江蘇省無錫市江陰市長涇片重點名校2023-2024學(xué)年中考數(shù)學(xué)適應(yīng)性模擬試題含解析_第1頁
江蘇省無錫市江陰市長涇片重點名校2023-2024學(xué)年中考數(shù)學(xué)適應(yīng)性模擬試題含解析_第2頁
江蘇省無錫市江陰市長涇片重點名校2023-2024學(xué)年中考數(shù)學(xué)適應(yīng)性模擬試題含解析_第3頁
江蘇省無錫市江陰市長涇片重點名校2023-2024學(xué)年中考數(shù)學(xué)適應(yīng)性模擬試題含解析_第4頁
江蘇省無錫市江陰市長涇片重點名校2023-2024學(xué)年中考數(shù)學(xué)適應(yīng)性模擬試題含解析_第5頁
已閱讀5頁,還剩22頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)

文檔簡介

江蘇省無錫市江陰市長涇片重點名校2023-2024學(xué)年中考數(shù)學(xué)適應(yīng)性模擬試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應(yīng)位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準(zhǔn)考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.的倒數(shù)是()A. B.-3 C.3 D.2.△ABC的三條邊長分別是5,13,12,則其外接圓半徑和內(nèi)切圓半徑分別是()A.13,5 B.6.5,3 C.5,2 D.6.5,23.如圖,O為坐標(biāo)原點,四邊彤OACB是菱形,OB在x軸的正半軸上,sin∠AOB=45,反比例函數(shù)yA.10B.9C.8D.64.某市2010年元旦這天的最高氣溫是8℃,最低氣溫是﹣2℃,則這天的最高氣溫比最低氣溫高()A.10℃ B.﹣10℃ C.6℃ D.﹣6℃5.我國古代數(shù)學(xué)著作《九章算術(shù)》中,將底面是直角三角形,且側(cè)棱與底面垂直的三棱柱稱為“塹堵”某“塹堵”的三視圖如圖所示(網(wǎng)格圖中每個小正方形的邊長均為1),則該“塹堵”的側(cè)面積為()A.16+16 B.16+8 C.24+16 D.4+46.如圖,在平面直角坐標(biāo)系xOy中,菱形AOBC的一個頂點O在坐標(biāo)原點,一邊OB在x軸的正半軸上,sin∠AOB=,反比例函數(shù)y=在第一象限內(nèi)的圖象經(jīng)過點A,與BC交于點F,則△AOF的面積等于()A.30 B.40 C.60 D.807.如圖,已知E,F(xiàn)分別為正方形ABCD的邊AB,BC的中點,AF與DE交于點M,O為BD的中點,則下列結(jié)論:①∠AME=90°;②∠BAF=∠EDB;③∠BMO=90°;④MD=2AM=4EM;⑤.其中正確結(jié)論的是()A.①③④ B.②④⑤ C.①③⑤ D.①③④⑤8.神舟十號飛船是我國“神州”系列飛船之一,每小時飛行約28000公里,將28000用科學(xué)記數(shù)法表示應(yīng)為()A.2.8×103 B.28×103 C.2.8×104 D.0.28×1059.關(guān)于的敘述正確的是()A.= B.在數(shù)軸上不存在表示的點C.=± D.與最接近的整數(shù)是310.如圖,某廠生產(chǎn)一種扇形折扇,OB=10cm,AB=20cm,其中裱花的部分是用紙糊的,若扇子完全打開攤平時紙面面積為πcm2,則扇形圓心角的度數(shù)為()A.120° B.140° C.150° D.160°11.