湖北省黃石市2024屆中考數(shù)學適應性模擬試題含解析_第1頁
湖北省黃石市2024屆中考數(shù)學適應性模擬試題含解析_第2頁
湖北省黃石市2024屆中考數(shù)學適應性模擬試題含解析_第3頁
湖北省黃石市2024屆中考數(shù)學適應性模擬試題含解析_第4頁
湖北省黃石市2024屆中考數(shù)學適應性模擬試題含解析_第5頁
已閱讀5頁,還剩19頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

湖北省黃石市2024屆中考數(shù)學適應性模擬試題注意事項1.考試結(jié)束后,請將本試卷和答題卡一并交回.2.答題前,請務必將自己的姓名、準考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.已知一次函數(shù)y=﹣x+2的圖象,繞x軸上一點P(m,1)旋轉(zhuǎn)181°,所得的圖象經(jīng)過(1.﹣1),則m的值為()A.﹣2 B.﹣1 C.1 D.22.若與互為相反數(shù),則x的值是()A.1 B.2 C.3 D.43.已知關(guān)于x的一元二次方程x2+mx+n=0的兩個實數(shù)根分別為x1=2,x2=4,則m+n的值是()A.﹣10 B.10 C.﹣6 D.24.-5的相反數(shù)是()A.5 B. C. D.5.如圖,l1、l2、l3兩兩相交于A、B、C三點,它們與y軸正半軸分別交于點D、E、F,若A、B、C三點的橫坐標分別為1、2、3,且OD=DE=1,則下列結(jié)論正確的個數(shù)是()①,②S△ABC=1,③OF=5,④點B的坐標為(2,2.5)A.1個 B.2個 C.3個 D.4個6.如圖,已知△ABC的三個頂點均在格點上,則cosA的值為()A. B. C. D.7.如圖,為測量平地上一塊不規(guī)則區(qū)域(圖中的陰影部分)的面積,畫一個邊長為4m的正方形,使不規(guī)則區(qū)域落在正方形內(nèi).現(xiàn)向正方形內(nèi)隨機投擲小球(假設(shè)小球落在正方形內(nèi)每一點都是等可能的),經(jīng)過大量重復投擲試驗,發(fā)現(xiàn)小球落在不規(guī)則區(qū)域的頻率穩(wěn)定在常數(shù)0.65附近,由此可估計不規(guī)則區(qū)域的面積約為()A.2.6m2 B.5.6m2 C.8.25m2 D.10.4m28.下列方程中,是一元二次方程的是()A.2x﹣y=3 B.x2+=2 C.x2+1=x2﹣1 D.x(x﹣1)=09.如圖,在中,,將折疊,使點落在邊上的點處,為折痕,若,則的值為()A. B. C. D.10.下列運算正確的是()A.5ab﹣ab=4 B.a(chǎn)6÷a2=a4C. D.(a2b)3=a5b311.下列選項中,可以用來證明命題“若a2>b2,則a>b“是假命題的反例是()A.a(chǎn)=﹣2,b=1 B.a(chǎn)=3,b=﹣2 C.a(chǎn)=0,b=1 D.a(chǎn)=2,b=112.下列運算正確的是()A. B.C. D.二、填空題:(本大題共6個小題,每小題4分,共24分.)13.中國的《九章算術(shù)》是世界現(xiàn)代數(shù)學的兩大源泉之一,其中有一問題:“今有牛五,羊二,值金十兩.牛二,羊五,值金八兩。問牛羊各值金幾何?”譯文:今有牛5頭,羊2頭,共值金10兩,牛2頭,羊5頭,共值金8兩.問牛、羊每頭各值金多少?設(shè)牛、羊每頭各值金兩、兩,依題意,可列出方程為___________________.14.某市政府為了改善城市容貌,綠化環(huán)境,計劃經(jīng)過兩年時間,使綠地面積增加44%,則這兩年平均綠地面積的增長率為______.15.計算:|﹣5|﹣=_____.16.