版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
四川省綿陽(yáng)市三臺(tái)縣2025年初三下學(xué)期第十五周綜合練習(xí)數(shù)學(xué)試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫(xiě)在“答題紙”相應(yīng)位置上。2.請(qǐng)用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫(xiě)姓名和準(zhǔn)考證號(hào)。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無(wú)效。一、選擇題(本大題共12個(gè)小題,每小題4分,共48分.在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的.)1.下列計(jì)算正確的是()A.﹣a4b÷a2b=﹣a2bB.(a﹣b)2=a2﹣b2C.a(chǎn)2?a3=a6D.﹣3a2+2a2=﹣a22.下列圖形中,哪一個(gè)是圓錐的側(cè)面展開(kāi)圖?A. B. C. D.3.運(yùn)用乘法公式計(jì)算(3﹣a)(a+3)的結(jié)果是()A.a(chǎn)2﹣6a+9 B.a(chǎn)2﹣9 C.9﹣a2 D.a(chǎn)2﹣3a+94.目前,世界上能制造出的最小晶體管的長(zhǎng)度只有0.00000004m,將0.00000004用科學(xué)記數(shù)法表示為()A.0.4×108 B.4×108 C.4×10﹣8 D.﹣4×1085.如圖,矩形ABCD中,AB=4,BC=3,F(xiàn)是AB中點(diǎn),以點(diǎn)A為圓心,AD為半徑作弧交AB于點(diǎn)E,以點(diǎn)B為圓心,BF為半徑作弧交BC于點(diǎn)G,則圖中陰影部分面積的差S1-S2為()A. B. C. D.66.實(shí)數(shù)a,b在數(shù)軸上對(duì)應(yīng)的點(diǎn)的位置如圖所示,則正確的結(jié)論是()A.a(chǎn)+b<0 B.a(chǎn)>|﹣2| C.b>π D.7.如圖,AB為⊙O直徑,已知為∠DCB=20°,則∠DBA為()A.50° B.20° C.60° D.70°8.在下列交通標(biāo)志中,是中心對(duì)稱圖形的是()A. B.C. D.9.如圖,AB∥CD,F(xiàn)E⊥DB,垂足為E,∠1=60°,則∠2的度數(shù)是()A.60° B.50° C.40° D.30°10.三個(gè)等邊三角形的擺放位置如圖,若∠3=60°,則∠1+∠2的度數(shù)為()A.90° B.120° C.270° D.360°11.如圖,在?ABCD中,AB=2,BC=1.以點(diǎn)C為圓心,適當(dāng)長(zhǎng)為半徑畫(huà)弧,交BC于點(diǎn)P,交CD于點(diǎn)Q,再分別以點(diǎn)P,Q為圓心,大于PQ的長(zhǎng)為半徑畫(huà)弧,兩弧相交于點(diǎn)N,射線CN交BA的延長(zhǎng)線于點(diǎn)E,則AE的長(zhǎng)是()A. B.1 C. D.12.如圖,在△ABC中,點(diǎn)D在BC上,DE∥AC,DF∥AB,下列四個(gè)判斷中不正確的是()A.四邊形AEDF是平行四邊形B.若∠BAC=90°,則四邊形AEDF是矩形C.若AD平分∠BAC,則四邊形AEDF是矩形D.若AD⊥BC且AB=AC,則四邊形AEDF是菱形二、填空題:(本大題共6個(gè)小題,每小題4分,共24分.)13.如圖,Rt△ABC中,若∠C=90°,BC=4,tanA=,則AB=___.14.肥皂泡的泡壁厚度大約是,用科學(xué)記數(shù)法表示為_(kāi)______.15.已知同一個(gè)反比例函數(shù)圖象上的兩點(diǎn)、,若,且,則這個(gè)反比例函數(shù)的解析式為_(kāi)_____.16.不透明袋子中裝有個(gè)球,其中有個(gè)紅球、個(gè)綠球和個(gè)黑球,這些球除顏色外無(wú)其他差別.從袋子中隨機(jī)取出個(gè)球,則它是黑球的概率是_____.17.如圖,點(diǎn)A,B在反比例函數(shù)(k>0)的圖象上,AC⊥x軸,BD⊥x軸,垂足C,D分別在x軸的正、負(fù)半軸上,CD=k,已知AB=2AC,E是AB的中點(diǎn),且△BCE的面積是△ADE的面積的2倍,則k的值是______.18.