拋物線y=ax2﹣4ax+4a﹣1與x軸交于A,B兩點,C(x1,m)和D(x2,n)也是拋物線上的點,且x1<2<x2,x1+x2<4,則下列判斷正確的是()A.m<n B.m≤n C.m>n D.m≥n12.一個多邊形的內(nèi)角和比它的外角和的倍少180°,那么這個多邊形的邊數(shù)是()A.7 B.8 C.9 D.10二、填空題:(本大題共6個小題,每小題4分,共24分.)13.如圖,在△ABC中,∠ACB=90°,AC=BC=3,將△ABC折疊,使點A落在BC邊上的點D處,EF為折痕,若AE=2,則sin∠BFD的值為_____.14.ABCD為矩形的四個頂點,AB=16cm,AD=6cm,動點P、Q分別從點A、C同時出發(fā),點P以3cm/s的速度向點B移動,一直到達B為止,點Q以2cm/s的速度向D移動,P、Q兩點從出發(fā)開始到__________秒時,點P和點Q的距離是10cm.15.如圖,在平面直角坐標(biāo)系中,已知點A(1,1),以點O為旋轉(zhuǎn)中心,將點A逆時針旋轉(zhuǎn)到點B的位置,則的長為_____.16.如圖,在矩形ABCD中,AB=4,AD=3,矩形內(nèi)部有一動點P滿足S△PAB=S矩形ABCD,則點P到A、B兩點的距離之和PA+PB的最小值為______.17.如圖,BD是⊙O的直徑,BA是⊙O的弦,過點A的切線交BD延長線于點C,OE⊥AB于E,且AB=AC,若CD=2,則OE的長為_____.18.因式分解=______.三、解答題:(本大題共9個小題,共78分,解答應(yīng)寫出文字說明、證明過程或演算步驟.19.(6分)如圖,在Rt△ABC中∠ABC=90°,AC的垂直平分線交BC于D點,交AC于E點,OC=OD.(1)若,DC=4,求AB的長;(2)連接BE,若BE是△DEC的外接圓的切線,求∠C的度數(shù).20.(6分)近日,深圳市人民政府發(fā)布了《深圳市可持續(xù)發(fā)展規(guī)劃》,提出了要做可持續(xù)發(fā)展的全球創(chuàng)新城市的目標(biāo),某初中學(xué)校了解學(xué)生的創(chuàng)新意識,組織了全校學(xué)生參加創(chuàng)新能力大賽,從中抽取了部分學(xué)生成績,分為5組:A組50~60;B組60~70;C組70~80;D組80~90;E組90~100,統(tǒng)計后得到如圖所示的頻數(shù)分布直方圖(每組含最小值不含最大值)和扇形統(tǒng)計圖.抽取學(xué)生的總?cè)藬?shù)是人,扇形C的圓心角是°;補全頻數(shù)直方圖;該校共有2200名學(xué)生,若成績在70分以下(不含70分)的學(xué)生創(chuàng)新意識不強,有待進一步培養(yǎng),則該校創(chuàng)新意識不強的學(xué)生約有多少人?21.(6分)有一水果店,從批發(fā)市場按4元/千克的價格購進10噸蘋果,為了保鮮放在冷藏室里,但每天仍有一些蘋果變質(zhì),平均每天有50千克變質(zhì)丟棄,且每存放一天需要各種費用300元,據(jù)預(yù)測,每天每千克價格上漲0.1元.設(shè)x天后每千克蘋果的價格為p元,寫出p與x的函數(shù)關(guān)系式;若存放x天后將蘋果一次性售出,設(shè)銷售總金額為y元,求出y與x的函數(shù)關(guān)系式;該水果店將這批水果存放多少天后一次性售出,可以獲得最大利潤,最大利潤為多少?22.(8分)已知:正方形繞點順時針旋轉(zhuǎn)至正方形,連接.如圖,求證:;如圖,延長交于,延長交于,在不添加任何輔助線的情況下,請直接寫出如圖中的四個角,使寫出的每一個角的大小都等于旋轉(zhuǎn)角.23.