江蘇省泰州市泰興市西城2023-2024學(xué)年中考聯(lián)考數(shù)學(xué)試題含解析_第1頁(yè)
江蘇省泰州市泰興市西城2023-2024學(xué)年中考聯(lián)考數(shù)學(xué)試題含解析_第2頁(yè)
江蘇省泰州市泰興市西城2023-2024學(xué)年中考聯(lián)考數(shù)學(xué)試題含解析_第3頁(yè)
江蘇省泰州市泰興市西城2023-2024學(xué)年中考聯(lián)考數(shù)學(xué)試題含解析_第4頁(yè)
江蘇省泰州市泰興市西城2023-2024學(xué)年中考聯(lián)考數(shù)學(xué)試題含解析_第5頁(yè)
已閱讀5頁(yè),還剩14頁(yè)未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

江蘇省泰州市泰興市西城2023-2024學(xué)年中考聯(lián)考數(shù)學(xué)試題注意事項(xiàng)1.考試結(jié)束后,請(qǐng)將本試卷和答題卡一并交回.2.答題前,請(qǐng)務(wù)必將自己的姓名、準(zhǔn)考證號(hào)用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請(qǐng)認(rèn)真核對(duì)監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準(zhǔn)考證號(hào)與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對(duì)應(yīng)選項(xiàng)的方框涂滿、涂黑;如需改動(dòng),請(qǐng)用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無(wú)效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號(hào)等須加黑、加粗.一、選擇題(每小題只有一個(gè)正確答案,每小題3分,滿分30分)1.一個(gè)多邊形的內(nèi)角和比它的外角和的倍少180°,那么這個(gè)多邊形的邊數(shù)是()A.7 B.8 C.9 D.102.已知拋物線y=ax2﹣(2a+1)x+a﹣1與x軸交于A(x1,0),B(x2,0)兩點(diǎn),若x1<1,x2>2,則a的取值范圍是()A.a(chǎn)<3 B.0<a<3 C.a(chǎn)>﹣3 D.﹣3<a<03.如圖,是反比例函數(shù)圖象,陰影部分表示它與橫縱坐標(biāo)軸正半軸圍成的區(qū)域,在該區(qū)域內(nèi)不包括邊界的整數(shù)點(diǎn)個(gè)數(shù)是k,則拋物線向上平移k個(gè)單位后形成的圖象是A. B.C. D.4.將直線y=﹣x+a的圖象向右平移2個(gè)單位后經(jīng)過點(diǎn)A(3,3),則a的值為()A.4B.﹣4C.2D.﹣25.如圖,在平面直角坐標(biāo)系中,正方形ABCD的頂點(diǎn)A的坐標(biāo)為(﹣1,1),點(diǎn)B在x軸正半軸上,點(diǎn)D在第三象限的雙曲線上,過點(diǎn)C作CE∥x軸交雙曲線于點(diǎn)E,連接BE,則△BCE的面積為()A.5 B.6 C.7 D.86.如圖,將一張三角形紙片的一角折疊,使點(diǎn)落在處的處,折痕為.如果,,,那么下列式子中正確的是()A. B. C. D.7.計(jì)算-5x2-3x2的結(jié)果是()A.2x2 B.3x2 C.-8x2 D.8x28.如圖,在正方形ABCD中,AB=,P為對(duì)角線AC上的動(dòng)點(diǎn),PQ⊥AC交折線A﹣D﹣C于點(diǎn)Q,設(shè)AP=x,△APQ的面積為y,則y與x的函數(shù)圖象正確的是()A. B.C. D.9.如圖,在下列條件中,不能判定直線a與b平行的是()A.∠1=∠2 B.∠2=∠3 C.∠3=∠5 D.∠3+∠4=180°10.