y=x2﹣2x+3與直線(xiàn)y=x﹣1的“親近距離”為,而過(guò)拋物線(xiàn)的頂點(diǎn)向x軸作垂線(xiàn)與直線(xiàn)相交,拋物線(xiàn)頂點(diǎn)與交點(diǎn)之間的距離為2,∴不同意他的看法;(3)M點(diǎn)為拋物線(xiàn)y=x2﹣2x+3任意一點(diǎn),作MN∥y軸交拋物線(xiàn)于N,設(shè)M(t,t2﹣2t+3),則N(t,t2+c),∴MN=t2﹣2t+3﹣(t2+c)=t2﹣2t+3﹣c=(t﹣)2+﹣c,當(dāng)t=時(shí),MN有最小值,最小值為﹣c,∴拋物線(xiàn)y=x2﹣2x+3與拋物線(xiàn)的“親近距離”為﹣c,∴,∴c=1.本題是二次函數(shù)的綜合題,考查了二次函數(shù)圖象上點(diǎn)的坐標(biāo)特征和二次函數(shù)的性質(zhì),正確理解新定義是解題的關(guān)鍵.18、見(jiàn)解析【解析】

根據(jù)角平分線(xiàn)的性質(zhì)和直角三角形性質(zhì)求∠BAF=∠ACG.進(jìn)一步證明△ABF≌△CAG,從而證明BF=AG.【詳解】證明:∵∠BAC=90°,,AB=AC,∴∠B=∠ACB=45°,又∵AG平分∠BAC,∴∠GAC=∠BAC=45°,又∵∠BAC=90°,AE⊥CD,∴∠BAF+∠ADE=90°,∠ACG+∠ADE=90°,∴∠BAF=∠ACG.又∵AB=CA,∴∴△ABF≌△CAG(ASA),∴BF=AG此題重點(diǎn)考查學(xué)生對(duì)三角形全等證明的理解,熟練掌握兩三角形全等的證明是解題的關(guān)鍵.19、8+6.【解析】

如圖作CH⊥AB于H.在Rt△BHC求出CH、BH,在Rt△ACH中求出AH、AC即可解決問(wèn)題;【詳解】解:如圖作CH⊥AB于H.在Rt△BCH中,∵BC=12,∠B=30°,∴CH=BC=6,BH==6,在Rt△ACH中,tanA==,∴AH=8,∴AC==10,本題考查解直角三角形,銳角三角函數(shù)等知識(shí),解題的關(guān)鍵是學(xué)會(huì)添加常用輔助線(xiàn),構(gòu)造直角三角形解決問(wèn)題,屬于中考常考題型.20、(1)y=﹣x2+2x+3,D點(diǎn)坐標(biāo)為();(2)當(dāng)m=時(shí),△CDP的面積存在最大值,最大值為;(3)m的值為或或.【解析】

(1)利用待定系數(shù)法求拋物線(xiàn)解析式和直線(xiàn)CD的解析式,然后解方程組得D點(diǎn)坐標(biāo);

(2)設(shè)P(m,-m2+2m+3),則E(m,-m+3),則PE=-m2+m,利用三角形面積公式得到S△PCD=××(-m2+m)=-m2+m,然后利用二次函數(shù)的性質(zhì)解決問(wèn)題;

(3)討論:當(dāng)PC=PE時(shí),m2+(-m2+2m+3-3)2=(-m2+m)2;當(dāng)CP=CE時(shí),m2+(-m2+2m+3-3)2=m2+(-m+3-3)2;當(dāng)EC=EP時(shí),m2+(-m+3-3)2=(-m2+m)2,然后分別解方程即可得到滿(mǎn)足條件的m的值.【詳解】(1)把A(﹣1,0),C(0,3)分別代入y=﹣x2+bx+c得,解得,∴拋物線(xiàn)的解析式為y=﹣x2+2x+3;把C(0,3)代入y=﹣x+n,解得n=3,∴直線(xiàn)CD的解析式為y=﹣x+3,解方程組,解得或,∴D點(diǎn)坐標(biāo)為(,);(2)存在.設(shè)P(m,﹣m2+2m+3),則E(m,﹣m+3),∴PE=﹣m2+2m+3﹣(﹣m+3)=﹣m2+m,∴S△PCD=??(﹣m2+m)=﹣m2+m=﹣(m﹣)2+,當(dāng)m=時(shí),△CDP的面積存在最大值,最大值為;(3)當(dāng)PC=PE時(shí),m2+(﹣m2+2m+3﹣3)2=(﹣m2+m)2,解得m=0(舍去)或m=;當(dāng)CP=CE時(shí),m2+(﹣m2+2m+3﹣3)2=m2+(﹣m+3﹣3)2,解得m=0(舍去)或m=(舍去)或m=;當(dāng)EC=EP時(shí),m2+(﹣m+3﹣3)2=(﹣m2+m)2,解得m=(舍去)或m=,綜上所述,m的值為或或.本題考核知識(shí)點(diǎn):二次函數(shù)的綜合應(yīng)用.解題關(guān)鍵點(diǎn):靈活運(yùn)用二次函數(shù)性質(zhì),運(yùn)用數(shù)形結(jié)合思想.21、(1)NC∥AB;理由見(jiàn)解析;(2)∠ABC=∠ACN;理由見(jiàn)解析;(3);【解析】