(8分)某超市在春節(jié)期間開展優(yōu)惠活動,凡購物者可以通過轉(zhuǎn)動轉(zhuǎn)盤的方式享受折扣和優(yōu)惠,在每個轉(zhuǎn)盤中指針指向每個區(qū)域的可能性均相同,若指針指向分界線,則重新轉(zhuǎn)動轉(zhuǎn)盤,區(qū)域?qū)?yīng)的優(yōu)惠方式如下,A1,A2,A3區(qū)域分別對應(yīng)9折8折和7折優(yōu)惠,B1,B2,B3,B4區(qū)域?qū)?yīng)不優(yōu)惠?本次活動共有兩種方式.方式一:轉(zhuǎn)動轉(zhuǎn)盤甲,指針指向折扣區(qū)域時,所購物品享受對應(yīng)的折扣優(yōu)惠,指針指向其他區(qū)域無優(yōu)惠;方式二:同時轉(zhuǎn)動轉(zhuǎn)盤甲和轉(zhuǎn)盤乙,若兩個轉(zhuǎn)盤的指針均指向折扣區(qū)域時,所購物品享受折上折的優(yōu)惠,其他情況無優(yōu)惠.(1)若顧客選擇方式一,則享受優(yōu)惠的概率為;(2)若顧客選擇方式二,請用樹狀圖或列表法列出所有可能顧客享受折上折優(yōu)惠的概率.24.(10分)如圖1所示,點E在弦AB所對的優(yōu)弧上,且BE為半圓,C是BE上的動點,連接CA、CB,已知AB=4cm,設(shè)B、C間的距離為xcm,點C到弦AB所在直線的距離為y1cm,A、C兩點間的距離為y2cm.小明根據(jù)學(xué)習(xí)函數(shù)的經(jīng)驗,分別對函數(shù)y1、y2歲自變量x的變化而變化的規(guī)律進行了探究.下面是小明的探究過程,請補充完整.按照下表中自變量x的值進行取點、畫圖、測量,分別得到了y1、y2與x的幾組對應(yīng)值:x/cm0123456y1/cm00.781.762.853.984.954.47y2/cm44.695.265.965.944.47(2)在同一平面直角坐標(biāo)系xOy中,描出補全后的表中各組數(shù)值所對應(yīng)的點(x,y1),(x,y2),并畫出函數(shù)y1、y2的圖象;結(jié)合函數(shù)圖象,解決問題:①連接BE,則BE的長約為cm.②當(dāng)以A、B、C為頂點組成的三角形是直角三角形時,BC的長度約為cm.25.(10分)為給鄧小平誕辰周年獻禮,廣安市政府對城市建設(shè)進行了整改,如圖所示,已知斜坡長60米,坡角(即)為,,現(xiàn)計劃在斜坡中點處挖去部分斜坡,修建一個平行于水平線的休閑平臺和一條新的斜坡(下面兩個小題結(jié)果都保留根號).若修建的斜坡BE的坡比為:1,求休閑平臺的長是多少米?一座建筑物距離點米遠(即米),小亮在點測得建筑物頂部的仰角(即)為.點、、、,在同一個平面內(nèi),點、、在同一條直線上,且,問建筑物高為多少米?26.(12分)如圖,M、N為山兩側(cè)的兩個村莊,為了兩村交通方便,根據(jù)國家的惠民政策,政府決定打一直線涵洞.工程人員為了計算工程量,必須計算M、N兩點之間的直線距離,選擇測量點A、B、C,點B、C分別在AM、AN上,現(xiàn)測得AM=1千米、AN=1.8千米,AB=54米、BC=45米、AC=30米,求M、N兩點之間的距離.27.(12分)為了貫徹落實市委政府提出的“精準(zhǔn)扶貧”精神,某校特制定了一系列幫扶A、B兩貧困村的計劃,現(xiàn)決定從某地運送152箱魚苗到A、B兩村養(yǎng)殖,若用大小貨車共15輛,則恰好能一次性運完這批魚苗,已知這兩種大小貨車的載貨能力分別為12箱/輛和8箱/輛,其運往A、B兩村的運費如表:車型目的地A村(元/輛)B村(元/輛)大貨車800900小貨車400600(1)求這15輛車中大小貨車各多少輛?(2)現(xiàn)安排其中10輛貨車前往A村,其余貨車前往B村,設(shè)前往A村的大貨車為x輛,前往A、B兩村總費用為y元,試求出y與x的函數(shù)解析式.(3)在(2)的條件下,若運往A村的魚苗不少于100箱,請你寫出使總費用最少的貨車調(diào)配方案,并求出最少費用.