如圖所示,一個寬為2cm的刻度尺在圓形光盤上移動,當刻度尺的一邊與光盤相切時,另一邊與光盤邊緣兩個交點處的讀數(shù)恰好是“2”和“10”(單位:cm),那么該光盤的半徑是____cm.17.兩地相距的路程為240千米,甲、乙兩車沿同一線路從地出發(fā)到地,分別以一定的速度勻速行駛,甲車先出發(fā)40分鐘后,乙車才出發(fā).途中乙車發(fā)生故障,修車耗時20分鐘,隨后,乙車車速比發(fā)生故障前減少了10千米/小時(仍保持勻速前行),甲、乙兩車同時到達地.甲、乙兩車相距的路程(千米)與甲車行駛時間(小時)之間的關(guān)系如圖所示,求乙車修好時,甲車距地還有____________千米.18.如圖,在Rt△ABC中,∠A=90°,AB=AC,BC=+1,點M,N分別是邊BC,AB上的動點,沿MN所在的直線折疊∠B,使點B的對應點B′始終落在邊AC上,若△MB′C為直角三角形,則BM的長為_____.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19.(6分)計算:-2-2-+020.(6分)如圖,若要在寬AD為20米的城南大道兩邊安裝路燈,路燈的燈臂BC長2米,且與燈柱AB成120°角,路燈采用圓錐形燈罩,燈罩的軸線CO與燈臂BC垂直,當燈罩的軸線CO通過公路路面的中心線時照明效果最好.此時,路燈的燈柱AB的高應該設(shè)計為多少米.(結(jié)果保留根號)21.(6分)如圖,拋物線與x軸交于點A和點B(1,0),與y軸交于點C(0,3),其對稱軸為=–1,P為拋物線上第二象限的一個動點.(1)求拋物線的解析式并寫出其頂點坐標;(2)當點P的縱坐標為2時,求點P的橫坐標;(3)當點P在運動過程中,求四邊形PABC面積最大時的值及此時點P的坐標.22.(8分)已知:如圖所示,拋物線y=﹣x2+bx+c與x軸的兩個交點分別為A(1,0),B(3,0)(1)求拋物線的表達式;(2)設(shè)點P在該拋物線上滑動,且滿足條件S△PAB=1的點P有幾個?并求出所有點P的坐標.23.(8分)如圖,在△ABC中,AB=AC,∠ABC=72°.(1)用直尺和圓規(guī)作∠ABC的平分線BD交AC于點D(保留作圖痕跡,不要求寫作法);(2)在(1)中作出∠ABC的平分線BD后,求∠BDC的度數(shù).24.(10分)湯姆斯杯世界男子羽毛球團體賽小組賽比賽規(guī)則:兩隊之間進行五局比賽,其中三局單打,兩局雙打,五局比賽必須全部打完,贏得三局及以上的隊獲勝.假如甲,乙兩隊每局獲勝的機會相同.(1)若前四局雙方戰(zhàn)成2:2,那么甲隊最終獲勝的概率是__________;(2)現(xiàn)甲隊在前兩局比賽中已取得2:0的領(lǐng)先,那么甲隊最終獲勝的概率是多少?25.(10分)如圖所示,點P位于等邊△ABC的內(nèi)部,且∠ACP=∠CBP.(1)∠BPC的度數(shù)為________°;(2)延長BP至點D,使得PD=PC,連接AD,CD.①依題意,補全圖形;②證明:AD+CD=BD;(3)在(2)的條件下,若BD的長為2,求四邊形ABCD的面積.26.(12分)(14分)如圖,在平面直角坐標系中,拋物線y=mx2﹣8mx+4m+2(m>2)與y軸的交點為A,與x軸的交點分別為B(x1,0),C(x2,0),且x2﹣x1=4,直線AD∥x軸,在x軸上有一動點E(t,0)過點E作平行于y軸的直線l與拋物線、直線AD的交點分別為P、Q.(1)求拋物線的解析式;(2)當0<t≤8時,求△APC面積的最大值;(3)當t>2時,是否存在點P,使以A、P、Q為頂點的三角形與△AOB相似?若存在,求出此時t的值;若不存在,請說明理由.27.(12分)如圖,已知是直角坐標平面上三點.將先向右平移3個單位,再向上平移3個單位,畫出平移后的圖形;以點為位似中心,位似比為2,將放大,在軸右側(cè)畫出放大后的圖形;填空:面積為.