菱形的兩條對(duì)角線長(zhǎng)分別是方程的兩實(shí)根,則菱形的面積為_(kāi)_____.三、解答題:(本大題共9個(gè)小題,共78分,解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟.19.(6分)如圖,已知二次函數(shù)的圖象與軸交于,兩點(diǎn)在左側(cè)),與軸交于點(diǎn),頂點(diǎn)為.(1)當(dāng)時(shí),求四邊形的面積;(2)在(1)的條件下,在第二象限拋物線對(duì)稱軸左側(cè)上存在一點(diǎn),使,求點(diǎn)的坐標(biāo);(3)如圖2,將(1)中拋物線沿直線向斜上方向平移個(gè)單位時(shí),點(diǎn)為線段上一動(dòng)點(diǎn),軸交新拋物線于點(diǎn),延長(zhǎng)至,且,若的外角平分線交點(diǎn)在新拋物線上,求點(diǎn)坐標(biāo).20.(6分)如圖,△ABC是⊙O的內(nèi)接三角形,AB是⊙O的直徑,OF⊥AB,交AC于點(diǎn)F,點(diǎn)E在AB的延長(zhǎng)線上,射線EM經(jīng)過(guò)點(diǎn)C,且∠ACE+∠AFO=180°.求證:EM是⊙O的切線;若∠A=∠E,BC=,求陰影部分的面積.(結(jié)果保留和根號(hào)).21.(6分)如圖,在矩形ABCD的外側(cè),作等邊三角形ADE,連結(jié)BE,CE,求證:BE=CE.22.(8分)綜合與實(shí)踐﹣猜想、證明與拓廣問(wèn)題情境:數(shù)學(xué)課上同學(xué)們探究正方形邊上的動(dòng)點(diǎn)引發(fā)的有關(guān)問(wèn)題,如圖1,正方形ABCD中,點(diǎn)E是BC邊上的一點(diǎn),點(diǎn)D關(guān)于直線AE的對(duì)稱點(diǎn)為點(diǎn)F,直線DF交AB于點(diǎn)H,直線FB與直線AE交于點(diǎn)G,連接DG,CG.猜想證明(1)當(dāng)圖1中的點(diǎn)E與點(diǎn)B重合時(shí)得到圖2,此時(shí)點(diǎn)G也與點(diǎn)B重合,點(diǎn)H與點(diǎn)A重合.同學(xué)們發(fā)現(xiàn)線段GF與GD有確定的數(shù)量關(guān)系和位置關(guān)系,其結(jié)論為:;(2)希望小組的同學(xué)發(fā)現(xiàn),圖1中的點(diǎn)E在邊BC上運(yùn)動(dòng)時(shí),(1)中結(jié)論始終成立,為證明這兩個(gè)結(jié)論,同學(xué)們展開(kāi)了討論:小敏:根據(jù)軸對(duì)稱的性質(zhì),很容易得到“GF與GD的數(shù)量關(guān)系”…小麗:連接AF,圖中出現(xiàn)新的等腰三角形,如△AFB,…小凱:不妨設(shè)圖中不斷變化的角∠BAF的度數(shù)為n,并設(shè)法用n表示圖中的一些角,可證明結(jié)論.請(qǐng)你參考同學(xué)們的思路,完成證明;(3)創(chuàng)新小組的同學(xué)在圖1中,發(fā)現(xiàn)線段CG∥DF,請(qǐng)你說(shuō)明理由;聯(lián)系拓廣:(4)如圖3若將題中的“正方形ABCD”變?yōu)椤傲庑蜛BCD“,∠ABC=α,其余條件不變,請(qǐng)?zhí)骄俊螪FG的度數(shù),并直接寫(xiě)出結(jié)果(用含α的式子表示).23.(8分)已知,拋物線y=ax2+c過(guò)點(diǎn)(-2,2)和點(diǎn)(4,5),點(diǎn)F(0,2)是y軸上的定點(diǎn),點(diǎn)B是拋物線上除頂點(diǎn)外的任意一點(diǎn),直線l:y=kx+b經(jīng)過(guò)點(diǎn)B、F且交x軸于點(diǎn)A.(1)求拋物線的解析式;(2)①如圖1,過(guò)點(diǎn)B作BC⊥x軸于點(diǎn)C,連接FC,求證:FC平分∠BFO;②當(dāng)k=時(shí),點(diǎn)F是線段AB的中點(diǎn);(3)如圖2,M(3,6)是拋物線內(nèi)部一點(diǎn),在拋物線上是否存在點(diǎn)B,使△MBF的周長(zhǎng)最?。