如圖,小明同學(xué)用自制的直角三角形紙板DEF測(cè)量樹的高度AB,他調(diào)整自己的位置,設(shè)法使斜邊DF保持水平,并且邊DE與點(diǎn)B在同一直線上.已知紙板的兩條邊DF=50cm,EF=30cm,測(cè)得邊DF離地面的高度AC=1.5m,CD=20m,則樹高AB為()A.12m B.13.5m C.15m D.16.5m二、填空題(共7小題,每小題3分,滿分21分)11.如圖,在正方形ABCD中,等邊三角形AEF的頂點(diǎn)E,F(xiàn)分別在邊BC和CD上,則∠AEB=__________.12.關(guān)于x的不等式組的整數(shù)解有4個(gè),那么a的取值范圍()A.4<a<6 B.4≤a<6 C.4<a≤6 D.2<a≤413.已知x=2是關(guān)于x的一元二次方程kx2+(k2﹣2)x+2k+4=0的一個(gè)根,則k的值為_____.14.如圖,在?ABCD中,E、F分別是AB、DC邊上的點(diǎn),AF與DE相交于點(diǎn)P,BF與CE相交于點(diǎn)Q,若S△APD=16cm1,S△BQC=15cm1,則圖中陰影部分的面積為_____cm1.15.如圖是某商品的標(biāo)志圖案,AC與BD是⊙O的兩條直徑,首尾順次連接點(diǎn)A、B、C、D,得到四邊形ABCD,若AC=10cm,∠BAC=36°,則圖中陰影部分的面積為_____.16.因式分解:4x2y﹣9y3=_____.17.如圖,正方形ABCD的邊長(zhǎng)為2,分別以A、D為圓心,2為半徑畫弧BD、AC,則圖中陰影部分的面積為_____.三、解答題(共7小題,滿分69分)18.(10分)某超市開展早市促銷活動(dòng),為早到的顧客準(zhǔn)備一份簡(jiǎn)易早餐,餐品為四樣A:菜包、B:面包、C:雞蛋、D:油條.超市約定:隨機(jī)發(fā)放,早餐一人一份,一份兩樣,一樣一個(gè).按約定,“某顧客在該天早餐得到兩個(gè)雞蛋”是事件(填“隨機(jī)”、“必然”或“不可能”);請(qǐng)用列表或畫樹狀圖的方法,求出某顧客該天早餐剛好得到菜包和油條的概率.19.(5分)(1)計(jì)算:(﹣2)2﹣+(+1)2﹣4cos60°;(2)化簡(jiǎn):÷(1﹣)20.(8分)如圖,已知:,,,求證:.21.(10分)如圖,半圓D的直徑AB=4,線段OA=7,O為原點(diǎn),點(diǎn)B在數(shù)軸的正半軸上運(yùn)動(dòng),點(diǎn)B在數(shù)軸上所表示的數(shù)為m.當(dāng)半圓D與數(shù)軸相切時(shí),m=.半圓D與數(shù)軸有兩個(gè)公共點(diǎn),設(shè)另一個(gè)公共點(diǎn)是C.①直接寫出m的取值范圍是.②當(dāng)BC=2時(shí),求△AOB與半圓D的公共部分的面積.當(dāng)△AOB的內(nèi)心、外心與某一個(gè)頂點(diǎn)在同一條直線上時(shí),求tan∠AOB的值.22.(10分)解不等式組,并寫出該不等式組的最大整數(shù)解.23.(12分)如圖,一枚運(yùn)載火箭從距雷達(dá)站C處5km的地面O處發(fā)射,當(dāng)火箭到達(dá)點(diǎn)A,B時(shí),在雷達(dá)站C測(cè)得點(diǎn)A,B的仰角分別為34°,45°,其中點(diǎn)O,A,B在同一條直線上.(1)求A,B兩點(diǎn)間的距離(結(jié)果精確到0.1km).(2)當(dāng)運(yùn)載火箭繼續(xù)直線上升到D處,雷達(dá)站測(cè)得其仰角為56°,求此時(shí)雷達(dá)站C和運(yùn)載火箭D兩點(diǎn)間的距離(結(jié)果精確到0.1km).(參考數(shù)據(jù):sin34°=0.56,cos34°=0.83,tan34°=0.1.)24.(14分)如圖,△ABC中,AB=AC=1,∠BAC=45°,△AEF是由△ABC繞點(diǎn)A按順時(shí)針方向旋轉(zhuǎn)得到的,連接BE,CF相交于點(diǎn)D.求證:BE=CF;當(dāng)四邊形ACDE為菱形時(shí),求BD的長(zhǎng).