參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、C【解析】

根據(jù)題意得出旋轉(zhuǎn)后的函數(shù)解析式為y=-x-1,然后根據(jù)解析式求得與x軸的交點坐標,結(jié)合點的坐標即可得出結(jié)論.【詳解】∵一次函數(shù)y=﹣x+2的圖象,繞x軸上一點P(m,1)旋轉(zhuǎn)181°,所得的圖象經(jīng)過(1.﹣1),∴設(shè)旋轉(zhuǎn)后的函數(shù)解析式為y=﹣x﹣1,在一次函數(shù)y=﹣x+2中,令y=1,則有﹣x+2=1,解得:x=4,即一次函數(shù)y=﹣x+2與x軸交點為(4,1).一次函數(shù)y=﹣x﹣1中,令y=1,則有﹣x﹣1=1,解得:x=﹣2,即一次函數(shù)y=﹣x﹣1與x軸交點為(﹣2,1).∴m==1,故選:C.【點睛】本題考查了一次函數(shù)圖象與幾何變換,解題的關(guān)鍵是求出旋轉(zhuǎn)后的函數(shù)解析式.本題屬于基礎(chǔ)題,難度不大.2、D【解析】由題意得+=0,去分母3x+4(1-x)=0,解得x=4.故選D.3、D【解析】

根據(jù)“一元二次方程x2+mx+n=0的兩個實數(shù)根分別為x1=2,x2=4”,結(jié)合根與系數(shù)的關(guān)系,分別列出關(guān)于m和n的一元一次不等式,求出m和n的值,代入m+n即可得到答案.【詳解】解:根據(jù)題意得:x1+x2=﹣m=2+4,解得:m=﹣6,x1?x2=n=2×4,解得:n=8,m+n=﹣6+8=2,故選D.【點睛】本題考查了根與系數(shù)的關(guān)系,正確掌握根與系數(shù)的關(guān)系是解決問題的關(guān)鍵.4、A【解析】由相反數(shù)的定義:“只有符號不同的兩個數(shù)互為相反數(shù)”可知-5的相反數(shù)是5.故選A.5、C【解析】

①如圖,由平行線等分線段定理(或分線段成比例定理)易得:;②設(shè)過點B且與y軸平行的直線交AC于點G,則S△ABC=S△AGB+S△BCG,易得:S△AED=,△AED∽△AGB且相似比=1,所以,△AED≌△AGB,所以,S△AGB=,又易得G為AC中點,所以,S△AGB=S△BGC=,從而得結(jié)論;③易知,BG=DE=1,又△BGC∽△FEC,列比例式可得結(jié)論;④易知,點B的位置會隨著點A在直線x=1上的位置變化而相應的發(fā)生變化,所以④錯誤.【詳解】解:①如圖,∵OE∥AA'∥CC',且OA'=1,OC'=1,∴,故①正確;②設(shè)過點B且與y軸平行的直線交AC于點G(如圖),則S△ABC=S△AGB+S△BCG,∵DE=1,OA'=1,∴S△AED=×1×1=,∵OE∥AA'∥GB',OA'=A'B',∴AE=AG,∴△AED∽△AGB且相似比=1,∴△AED≌△AGB,∴S△ABG=,同理得:G為AC中點,∴S△ABG=S△BCG=,∴S△ABC=1,故②正確;③由②知:△AED≌△AGB,∴BG=DE=1,∵BG∥EF,∴△BGC∽△FEC,∴,∴EF=1.即OF=5,故③正確;④易知,點B的位置會隨著點A在直線x=1上的位置變化而相應的發(fā)生變化,故④錯誤;故選C.【點睛】本題考查了圖形與坐標的性質(zhì)、三角形的面積求法、相似三角形的性質(zhì)和判定、平行線等分線段定理、函數(shù)圖象交點等知識及綜合應用知識、解決問題的能力.考查學生數(shù)形結(jié)合的數(shù)學思想方法.6、D【解析】