咳舸嬖?,求出這個(gè)最小值及直線l的解析式;若不存在,請(qǐng)說(shuō)明理由.24.(10分)已知⊙O的直徑為10,點(diǎn)A,點(diǎn)B,點(diǎn)C在⊙O上,∠CAB的平分線交⊙O于點(diǎn)D.(I)如圖①,若BC為⊙O的直徑,求BD、CD的長(zhǎng);(II)如圖②,若∠CAB=60°,求BD、BC的長(zhǎng).25.(10分)如圖有A、B兩個(gè)大小均勻的轉(zhuǎn)盤,其中A轉(zhuǎn)盤被分成3等份,B轉(zhuǎn)盤被分成4等份,并在每一份內(nèi)標(biāo)上數(shù)字.小明和小紅同時(shí)各轉(zhuǎn)動(dòng)其中一個(gè)轉(zhuǎn)盤,轉(zhuǎn)盤停止后(當(dāng)指針指在邊界線時(shí)視為無(wú)效,重轉(zhuǎn)),若將A轉(zhuǎn)盤指針指向的數(shù)字記作一次函數(shù)表達(dá)式中的k,將B轉(zhuǎn)盤指針指向的數(shù)字記作一次函數(shù)表達(dá)式中的b.請(qǐng)用列表或畫(huà)樹(shù)狀圖的方法寫(xiě)出所有的可能;求一次函數(shù)y=kx+b的圖象經(jīng)過(guò)一、二、四象限的概率.26.(12分)我市為創(chuàng)建全國(guó)文明城市,志愿者對(duì)某路段的非機(jī)動(dòng)車逆行情況進(jìn)行了10天的調(diào)查,將所得數(shù)據(jù)繪制成如下統(tǒng)計(jì)圖(圖2不完整):請(qǐng)根據(jù)所給信息,解答下列問(wèn)題:(1)這組數(shù)據(jù)的中位數(shù)是,眾數(shù)是;(2)請(qǐng)把圖2中的頻數(shù)直方圖補(bǔ)充完整;(溫馨提示:請(qǐng)畫(huà)在答題卷相對(duì)應(yīng)的圖上)(3)通過(guò)“小手拉大手”活動(dòng)后,非機(jī)動(dòng)車逆向行駛次數(shù)明顯減少,經(jīng)過(guò)這一路段的再次調(diào)查發(fā)現(xiàn),平均每天的非機(jī)動(dòng)車逆向行駛次數(shù)比第一次調(diào)查時(shí)減少了4次,活動(dòng)后,這一路段平均每天還出現(xiàn)多少次非機(jī)動(dòng)車逆向行駛情況?27.(12分)如圖已知△ABC,點(diǎn)D是AB上一點(diǎn),連接CD,請(qǐng)用尺規(guī)在邊AC上求作點(diǎn)P,使得△PBC的面積與△DBC的面積相等(保留作圖痕跡,不寫(xiě)做法)
參考答案一、選擇題(本大題共12個(gè)小題,每小題4分,共48分.在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的.)1、D【解析】
根據(jù)各個(gè)選項(xiàng)中的式子可以計(jì)算出正確的結(jié)果,從而可以解答本題.【詳解】-aa-b2a2-3a故選:D.考查整式的除法,完全平方公式,同底數(shù)冪相乘以及合并同類項(xiàng),比較基礎(chǔ),難度不大.2、B【解析】
根據(jù)圓錐的側(cè)面展開(kāi)圖的特點(diǎn)作答.【詳解】A選項(xiàng):是長(zhǎng)方體展開(kāi)圖.B選項(xiàng):是圓錐展開(kāi)圖.C選項(xiàng):是棱錐展開(kāi)圖.D選項(xiàng):是正方體展開(kāi)圖.故選B.考查了幾何體的展開(kāi)圖,注意圓錐的側(cè)面展開(kāi)圖是扇形.3、C【解析】
根據(jù)平方差公式計(jì)算可得.【詳解】解:(3﹣a)(a+3)=32﹣a2=9﹣a2,故選C.本題主要考查平方差公式,解題的關(guān)鍵是應(yīng)用平方差公式計(jì)算時(shí),應(yīng)注意以下幾個(gè)問(wèn)題:①左邊是兩個(gè)二項(xiàng)式相乘,并且這兩個(gè)二項(xiàng)式中有一項(xiàng)完全相同,另一項(xiàng)互為相反數(shù);②右邊是相同項(xiàng)的平方減去相反項(xiàng)的平方.4、C【解析】