參考答案一、選擇題(每小題只有一個(gè)正確答案,每小題3分,滿分30分)1、A【解析】

設(shè)這個(gè)正多邊形的邊數(shù)是n,就得到方程,從而求出邊數(shù),即可求出答案.【詳解】設(shè)這個(gè)多邊形的邊數(shù)為n,依題意得:180(n-2)=360×3-180,解之得n=7.故選A.【點(diǎn)睛】本題主要考查多邊形內(nèi)角與外角的知識(shí)點(diǎn),此題要結(jié)合多邊形的內(nèi)角和與外角和,根據(jù)題目中的等量關(guān)系,構(gòu)建方程求解即可.2、B【解析】由已知拋物線求出對(duì)稱軸,解:拋物線:,對(duì)稱軸,由判別式得出a的取值范圍.,,∴,①,.②由①②得.故選B.3、A【解析】

依據(jù)反比例函數(shù)的圖象與性質(zhì),即可得到整數(shù)點(diǎn)個(gè)數(shù)是5個(gè),進(jìn)而得到拋物線向上平移5個(gè)單位后形成的圖象.【詳解】解:如圖,反比例函數(shù)圖象與坐標(biāo)軸圍成的區(qū)域內(nèi)不包括邊界的整數(shù)點(diǎn)個(gè)數(shù)是5個(gè),即,

拋物線向上平移5個(gè)單位后可得:,即,

形成的圖象是A選項(xiàng).

故選A.【點(diǎn)睛】本題考查反比例函數(shù)圖象上點(diǎn)的坐標(biāo)特征、反比例函數(shù)的圖象、二次函數(shù)的性質(zhì)與圖象,解答本題的關(guān)鍵是明確題意,求出相應(yīng)的k的值,利用二次函數(shù)圖象的平移規(guī)律進(jìn)行解答.4、A【解析】

直接根據(jù)“左加右減”的原則求出平移后的解析式,然后把A(3,3)代入即可求出a的值.【詳解】由“右加左減”的原則可知,將直線y=-x+b向右平移2個(gè)單位所得直線的解析式為:y=-x+b+2,把A(3,3)代入,得3=-3+b+2,解得b=4.故選A.【點(diǎn)睛】本題考查了一次函數(shù)圖象的平移,一次函數(shù)圖象的平移規(guī)律是:①y=kx+b向左平移m個(gè)單位,是y=k(x+m)+b,向右平移m個(gè)單位是y=k(x-m)+b,即左右平移時(shí),自變量x左加右減;②y=kx+b向上平移n個(gè)單位,是y=kx+b+n,向下平移n個(gè)單位是y=kx+b-n,即上下平移時(shí),b的值上加下減.5、C【解析】

作輔助線,構(gòu)建全等三角形:過D作GH⊥x軸,過A作AG⊥GH,過B作BM⊥HC于M,證明△AGD≌△DHC≌△CMB,根據(jù)點(diǎn)D的坐標(biāo)表示:AG=DH=-x-1,由DG=BM,列方程可得x的值,表示D和E的坐標(biāo),根據(jù)三角形面積公式可得結(jié)論.【詳解】解:過D作GH⊥x軸,過A作AG⊥GH,過B作BM⊥HC于M,設(shè)D(x,),∵四邊形ABCD是正方形,∴AD=CD=BC,∠ADC=∠DCB=90°,易得△AGD≌△DHC≌△CMB(AAS),∴AG=DH=﹣x﹣1,∴DG=BM,∵GQ=1,DQ=﹣,DH=AG=﹣x﹣1,由QG+DQ=BM=DQ+DH得:1﹣=﹣1﹣x﹣,解得x=﹣2,∴D(﹣2,﹣3),CH=DG=BM=1﹣=4,∵AG=DH=﹣1﹣x=1,∴點(diǎn)E的縱坐標(biāo)為﹣4,當(dāng)y=﹣4時(shí),x=﹣,∴E(﹣,﹣4),∴EH=2﹣=,∴CE=CH﹣HE=4﹣=,∴S△CEB=CE?BM=××4=7;故選C.【點(diǎn)睛】考查正方形的性質(zhì)、全等三角形的判定和性質(zhì)、反比例函數(shù)的性質(zhì)等知識(shí),解題的關(guān)鍵是靈活運(yùn)用所學(xué)知識(shí)解決問題,學(xué)會(huì)構(gòu)建方程解決問題.6、A【解析】