(1)根據(jù)△ABC,△AMN為等邊三角形,得到AB=AC,AM=AN且∠BAC=∠MAN=60°從而得到∠BAC-∠CAM=∠MAN-∠CAM,即∠BAM=∠CAN,證明△BAM≌△CAN,即可得到BM=CN.

(2)根據(jù)△ABC,△AMN為等腰三角形,得到AB:BC=1:1且∠ABC=∠AMN,根據(jù)相似三角形的性質(zhì)得到,利用等腰三角形的性質(zhì)得到∠BAC=∠MAN,根據(jù)相似三角形的性質(zhì)即可得到結(jié)論;

(3)如圖3,連接AB,AN,根據(jù)正方形的性質(zhì)得到∠ABC=∠BAC=45°,∠MAN=45°,根據(jù)相似三角形的性質(zhì)得出,得到BM=2,CM=8,再根據(jù)勾股定理即可得到答案.【詳解】(1)NC∥AB,理由如下:∵△ABC與△MN是等邊三角形,∴AB=AC,AM=AN,∠BAC=∠MAN=60°,∴∠BAM=∠CAN,在△ABM與△ACN中,,∴△ABM≌△ACN(SAS),∴∠B=∠ACN=60°,∵∠ANC+∠ACN+∠CAN=∠ANC+60°+∠CAN=180°,∴∠ANC+∠MAN+∠BAM=∠ANC+60°+∠CAN=∠BAN+∠ANC=180°,∴CN∥AB;(2)∠ABC=∠ACN,理由如下:∵=1且∠ABC=∠AMN,∴△ABC~△AMN∴,∵AB=BC,∴∠BAC=(180°﹣∠ABC),∵AM=MN∴∠MAN=(180°﹣∠AMN),∵∠ABC=∠AMN,∴∠BAC=∠MAN,∴∠BAM=∠CAN,∴△ABM~△ACN,∴∠ABC=∠ACN;(3)如圖3,連接AB,AN,∵四邊形ADBC,AMEF為正方形,∴∠ABC=∠BAC=45°,∠MAN=45°,∴∠BAC﹣∠MAC=∠MAN﹣∠MAC即∠BAM=∠CAN,∵,∴,∴△ABM~△ACN∴,∴=cos45°=,∴,∴BM=2,∴CM=BC﹣BM=8,在Rt△AMC,AM=,∴EF=AM=2.本題是四邊形綜合題目,考查了正方形的性質(zhì)、等邊三角形的性質(zhì)、等腰三角形的性質(zhì)、全等三角形的性質(zhì)定理和判定定理、相似三角形的性質(zhì)定理和判定定理等知識(shí);本題綜合性強(qiáng),有一定難度,證明三角形全等和三角形相似是解決問(wèn)題的關(guān)鍵.22、(1)坡頂?shù)降孛娴木嚯x為米;移動(dòng)信號(hào)發(fā)射塔的高度約為米.【解析】

延長(zhǎng)BC交OP于H.在Rt△APD中解直角三角形求出AD=10.PD=24.由題意BH=PH.設(shè)BC=x.則x+10=24+DH.推出AC=DH=x﹣14.在Rt△ABC中.根據(jù)tan76°=,構(gòu)建方程求出x即可.【詳解】延長(zhǎng)BC交OP于H.∵斜坡AP的坡度為1:2.4,∴,設(shè)AD=5k,則PD=12k,由勾股定理,得AP=13k,∴13k=26,解得k=2,∴AD=10,∵BC⊥AC,AC∥PO,∴BH⊥PO,∴四邊形ADHC是矩形,CH=AD=10,AC=DH,∵∠BPD=45°,∴PH=BH,設(shè)BC=x,則x+10=24+DH,∴AC=DH=x﹣14,在Rt△ABC中,tan76°=,即≈4.1.解

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論