科學(xué)記數(shù)法的表示形式為a×10的形式,其中1≤a|<10,n為整數(shù).確定n的值時(shí),要看把原數(shù)變成a時(shí),小數(shù)點(diǎn)移動(dòng)了多少位,n的絕對(duì)值與小數(shù)點(diǎn)移動(dòng)的位數(shù)相同.當(dāng)原數(shù)絕對(duì)值>1時(shí),n是正數(shù);當(dāng)原數(shù)的絕對(duì)值<1時(shí),n是負(fù)數(shù).【詳解】0.00000004=4×10,故選C此題考查科學(xué)記數(shù)法,難度不大5、A【解析】
根據(jù)圖形可以求得BF的長(zhǎng),然后根據(jù)圖形即可求得S1-S2的值.【詳解】∵在矩形ABCD中,AB=4,BC=3,F(xiàn)是AB中點(diǎn),∴BF=BG=2,∴S1=S矩形ABCD-S扇形ADE-S扇形BGF+S2,∴S1-S2=4×3-=,故選A.本題考查扇形面積的計(jì)算、矩形的性質(zhì),解答本題的關(guān)鍵是明確題意,找出所求問(wèn)題需要的條件,利用數(shù)形結(jié)合的思想解答.6、D【解析】
根據(jù)數(shù)軸上點(diǎn)的位置,可得a,b,根據(jù)有理數(shù)的運(yùn)算,可得答案.【詳解】a=﹣2,2<b<1.A.a+b<0,故A不符合題意;B.a<|﹣2|,故B不符合題意;C.b<1<π,故C不符合題意;D.<0,故D符合題意;故選D.本題考查了實(shí)數(shù)與數(shù)軸,利用有理數(shù)的運(yùn)算是解題關(guān)鍵.7、D【解析】題解析:∵AB為⊙O直徑,∴∠ACB=90°,∴∠ACD=90°-∠DCB=90°-20°=70°,∴∠DBA=∠ACD=70°.故選D.【點(diǎn)睛】本題考查了圓周角定理:在同圓或等圓中,同弧或等弧所對(duì)的圓周角相等,都等于這條弧所對(duì)的圓心角的一半.推論:半圓(或直徑)所對(duì)的圓周角是直角,90°的圓周角所對(duì)的弦是直徑.8、C【解析】
解:A圖形不是中心對(duì)稱圖形;B不是中心對(duì)稱圖形;C是中心對(duì)稱圖形,也是軸對(duì)稱圖形;D是軸對(duì)稱圖形;不是中心對(duì)稱圖形故選C9、D【解析】
由EF⊥BD,∠1=60°,結(jié)合三角形內(nèi)角和為180°即可求出∠D的度數(shù),再由“兩直線平行,同位角相等”即可得出結(jié)論.【詳解】解:在△DEF中,∠1=60°,∠DEF=90°,
∴∠D=180°-∠DEF-∠1=30°.
∵AB∥CD,
∴∠2=∠D=30°.
故選D.本題考查平行線的性質(zhì)以及三角形內(nèi)角和為180°,解題關(guān)鍵是根據(jù)平行線的性質(zhì),找出相等、互余或互補(bǔ)的角.10、B【解析】
先根據(jù)圖中是三個(gè)等邊三角形可知三角形各內(nèi)角等于60°,用∠1,∠2,∠3表示出△ABC各角的度數(shù),再根據(jù)三角形內(nèi)角和定理即可得出結(jié)論.【詳解】∵圖中是三個(gè)等邊三角形,∠3=60°,
∴∠ABC=180°-60°-60°=60°,∠ACB=180°-60°-∠2=120°-∠2,
∠BAC=180°-60°-∠1=120°-∠1,
∵∠ABC+∠ACB+∠BAC=180°,
∴60°+(120°-∠2)+(120°-∠1)=180°,
∴∠1+∠2=120°.
故選B.考查的是等邊三角形的性質(zhì),熟知等邊三角形各內(nèi)角均等于60°是解答此題的關(guān)鍵.11、B【解析】分析:只要證明BE=BC即可解決問(wèn)題;詳解:∵由題意可知CF是∠BCD的平分線,∴∠BCE=∠DCE.∵四邊形ABCD是平行四邊形,∴AB∥CD,∴∠DCE=∠E,∠BCE=∠AEC,∴BE=BC=1,∵AB=2,∴AE=BE-AB=1,故選B.點(diǎn)睛:本題考查的是作圖-基本作圖,熟知角平分線的作法是解答此題的關(guān)鍵.12、C【解析】A選項(xiàng),∵在△ABC中,點(diǎn)D在BC上,DE∥AC,DF∥AB,∴DE∥AF,DF∥AE,∴四邊形AEDF是平行四邊形;即A正確;B選項(xiàng),∵四邊形AEDF是平行四邊形,∠BAC=90°,∴四邊形AEDF是矩形;即B正確;C選項(xiàng),因?yàn)樘砑訔l件“AD平分∠BAC”結(jié)合四邊形AEDF是平行四邊形只能證明四邊形AEDF是菱形,而不能證明四邊形AEDF是矩形;所以C錯(cuò)誤;D選項(xiàng),因?yàn)橛商砑拥臈l件“AB=AC,AD⊥BC”可證明AD平分∠BAC,從而可通過(guò)證∠EAD=∠CAD=∠EDA證得AE=DE,結(jié)合四邊形AEDF是平行四邊形即可得到四邊形AEDF是菱形,所以D正確.故選C.二、填空題:(本大題共6個(gè)小題,每小題4分,共24分.)13、1.【解析】