分析:根據(jù)三角形的外角得:∠BDA'=∠A+∠AFD,∠AFD=∠A'+∠CEA',代入已知可得結(jié)論.詳解:由折疊得:∠A=∠A',∵∠BDA'=∠A+∠AFD,∠AFD=∠A'+∠CEA',∵∠A=α,∠CEA′=β,∠BDA'=γ,∴∠BDA'=γ=α+α+β=2α+β,故選A.點(diǎn)睛:本題考查了三角形外角的性質(zhì),熟練掌握三角形的外角等于與它不相鄰的兩個(gè)內(nèi)角的和是關(guān)鍵.7、C【解析】

利用合并同類項(xiàng)法則直接合并得出即可.【詳解】解:故選C.【點(diǎn)睛】此題主要考查了合并同類項(xiàng),熟練應(yīng)用合并同類項(xiàng)法則是解題關(guān)鍵.8、B【解析】∵在正方形ABCD中,AB=,∴AC=4,AD=DC=,∠DAP=∠DCA=45o,當(dāng)點(diǎn)Q在AD上時(shí),PA=PQ,∴DP=AP=x,∴S=;當(dāng)點(diǎn)Q在DC上時(shí),PC=PQCP=4-x,∴S=;所以該函數(shù)圖象前半部分是拋物線開口向上,后半部分也為拋物線開口向下,故選B.【點(diǎn)睛】本題考查動(dòng)點(diǎn)問題的函數(shù)圖象,有一定難度,解題關(guān)鍵是注意點(diǎn)Q在AP、DC上這兩種情況.9、C【解析】

解:A.∵∠1與∠2是直線a,b被c所截的一組同位角,∴∠1=∠2,可以得到a∥b,∴不符合題意B.∵∠2與∠3是直線a,b被c所截的一組內(nèi)錯(cuò)角,∴∠2=∠3,可以得到a∥b,∴不符合題意,C.∵∠3與∠5既不是直線a,b被任何一條直線所截的一組同位角,內(nèi)錯(cuò)角,∴∠3=∠5,不能得到a∥b,∴符合題意,D.∵∠3與∠4是直線a,b被c所截的一組同旁內(nèi)角,∴∠3+∠4=180°,可以得到a∥b,∴不符合題意,故選C.【點(diǎn)睛】本題考查平行線的判定,難度不大.10、D【解析】

利用直角三角形DEF和直角三角形BCD相似求得BC的長(zhǎng)后加上小明同學(xué)的身高即可求得樹高AB.【詳解】∵∠DEF=∠BCD=90°,∠D=∠D,∴△DEF∽△DCB,∴,∵DF=50cm=0.5m,EF=30cm=0.3m,AC=1.5m,CD=20m,∴由勾股定理求得DE=40cm,∴,∴BC=15米,∴AB=AC+BC=1.5+15=16.5(米).故答案為16.5m.【點(diǎn)睛】本題考查了相似三角形的應(yīng)用,解題的關(guān)鍵是從實(shí)際問題中整理出相似三角形的模型.二、填空題(共7小題,每小題3分,滿分21分)11、75【解析】因?yàn)椤鰽EF是等邊三角形,所以∠EAF=60°,AE=AF,因?yàn)樗倪呅蜛BCD是正方形,所以AB=AD,∠B=∠D=∠BAD=90°.所以Rt△ABE≌Rt△ADF(HL),所以∠BAE=∠DAF.所以∠BAE+∠DAF=∠BAD-∠EAF=90°-60°=30°,所以∠BAE=15°,所以∠AEB=90°-15°=75°.故答案為75.12、C【解析】分析:先根據(jù)一元一次不等式組解出x的取值,再根據(jù)不等式組的整數(shù)解有4個(gè),求出實(shí)數(shù)a的取值范圍.詳解:解不等式①,得解不等式②,得原不等式組的解集為∵只有4個(gè)整數(shù)解,∴整數(shù)解為:故選C.點(diǎn)睛:考查解一元一次不等式組的整數(shù)解,分別解不等式,寫出不等式的解題,根據(jù)不等式整數(shù)解的個(gè)數(shù),確定a的取值范圍.13、﹣1【解析】【分析】把x=2代入kx2+(k2﹣2)x+2k+4=0得4k+2k2﹣4+2k+4=0,再解關(guān)于k的方程,然后根據(jù)一元二次方程的定義確定k的值即可.【詳解】把x=2代入kx2+(k2﹣2)x+2k+4=0得4k+2k2﹣4+2k+4=0,整理得k2+1k=0,解得k1=0,k2=﹣1,因?yàn)閗≠0,所以k的值為﹣1.故答案為:﹣1.【點(diǎn)睛】本題考查了一元二次方程的定義以及一元二次方程的解,能使一元二次方程左右兩邊相等的未知數(shù)的值是一元二次方程的解.14、41【解析】試題分析:如圖,連接EF∵△ADF與△DEF同底等高,∴S△ADF=S△DEF,即S△ADF-S△DPF=S△DEF-S△DPF,即S△APD=S△EPF=16cm1,同理可得S△BQC=S△EFQ=15cm1,、∴陰影部分的面積為S△EPF+S△EFQ=16+15=41cm1.考點(diǎn):1、三角形面積,1、平行四邊形15、10πcm1.【解析】