過B點作BD⊥AC,如圖,由勾股定理得,AB=,AD=,cosA===,故選D.7、D【解析】

首先確定小石子落在不規(guī)則區(qū)域的概率,然后利用概率公式求得其面積即可.【詳解】∵經(jīng)過大量重復投擲試驗,發(fā)現(xiàn)小石子落在不規(guī)則區(qū)域的頻率穩(wěn)定在常數(shù)0.65附近,∴小石子落在不規(guī)則區(qū)域的概率為0.65,∵正方形的邊長為4m,∴面積為16m2設(shè)不規(guī)則部分的面積為sm2則=0.65解得:s=10.4故答案為:D.【點睛】利用頻率估計概率.8、D【解析】試題解析:含有兩個未知數(shù),不是整式方程,C沒有二次項.故選D.點睛:一元二次方程需要滿足三個條件:含有一個未知數(shù),未知數(shù)的最高次數(shù)是2,整式方程.9、B【解析】

根據(jù)折疊的性質(zhì)可知AE=DE=3,然后根據(jù)勾股定理求CD的長,然后利用正弦公式進行計算即可.【詳解】解:由折疊性質(zhì)可知:AE=DE=3∴CE=AC-AE=4-3=1在Rt△CED中,CD=故選:B【點睛】本題考查折疊的性質(zhì),勾股定理解直角三角形及正弦的求法,掌握公式正確計算是本題的解題關(guān)鍵.10、B【解析】

由整數(shù)指數(shù)冪和分式的運算的法則計算可得答案.【詳解】A項,根據(jù)單項式的減法法則可得:5ab-ab=4ab,故A項錯誤;B項,根據(jù)“同底數(shù)冪相除,底數(shù)不變,指數(shù)相減”可得:a6÷a2=a4,故B項正確;C項,根據(jù)分式的加法法則可得:,故C項錯誤;D項,根據(jù)“積的乘方等于乘方的積”可得:,故D項錯誤;故本題正確答案為B.【點睛】冪的運算法則:(1)同底數(shù)冪的乘法:(m、n都是正整數(shù))(2)冪的乘方:(m、n都是正整數(shù))(3)積的乘方:(n是正整數(shù))(4)同底數(shù)冪的除法:(a≠0,m、n都是正整數(shù),且m>n)(5)零次冪:(a≠0)(6)負整數(shù)次冪:(a≠0,p是正整數(shù)).11、A【解析】

根據(jù)要證明一個結(jié)論不成立,可以通過舉反例的方法來證明一個命題是假命題.由此即可解答.【詳解】∵當a=﹣2,b=1時,(﹣2)2>12,但是﹣2<1,∴a=﹣2,b=1是假命題的反例.故選A.【點睛】本題考查了命題與定理,要說明數(shù)學命題的錯誤,只需舉出一個反例即可,這是數(shù)學中常用的一種方法.12、D【解析】

由去括號法則:如果括號外的因數(shù)是負數(shù),去括號后原括號內(nèi)各項的符號與原來的符號相反;完全平方公式:(a±b)2=a2±2ab+b2;單項式與單項式相乘,把他們的系數(shù),相同字母分別相乘,對于只在一個單項式里含有的字母,則連同它的指數(shù)作為積的一個因式進行計算即可.【詳解】解:A、a-(b+c)=a-b-c≠a-b+c,故原題計算錯誤;