在Rt△ABC中,已知tanA,BC的值,根據(jù)tanA=,可將AC的值求出,再由勾股定理可將斜邊AB的長(zhǎng)求出.【詳解】解:Rt△ABC中,∵BC=4,tanA=∴則故答案為1.考查解直角三角形以及勾股定理,熟練掌握銳角三角函數(shù)是解題的關(guān)鍵.14、7×10-1.【解析】
絕對(duì)值小于1的正數(shù)也可以利用科學(xué)記數(shù)法表示,一般形式為a×10-n,與較大數(shù)的科學(xué)記數(shù)法不同的是其所使用的是負(fù)指數(shù)冪,指數(shù)由原數(shù)左邊起第一個(gè)不為零的數(shù)字前面的0的個(gè)數(shù)所決定.【詳解】0.0007=7×10-1.故答案為:7×10-1.本題考查用科學(xué)記數(shù)法表示較小的數(shù),一般形式為a×10-n,其中1≤|a|<10,n為由原數(shù)左邊起第一個(gè)不為零的數(shù)字前面的0的個(gè)數(shù)所決定.15、y=【解析】解:設(shè)這個(gè)反比例函數(shù)的表達(dá)式為y=.∵P1(x1,y1),P2(x2,y2)是同一個(gè)反比例函數(shù)圖象上的兩點(diǎn),∴x1y1=x2y2=k,∴==,∴﹣=,∴=,∴=,∴k=2(x2﹣x1).∵x2=x1+2,∴x2﹣x1=2,∴k=2×2=4,∴這個(gè)反比例函數(shù)的解析式為:y=.故答案為y=.點(diǎn)睛:本題考查了反比例函數(shù)圖象上點(diǎn)的坐標(biāo)特征,所有在反比例函數(shù)上的點(diǎn)的橫縱坐標(biāo)的積應(yīng)等于比例系數(shù).同時(shí)考查了式子的變形.16、【解析】
一般方法:如果一個(gè)事件有n種可能,而且這些事件的可能性相同,其中事件A出現(xiàn)m種結(jié)果,那么事件A的概率P(A)=.根據(jù)隨機(jī)事件概率大小的求法,找準(zhǔn)兩點(diǎn):①符合條件的情況數(shù)目,②全部情況的總數(shù),二者的比值就是其發(fā)生的概率的大小.【詳解】∵不透明袋子中裝有7個(gè)球,其中有2個(gè)紅球、2個(gè)綠球和3個(gè)黑球,∴從袋子中隨機(jī)取出1個(gè)球,則它是黑球的概率是:故答案為:.本題主要考查概率的求法與運(yùn)用,解決本題的關(guān)鍵是要熟練掌握概率的定義和求概率的公式.17、【解析】試題解析:過(guò)點(diǎn)B作直線AC的垂線交直線AC于點(diǎn)F,如圖所示.∵△BCE的面積是△ADE的面積的2倍,E是AB的中點(diǎn),∴S△ABC=2S△BCE,S△ABD=2S△ADE,∴S△ABC=2S△ABD,且△ABC和△ABD的高均為BF,∴AC=2BD,∴OD=2OC.∵CD=k,∴點(diǎn)A的坐標(biāo)為(,3),點(diǎn)B的坐標(biāo)為(-,-),∴AC=3,BD=,∴AB=2AC=6,AF=AC+BD=,∴CD=k=.【點(diǎn)睛】本題考查了反比例函數(shù)圖象上點(diǎn)的坐標(biāo)特征、三角形的面積公式以及勾股定理.構(gòu)造直角三角形利用勾股定理巧妙得出k值是解題的關(guān)鍵.18、2【解析】
解:x2﹣14x+41=0,則有(x-6)(x-1)=0解得:x=6或x=1.所以菱形的面積為:(6×1)÷2=2.菱形的面積為:2.故答案為2.點(diǎn)睛:本題考查菱形的性質(zhì).菱形的對(duì)角線互相垂直,以及對(duì)角線互相垂直的四邊形的面積的特點(diǎn)和根與系數(shù)的關(guān)系.三、解答題:(本大題共9個(gè)小題,共78分,解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟.19、(1)4;(2),;(3).【解析】