根據(jù)已知條件得到四邊形ABCD是矩形,求得圖中陰影部分的面積=S扇形AOD+S扇形BOC=1S扇形AOD,根據(jù)等腰三角形的性質(zhì)得到∠BAC=∠ABO=36°,由圓周角定理得到∠AOD=71°,于是得到結(jié)論.【詳解】解:∵AC與BD是⊙O的兩條直徑,∴∠ABC=∠ADC=∠DAB=∠BCD=90°,∴四邊形ABCD是矩形,∴S△ABO=S△CDO=S△AOD=S△BOD,∴圖中陰影部分的面積=S扇形AOD+S扇形BOC=1S扇形AOD,∵OA=OB,∴∠BAC=∠ABO=36°,∴∠AOD=71°,∴圖中陰影部分的面積=1×=10π,故答案為10πcm1.點(diǎn)睛:本題考查了扇形的面積,矩形的判定和性質(zhì),圓周角定理的推論,三角形外角的性質(zhì),熟練掌握扇形的面積公式是解題的關(guān)鍵.16、y(2x+3y)(2x-3y)【解析】

直接提取公因式y(tǒng),再利用平方差公式分解因式即可.【詳解】4x2y﹣9y3=y(4x2-9y2=x(2x+3y)(2x-3y).【點(diǎn)睛】此題主要考查了提取公因式法以及公式法分解因式,正確運(yùn)用公式是解題關(guān)鍵.17、2﹣【解析】

過點(diǎn)F作FE⊥AD于點(diǎn)E,則AE=AD=AF,故∠AFE=∠BAF=30°,再根據(jù)勾股定理求出EF的長(zhǎng),由S弓形AF=S扇形ADF-S△ADF可得出其面積,再根據(jù)S陰影=2(S扇形BAF-S弓形AF)即可得出結(jié)論【詳解】如圖所示,過點(diǎn)F作FE⊥AD于點(diǎn)E,∵正方形ABCD的邊長(zhǎng)為2,∴AE=AD=AF=1,∴∠AFE=∠BAF=30°,∴EF=.∴S弓形AF=S扇形ADF-S△ADF=,∴S陰影=2(S扇形BAF-S弓形AF)=2×[]=2×()=.【點(diǎn)睛】本題考查了扇形的面積公式和長(zhǎng)方形性質(zhì)的應(yīng)用,關(guān)鍵是根據(jù)圖形的對(duì)稱性分析,主要考查學(xué)生的計(jì)算能力.三、解答題(共7小題,滿分69分)18、(1)不可能;(2).【解析】

(1)利用確定事件和隨機(jī)事件的定義進(jìn)行判斷;(2)畫樹狀圖展示所有12種等可能的結(jié)果數(shù),再找出其中某顧客該天早餐剛好得到菜包和油條的結(jié)果數(shù),然后根據(jù)概率公式計(jì)算.【詳解】(1)某顧客在該天早餐得到兩個(gè)雞蛋”是不可能事件;故答案為不可能;(2)畫樹狀圖:共有12種等可能的結(jié)果數(shù),其中某顧客該天早餐剛好得到菜包和油條的結(jié)果數(shù)為2,所以某顧客該天早餐剛好得到菜包和油條的概率=.【點(diǎn)睛】本題考查了列表法與樹狀圖法:利用列表法或樹狀圖法展示所有等可能的結(jié)果n,再?gòu)闹羞x出符合事件A或B的結(jié)果數(shù)目m,然后利用概率公式計(jì)算事件A或事件B的概率.19、(1)5(2)【解析】