B、(x+1)2=x2+2x+1≠x2+1,故原題計算錯誤;

C、(-a)3=≠,故原題計算錯誤;

D、2a2?3a3=6a5,故原題計算正確;

故選:D.【點睛】本題考查了整式的乘法,解題的關(guān)鍵是掌握有關(guān)計算法則.二、填空題:(本大題共6個小題,每小題4分,共24分.)13、【解析】【分析】牛、羊每頭各值金兩、兩,根據(jù)等量關(guān)系:“牛5頭,羊2頭,共值金10兩”,“牛2頭,羊5頭,共值金8兩”列方程組即可.【詳解】牛、羊每頭各值金兩、兩,由題意得:,故答案為:.【點睛】本題考查了二元一次方程組的應用,弄清題意,找出等量關(guān)系列出方程組是關(guān)鍵.14、10%【解析】

本題可設(shè)這兩年平均每年的增長率為x,因為經(jīng)過兩年時間,讓市區(qū)綠地面積增加44%,則有(1+x)1=1+44%,解這個方程即可求出答案.【詳解】解:設(shè)這兩年平均每年的綠地增長率為x,根據(jù)題意得,

(1+x)1=1+44%,

解得x1=-1.1(舍去),x1=0.1.

答:這兩年平均每年綠地面積的增長率為10%.故答案為10%【點睛】此題考查增長率的問題,一般公式為:原來的量×(1±x)1=現(xiàn)在的量,增長用+,減少用-.但要注意解的取舍,及每一次增長的基礎(chǔ).15、1【解析】分析:直接利用二次根式以及絕對值的性質(zhì)分別化簡得出答案.詳解:原式=5-3=1.故答案為1.點睛:此題主要考查了實數(shù)運算,正確化簡各數(shù)是解題關(guān)鍵.16、5【解析】

本題先根據(jù)垂徑定理構(gòu)造出直角三角形,然后在直角三角形中已知弦長和弓形高,根據(jù)勾股定理求出半徑,從而得解.【詳解】解:如圖,設(shè)圓心為O,弦為AB,切點為C.如圖所示.則AB=8cm,CD=2cm.

連接OC,交AB于D點.連接OA.

∵尺的對邊平行,光盤與外邊緣相切,

∴OC⊥AB.

∴AD=4cm.

設(shè)半徑為Rcm,則R2=42+(R-2)2,

解得R=5,

∴該光盤的半徑是5cm.

故答案為5【點睛】此題考查了切線的性質(zhì)及垂徑定理,建立數(shù)學模型是關(guān)鍵.17、90【解析】【分析】觀察圖象可知甲車40分鐘行駛了30千米,由此可求出甲車速度,再根據(jù)甲車行駛小時時與乙車的距離為10千米可求得乙車的速度,從而可求得乙車出故障修好后的速度,再根據(jù)甲、乙兩車同時到達B地,設(shè)乙車出故障前走了t1小時,修好后走了t2小時,根據(jù)等量關(guān)系甲車用了小時行駛了全程,乙車行駛的路程為60t1+50t2=240,列方程組求出t2,再根據(jù)甲車的速度即可知乙車修好時甲車距B地的路程.【詳解】甲車先行40分鐘(),所行路程為30千米,因此甲車的速度為(千米/時),設(shè)乙車的初始速度為V乙,則有,解得:(千米/時),因此乙車故障后速度為:60-10=50(千米/時),設(shè)乙車出故障前走了t1小時,修好后走了t2小時,則有,解得:,45×2=90(千米),故答案為90.【點評】本題考查了一次函數(shù)的實際應用,難度較大,求出速度后能從題中找到必要的等量關(guān)系列方程組進行求解是關(guān)鍵.18、或1【解析】