(1)過(guò)點(diǎn)D作DE⊥x軸于點(diǎn)E,求出二次函數(shù)的頂點(diǎn)D的坐標(biāo),然后求出A、B、C的坐標(biāo),然后根據(jù)即可得出結(jié)論;(2)設(shè)點(diǎn)是第二象限拋物線對(duì)稱軸左側(cè)上一點(diǎn),將沿軸翻折得到,點(diǎn),連接,過(guò)點(diǎn)作于,過(guò)點(diǎn)作軸于,證出,列表比例式,并找出關(guān)于t的方程即可得出結(jié)論;(3)判斷點(diǎn)D在直線上,根據(jù)勾股定理求出DH,即可求出平移后的二次函數(shù)解析式,設(shè)點(diǎn),,過(guò)點(diǎn)作于,于,軸于,根據(jù)勾股定理求出AG,聯(lián)立方程即可求出m、n,從而求出結(jié)論.【詳解】解:(1)過(guò)點(diǎn)D作DE⊥x軸于點(diǎn)E當(dāng)時(shí),得到,頂點(diǎn),∴DE=1由,得,;令,得;,,,,OC=3.(2)如圖1,設(shè)點(diǎn)是第二象限拋物線對(duì)稱軸左側(cè)上一點(diǎn),將沿軸翻折得到,點(diǎn),連接,過(guò)點(diǎn)作于,過(guò)點(diǎn)作軸于,由翻折得:,;,,軸,,,,由勾股定理得:,,,,,,,解得:(不符合題意,舍去),;,.(3)原拋物線的頂點(diǎn)在直線上,直線交軸于點(diǎn),如圖2,過(guò)點(diǎn)作軸于,;由題意,平移后的新拋物線頂點(diǎn)為,解析式為,設(shè)點(diǎn),,則,,,過(guò)點(diǎn)作于,于,軸于,,,、分別平分,,,點(diǎn)在拋物線上,,根據(jù)題意得:解得:此題考查的是二次函數(shù)的綜合大題,難度較大,掌握二次函數(shù)平移規(guī)律、二次函數(shù)的圖象及性質(zhì)、相似三角形的判定及性質(zhì)和勾股定理是解決此題的關(guān)鍵.20、(1)詳見(jiàn)解析;(2);【解析】
(1)連接OC,根據(jù)垂直的定義得到∠AOF=90°,根據(jù)三角形的內(nèi)角和得到∠ACE=90°+∠A,根據(jù)等腰三角形的性質(zhì)得到∠OCE=90°,得到OC⊥CE,于是得到結(jié)論;
(2)根據(jù)圓周角定理得到∠ACB=90°,推出∠ACO=∠BCE,得到△BOC是等邊三角形,根據(jù)扇形和三角形的面積公式即可得到結(jié)論.【詳解】:(1)連接OC,
∵OF⊥AB,
∴∠AOF=90°,
∴∠A+∠AFO+90°=180°,
∵∠ACE+∠AFO=180°,
∴∠ACE=90°+∠A,
∵OA=OC,
∴∠A=∠ACO,
∴∠ACE=90°+∠ACO=∠ACO+∠OCE,
∴∠OCE=90°,
∴OC⊥CE,
∴EM是⊙O的切線;
(2)∵AB是⊙O的直徑,
∴∠ACB=90°,
∴∠ACO+∠BCO=∠BCE+∠BCO=90°,
∴∠ACO=∠BCE,
∵∠A=∠E,
∴∠A=∠ACO=∠BCE=∠E,
∴∠ABC=∠BCO+∠E=2∠A,
∴∠A=30°,
∴∠BOC=60°,
∴△BOC是等邊三角形,
∴OB=BC=,
∴陰影部分的面積=,本題考查了切線的判定,等腰三角形的判定和性質(zhì),扇形的面積計(jì)算,連接OC是解題的關(guān)鍵.21、證明見(jiàn)解析.【解析】
要證明BE=CE,只要證明△EAB≌△EDC即可,根據(jù)題意目中的條件,利用矩形的性質(zhì)和等邊三角形的性質(zhì)可以得到兩個(gè)三角形全等的條件,從而可以解答本題.【詳解】證明:∵四邊形ABCD是矩形,∴AB=CD,∠BAD=∠CDA=90°,∵△ADE是等邊三角形,∴AE=DE,∠EAD=∠EDA=60°,∴∠EAD=∠EDC,在△EAB和△EDC中,EA=∴△EAB≌△EDC(SAS),∴BE=CE.本題考查矩形的性質(zhì)、等邊三角形的性質(zhì)、全等三角形的判定與性質(zhì),解答本題的關(guān)鍵是明確題意,找出所求問(wèn)題需要的條件,利用數(shù)形結(jié)合的思想解答.22、(1)GF=GD,GF⊥GD;(2)見(jiàn)解析;(3)見(jiàn)解析;(4)90°﹣.【解析】