(1)根據(jù)實(shí)數(shù)的運(yùn)算法則進(jìn)行計(jì)算,要記住特殊銳角三角函數(shù)值;(2)根據(jù)分式的混合運(yùn)算法則進(jìn)行計(jì)算.【詳解】解:(1)原式=4﹣2+2+2+1﹣4×=7﹣2=5;(2)原式=÷=?=.【點(diǎn)睛】本題考核知識(shí)點(diǎn):實(shí)數(shù)運(yùn)算,分式混合運(yùn)算.解題關(guān)鍵點(diǎn):掌握相關(guān)運(yùn)算法則.20、證明見解析;【解析】

根據(jù)HL定理證明Rt△ABC≌Rt△DEF,根據(jù)全等三角形的性質(zhì)證明即可.【詳解】,BE為公共線段,∴CE+BE=BF+BE,即又,在與中,≌∴AC=DF.【點(diǎn)睛】本題考查的是全等三角形的判定和性質(zhì),掌握全等三角形的判定定理和性質(zhì)定理是解題的關(guān)鍵.21、(1);(2)①;②△AOB與半圓D的公共部分的面積為;(3)tan∠AOB的值為或.【解析】

(1)根據(jù)題意由勾股定理即可解答(2)①根據(jù)題意可知半圓D與數(shù)軸相切時(shí),只有一個(gè)公共點(diǎn),和當(dāng)O、A、B三點(diǎn)在數(shù)軸上時(shí),求出兩種情況m的值即可②如圖,連接DC,得出△BCD為等邊三角形,可求出扇形ADC的面積,即可解答(3)根據(jù)題意如圖1,當(dāng)OB=AB時(shí),內(nèi)心、外心與頂點(diǎn)B在同一條直線上,作AH⊥OB于點(diǎn)H,設(shè)BH=x,列出方程求解即可解答如圖2,當(dāng)OB=OA時(shí),內(nèi)心、外心與頂點(diǎn)O在同一條直線上,作AH⊥OB于點(diǎn)H,設(shè)BH=x,列出方程求解即可解答【詳解】(1)當(dāng)半圓與數(shù)軸相切時(shí),AB⊥OB,由勾股定理得m=,故答案為.(2)①∵半圓D與數(shù)軸相切時(shí),只有一個(gè)公共點(diǎn),此時(shí)m=,當(dāng)O、A、B三點(diǎn)在數(shù)軸上時(shí),m=7+4=11,∴半圓D與數(shù)軸有兩個(gè)公共點(diǎn)時(shí),m的取值范圍為.故答案為.②如圖,連接DC,當(dāng)BC=2時(shí),∵BC=CD=BD=2,∴△BCD為等邊三角形,∴∠BDC=60°,∴∠ADC=120°,∴扇形ADC的面積為,,∴△AOB與半圓D的公共部分的面積為;(3)如圖1,當(dāng)OB=AB時(shí),內(nèi)心、外心與頂點(diǎn)B在同一條直線上,作AH⊥OB于點(diǎn)H,設(shè)BH=x,則72﹣(4+x)2=42﹣x2,解得x=,OH=,AH=,∴tan∠AOB=,如圖2,當(dāng)OB=OA時(shí),內(nèi)心、外心與頂點(diǎn)O在同一條直線上,作AH⊥OB于點(diǎn)H,設(shè)BH=x,則72﹣(4﹣x)2=42﹣x2,解得x=,OH=,AH=,∴tan∠AOB=.綜合以上,可得tan∠AOB的值為或.【點(diǎn)睛】此題此題考勾股定理,切線的性質(zhì),等邊三角形的判定和性質(zhì),三角形的內(nèi)心和外心,解題關(guān)鍵在于作輔助線22、﹣2,﹣1,0【解析】分析:先解不等式①,去括號(hào),移項(xiàng),系數(shù)化為1,再解不等式②,取分母,移項(xiàng),然后找出不等式組的解集.本題解析:,解不等式①得,x≥?2,解不等式②得,x<1,∴不等式組的解集為?2≤x<1.∴不等式組的最大整數(shù)解為x=0,23、(1)1.7km;(2)8.9km;【解析】

(1)根據(jù)銳角三角函數(shù)可以表示出OA和OB的長(zhǎng),從而可以求得AB的長(zhǎng);(2)根據(jù)銳角三角函數(shù)可以表示出CD,從而可以求得此時(shí)雷

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論