圖1,∠B’MC=90°,B’與點A重合,M是BC的中點,所以BM=,圖2,當∠MB’C=90°,∠A=90°,AB=AC,∠C=45°,所以Rt是等腰直角三角形,所以BM=+1,所以CM+BM=BM+BM=+1,所以BM=1.【詳解】請在此輸入詳解!三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19、【解析】

直接利用負指數(shù)冪的性質(zhì)以及零指數(shù)冪的性質(zhì)和特殊角的銳角三角函數(shù)值分別化簡,再根據(jù)實數(shù)的運算法則即可求出答案.【詳解】解:原式=【點睛】本題考查了負指數(shù)冪的性質(zhì)以及零指數(shù)冪的性質(zhì)和特殊角的銳角三角函數(shù)值,熟記這些運算法則是解題的關(guān)鍵.20、(10-4)米【解析】

延長OC,AB交于點P,△PCB∽△PAO,根據(jù)相似三角形對應邊比例相等的性質(zhì)即可解題.【詳解】解:如圖,延長OC,AB交于點P.∵∠ABC=120°,∴∠PBC=60°,∵∠OCB=∠A=90°,∴∠P=30°,∵AD=20米,∴OA=AD=10米,∵BC=2米,∴在Rt△CPB中,PC=BC?tan60°=米,PB=2BC=4米,∵∠P=∠P,∠PCB=∠A=90°,∴△PCB∽△PAO,∴,∴PA===米,∴AB=PA﹣PB=()米.答:路燈的燈柱AB高應該設(shè)計為()米.21、(1)二次函數(shù)的解析式為,頂點坐標為(–1,4);(2)點P橫坐標為––1;(3)當時,四邊形PABC的面積有最大值,點P().【解析】試題分析:(1)已知拋物線與軸交于點A和點B(1,0),與y軸交于點C(0,3),其對稱軸為=﹣1,由此列出方程組,解方程組求得a、b、c的值,即可得拋物線的解析式,把解析式化為頂點式,直接寫出頂點坐標即可;(2)把y=2代入解析式,解方程求得x的值,即可得點P的橫坐標,從而求得點P的坐標;(3)設(shè)點P(,),則,根據(jù)得出四邊形PABC與x之間的函數(shù)關(guān)系式,利用二次函數(shù)的性質(zhì)求得x的值,即可求得點P的坐標.試題解析:(1)∵拋物線與軸交于點A和點B(1,0),與y軸交于點C(0,3),其對稱軸為=﹣1,∴,解得:,∴二次函數(shù)的解析式為=,∴頂點坐標為(﹣1,4)(2)設(shè)點P(,2),即=2,解得=﹣1(舍去)或=﹣﹣1,∴點P(﹣﹣1,2).(3)設(shè)點P(,),則,,∴=∴當時,四邊形PABC的面積有最大值.所以點P().點睛:本題是二次函數(shù)綜合題,主要考查學生對二次函數(shù)解決動點問題綜合運用能力,動點問題為中考??碱}型,注意培養(yǎng)數(shù)形結(jié)合思想,培養(yǎng)綜合分析歸納能力,解決這類問題要會建立二次函數(shù)模型,利用二次函數(shù)的性質(zhì)解決問題.22、(1)y=﹣x2+4x﹣3;(2)滿足條件的P點坐標有3個,它們是(2,1)或(2+,﹣1)或(2﹣,﹣1).【解析】