(1)根據(jù)四邊形ABCD是正方形可得∠ABD=∠ADB=45°,∠BAD=90°,點(diǎn)D關(guān)于直線AE的對(duì)稱點(diǎn)為點(diǎn)F,即可證明出∠DBF=90°,故GF⊥GD,再根據(jù)∠F=∠ADB,即可證明GF=GD;(2)連接AF,證明∠AFG=∠ADG,再根據(jù)四邊形ABCD是正方形,得出AB=AD,∠BAD=90°,設(shè)∠BAF=n,∠FAD=90°+n,可得出∠FGD=360°﹣∠FAD﹣∠AFG﹣∠ADG=360°﹣(90°+n)﹣(180°﹣n)=90°,故GF⊥GD;(3)連接BD,由(2)知,F(xiàn)G=DG,F(xiàn)G⊥DG,再分別求出∠GFD與∠DBC的角度,再根據(jù)三角函數(shù)的性質(zhì)可證明出△BDF∽△CDG,故∠DGC=∠FDG,則CG∥DF;(4)連接AF,BD,根據(jù)題意可證得∠DAM=90°﹣∠2=90°﹣∠1,∠DAF=2∠DAM=180°﹣2∠1,再根據(jù)菱形的性質(zhì)可得∠ADB=∠ABD=α,故∠AFB+∠DBF+∠ADB+∠DAF=(∠DFG+∠1)+(∠DFG+∠1+α)+α+(180°﹣2∠1)=360°,2∠DFG+2∠1+α﹣2∠1=180°,即可求出∠DFG.【詳解】解:(1)GF=GD,GF⊥GD,理由:∵四邊形ABCD是正方形,∴∠ABD=∠ADB=45°,∠BAD=90°,∵點(diǎn)D關(guān)于直線AE的對(duì)稱點(diǎn)為點(diǎn)F,∠BAD=∠BAF=90°,∴∠F=∠ADB=45°,∠ABF=∠ABD=45°,∴∠DBF=90°,∴GF⊥GD,∵∠BAD=∠BAF=90°,∴點(diǎn)F,A,D在同一條線上,∵∠F=∠ADB,∴GF=GD,故答案為GF=GD,GF⊥GD;(2)連接AF,∵點(diǎn)D關(guān)于直線AE的對(duì)稱點(diǎn)為點(diǎn)F,∴直線AE是線段DF的垂直平分線,∴AF=AD,GF=GD,∴∠1=∠2,∠3=∠FDG,∴∠1+∠3=∠2+∠FDG,∴∠AFG=∠ADG,∵四邊形ABCD是正方形,∴AB=AD,∠BAD=90°,設(shè)∠BAF=n,∴∠FAD=90°+n,∵AF=AD=AB,∴∠FAD=∠ABF,∴∠AFB+∠ABF=180°﹣n,∴∠AFB+∠ADG=180°﹣n,∴∠FGD=360°﹣∠FAD﹣∠AFG﹣∠ADG=360°﹣(90°+n)﹣(180°﹣n)=90°,∴GF⊥DG,(3)如圖2,連接BD,由(2)知,F(xiàn)G=DG,F(xiàn)G⊥DG,∴∠GFD=∠GDF=(180°﹣∠FGD)=45°,∵四邊形ABCD是正方形,∴BC=CD,∠BCD=90°,∴∠BDC=∠DBC=(180°﹣∠BCD)=45°,∴∠FDG=∠BDC,∴∠FDG﹣∠BDG=∠BDC﹣∠BDG,∴∠FDB=∠GDC,在Rt△BDC中,sin∠DFG==sin45°=,在Rt△BDC中,sin∠DBC==sin45°=,∴,∴,∴△BDF∽△CDG,∵∠FDB=∠GDC,∴∠DGC=∠DFG=45°,∴∠DGC=∠FDG,∴CG∥DF;(4)90°﹣,理由:如圖3,連接AF,BD,∵點(diǎn)D與點(diǎn)F關(guān)于AE對(duì)稱,∴AE是線段DF的垂直平分線,∴AD=AF,∠1=∠2,∠AMD=90°,∠DAM=∠FAM,∴∠DAM=90°﹣∠2=90°﹣∠1,∴∠DAF=2∠DAM=180°﹣2∠1,∵四邊形ABCD是菱形,∴AB=AD,∴∠AFB=∠ABF=∠DFG+∠1,∵BD是菱形的對(duì)角線,∴∠ADB=∠ABD=α,在四邊形ADBF中,∠AFB+∠DBF+∠ADB+∠DAF=(∠DFG+∠1)+(∠DFG+∠1+α)+α+(180°﹣2∠1)=360°∴2∠DFG+2∠1+α﹣2∠1=180°,∴∠DFG=90°﹣.本題考查了正方形、菱形、相似三角形的性質(zhì),解題的根據(jù)是熟練的掌握正方形、菱形、相似三角形的性質(zhì).23、(1);(2)①見(jiàn)解析;②;(3)存在點(diǎn)B,使△MBF的周長(zhǎng)最?。鱉BF周長(zhǎng)的最小值為11,直線l的解析式為.【解析】
(1)用待定系數(shù)法將已知兩點(diǎn)的坐標(biāo)代入拋物線解析式即可解答.(2)①由于BC∥y軸,容易看出∠OFC=∠BCF,想證明∠BFC=∠OFC,可轉(zhuǎn)化為求證∠BFC=∠BCF,根據(jù)“等邊對(duì)等角”,也就是求證BC=BF,可作BD⊥y軸于點(diǎn)D,設(shè)B(m,),通過(guò)勾股定理用表示出的長(zhǎng)度,與相等,即可證明.②用表示出點(diǎn)的坐標(biāo),運(yùn)用勾股定理表示出的長(zhǎng)度,令,解關(guān)于的一元二次方程即可.