(1)由于已知拋物線與x軸的交點坐標,則可利用交點式求出拋物線解析式;(2)根據(jù)二次函數(shù)圖象上點的坐標特征,可設(shè)P(t,-t2+4t-3),根據(jù)三角形面積公式得到?2?|-t2+4t-3|=1,然后去絕對值得到兩個一元二次方程,再解方程求出t即可得到P點坐標.【詳解】解:(1)拋物線解析式為y=﹣(x﹣1)(x﹣3)=﹣x2+4x﹣3;(2)設(shè)P(t,﹣t2+4t﹣3),因為S△PAB=1,AB=3﹣1=2,所以?2?|﹣t2+4t﹣3|=1,當﹣t2+4t﹣3=1時,t1=t2=2,此時P點坐標為(2,1);當﹣t2+4t﹣3=﹣1時,t1=2+,t2=2﹣,此時P點坐標為(2+,﹣1)或(2﹣,﹣1),所以滿足條件的P點坐標有3個,它們是(2,1)或(2+,﹣1)或(2﹣,﹣1).【點睛】本題考查了待定系數(shù)法求二次函數(shù)的解析式:在利用待定系數(shù)法求二次函數(shù)關(guān)系式時,要根據(jù)題目給定的條件,選擇恰當?shù)姆椒ㄔO(shè)出關(guān)系式,從而代入數(shù)值求解.一般地,當已知拋物線上三點時,常選擇一般式,用待定系數(shù)法列三元一次方程組來求解;當已知拋物線的頂點或?qū)ΨQ軸時,常設(shè)其解析式為頂點式來求解;當已知拋物線與x軸有兩個交點時,可選擇設(shè)其解析式為交點式來求解.23、(1)作圖見解析(2)∠BDC=72°【解析】解:(1)作圖如下:(2)∵在△ABC中,AB=AC,∠ABC=72°,∴∠A=180°﹣2∠ABC=180°﹣144°=36°.∵AD是∠ABC的平分線,∴∠ABD=∠ABC=×72°=36°.∵∠BDC是△ABD的外角,∴∠BDC=∠A+∠ABD=36°+36°=72°.(1)根據(jù)角平分線的作法利用直尺和圓規(guī)作出∠ABC的平分線:①以點B為圓心,任意長為半徑畫弧,分別交AB、BC于點E、F;②分別以點E、F為圓心,大于EF為半徑畫圓,兩圓相較于點G,連接BG交AC于點D.(2)先根據(jù)等腰三角形的性質(zhì)及三角形內(nèi)角和定理求出∠A的度數(shù),再由角平分線的性質(zhì)得出∠ABD的度數(shù),再根據(jù)三角形外角的性質(zhì)得出∠BDC的度數(shù)即可.24、(1)12;(2)【解析】分析:(1)直接利用概率公式求解;(2)畫樹狀圖展示所有8種等可能的結(jié)果數(shù),再找出甲至少勝一局的結(jié)果數(shù),然后根據(jù)概率公式求.詳解:(1)甲隊最終獲勝的概率是12(2)畫樹狀圖為:共有8種等可能的結(jié)果數(shù),其中甲至少勝一局的結(jié)果數(shù)為7,所以甲隊最終獲勝的概率=78點睛:本題考查了列表法與樹狀圖法:利用列表法或樹狀圖法展示所有等可能的結(jié)果n,再從中選出符合事件A或B的結(jié)果數(shù)目m,然后利用概率公式計算事件A或事件B的概率.25、(1)120°;(2)①作圖見解析;②證明見解析;(3)3.【解析】【分析】(1)根據(jù)等邊三角形的性質(zhì),可知∠ACB=60°,在△BCP中,利用三角形內(nèi)角和定理即可得;(2)①根據(jù)題意補全圖形即可;②證明△ACD≌△BCP,根據(jù)全等三角形的對應邊相等可得AD(3)如圖2,作BM⊥AD于點M,BN⊥DC延長線于點N,根據(jù)已知可推導得出BM=【詳解】(1)∵三角形ABC是等邊三角形,∴∠ACB=60°,即∠ACP+∠BCP=60°,∵∠BCP+∠CBP+∠BPC=180°,∠ACP=∠CBP,∴∠BPC=120°,故答案為120;(2)①∵如圖1所示.②在等邊△ABC中,∠ACB∴∠ACP+∵∠ACP=∴∠CBP+∴∠BPC=180°-∴∠CPD=180°-∵PD=∴△CDP∵∠ACD+∴∠ACD在△ACD和△AC=BC??∴△ACD∴AD=∴

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論