(3)求折線或者三角形周長(zhǎng)的最小值問(wèn)題往往需要將某些線段代換轉(zhuǎn)化到一條直線上,再通過(guò)“兩點(diǎn)之間線段最短”或者“垂線段最短”等定理尋找最值.本題可過(guò)點(diǎn)M作MN⊥x軸于點(diǎn)N,交拋物線于點(diǎn)B1,過(guò)點(diǎn)B作BE⊥x軸于點(diǎn)E,連接B1F,通過(guò)第(2)問(wèn)的結(jié)論將△MBF的邊轉(zhuǎn)化為,可以發(fā)現(xiàn),當(dāng)點(diǎn)運(yùn)動(dòng)到位置時(shí),△MBF周長(zhǎng)取得最小值,根據(jù)求平面直角坐標(biāo)系里任意兩點(diǎn)之間的距離的方法代入點(diǎn)與的坐標(biāo)求出的長(zhǎng)度,再加上即是△MBF周長(zhǎng)的最小值;將點(diǎn)的橫坐標(biāo)代入二次函數(shù)求出,再聯(lián)立與的坐標(biāo)求出的解析式即可.【詳解】(1)解:將點(diǎn)(-2,2)和(4,5)分別代入,得:解得:∴拋物線的解析式為:.(2)①證明:過(guò)點(diǎn)B作BD⊥y軸于點(diǎn)D,設(shè)B(m,),∵BC⊥x軸,BD⊥y軸,F(xiàn)(0,2)∴BC=,BD=|m|,DF=∴BC=BF∴∠BFC=∠BCF又BC∥y軸,∴∠OFC=∠BCF∴∠BFC=∠OFC∴FC平分∠BFO.②(說(shuō)明:寫(xiě)一個(gè)給1分)(3)存在點(diǎn)B,使△MBF的周長(zhǎng)最小.過(guò)點(diǎn)M作MN⊥x軸于點(diǎn)N,交拋物線于點(diǎn)B1,過(guò)點(diǎn)B作BE⊥x軸于點(diǎn)E,連接B1F由(2)知B1F=B1N,BF=BE∴△MB1F的周長(zhǎng)=MF+MB1+B1F=MF+MB1+B1N=MF+MN△MBF的周長(zhǎng)=MF+MB+BF=MF+MB+BE根據(jù)垂線段最短可知:MN<MB+BE∴當(dāng)點(diǎn)B在點(diǎn)B1處時(shí),△MBF的周長(zhǎng)最小∵M(jìn)(3,6),F(xiàn)(0,2)∴,MN=6∴△MBF周長(zhǎng)的最小值=MF+MN=5+6=11將x=3代入,得:∴B1(3,)將F(0,2)和B1(3,)代入y=kx+b,得:,解得:∴此時(shí)直線l的解析式為:.本題綜合考查了二次函數(shù)與一次函數(shù)的圖象與性質(zhì),等腰三角形的性質(zhì),動(dòng)點(diǎn)與最值問(wèn)題等,熟練掌握各個(gè)知識(shí)點(diǎn),結(jié)合圖象作出合理輔助線,進(jìn)行適當(dāng)?shù)霓D(zhuǎn)化是解答關(guān)鍵.24、(1)BD=CD=
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- “狀元360安全文化建設(shè)方案”(二篇)
- 2025年期末復(fù)習(xí)演講稿(4篇)
- 中學(xué)消防演練方案(7篇)
- 2025年工業(yè)區(qū)年度安全生產(chǎn)工作總結(jié)樣本(2篇)
- 開(kāi)煉機(jī)安全操作規(guī)程(3篇)
- 2024年離婚雙方權(quán)益保障合同模板版B版
- 2024年度汽車租賃合同樣本精校附帶車輛維護(hù)保養(yǎng)協(xié)議3篇
- 2024年離婚合同:夫妻共同財(cái)產(chǎn)及子女安排實(shí)例版
- 網(wǎng)絡(luò)風(fēng)險(xiǎn)評(píng)估課程設(shè)計(jì)
- 托班創(chuàng)思搭建課程設(shè)計(jì)
- 【MOOC】工程材料學(xué)-華中科技大學(xué) 中國(guó)大學(xué)慕課MOOC答案
- 銀行貸款保證合同范本
- 《汽車膠粘劑》課件
- 手繪pop教學(xué)課件
- 2024腦血管病指南
- 2022年海南公務(wù)員考試申論試題(B卷)
- 企業(yè)三年?duì)I銷規(guī)劃
- 教師資格考試高中歷史面試試題及解答參考
- 2024年社區(qū)工作者考試試題庫(kù)
- 工廠設(shè)備工程師年終總結(jié)
- 福建省廈門市2024-2025學(xué)年新人教版九年級(jí)語(yǔ)文上學(xué)期期末質(zhì)量檢測(cè)試題
評(píng)論
0/150
提交評(píng)論