參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、A【解析】

先求出,再求倒數(shù).【詳解】因為所以的倒數(shù)是故選A【點睛】考核知識點:絕對值,相反數(shù),倒數(shù).2、D【解析】

根據(jù)邊長確定三角形為直角三角形,斜邊即為外切圓直徑,內(nèi)切圓半徑為,【詳解】解:如下圖,∵△ABC的三條邊長分別是5,13,12,且52+122=132,∴△ABC是直角三角形,其斜邊為外切圓直徑,∴外切圓半徑==6.5,內(nèi)切圓半徑==2,故選D.【點睛】本題考查了直角三角形內(nèi)切圓和外切圓的半徑,屬于簡單題,熟悉概念是解題關(guān)鍵.3、A【解析】過點A作AM⊥x軸于點M,過點F作FN⊥x軸于點N,設(shè)OA=a,BF=b,通過解直角三角形分別找出點A、F的坐標(biāo),結(jié)合反比例函數(shù)圖象上點的坐標(biāo)特征即可求出a、b的值,通過分割圖形求面積,最終找出△AOF的面積等于梯形AMNF的面積,利用梯形的面積公式即可得出結(jié)論.解:過點A作AM⊥x軸于點M,過點F作FN⊥x軸于點N,如圖所示.設(shè)OA=a,BF=b,在Rt△OAM中,∠AMO=90°,OA=a,sin∠AOB=45∴AM=OA?sin∠AOB=45a,OM=OA2∴點A的坐標(biāo)為(35a,4∵點A在反比例函數(shù)y=12x∴35a×45a=1225解得:a=5,或a=﹣5(舍去).∴AM=8,OM=1.∵四邊形OACB是菱形,∴OA=OB=10,BC∥OA,∴∠FBN=∠AOB.在Rt△BNF中,BF=b,sin∠FBN=45∴FN=BF?sin∠FBN=45b,BN=BF2∴點F的坐標(biāo)為(10+35b,4∵點F在反比例函數(shù)y=12x∴(10+35b)×4S△AOF=S△AOM+S梯形AMNF﹣S△OFN=S梯形AMNF=10故選A.“點睛”本題主要考查了菱形的性質(zhì)、解直角三角形以及反比例函數(shù)圖象上點的坐標(biāo)特征,解題的關(guān)鍵是找出S△AOF=12S菱形OBCA4、A【解析】

用最高氣溫減去最低氣溫,再根據(jù)有理數(shù)的減法運算法則“減去一個數(shù)等于加上這個數(shù)的相反數(shù)”即可求得答案.【詳解】8-(-2)=8+2=10℃.即這天的最高氣溫比最低氣溫高10℃.故選A.5、A【解析】

分析出此三棱柱的立體圖像即可得出答案.【詳解】由三視圖可知主視圖為一個側(cè)面,另外兩個側(cè)面全等,是長×高=×4=,所以側(cè)面積之和為×2+4×4=16+16,所以答案選擇A項.【點睛】本題考查了由三視圖求側(cè)面積,畫出該圖的立體圖形是解決本題的關(guān)鍵.6、B【解析】

過點A作AM⊥x軸于點M,設(shè)OA=a,通過解直角三角形找出點A的坐標(biāo),結(jié)合反比例函數(shù)圖象上點的坐標(biāo)特征即可求出a的值,再根據(jù)四邊形OACB是菱形、點F在邊BC上,即可得出S△AOF=S菱形OBCA,結(jié)合菱形的面積公式即可得出結(jié)論.【詳解】過點A作AM⊥x軸于點M,如圖所示.設(shè)OA=a,在Rt△OAM中,∠AMO=90°,OA=a,sin∠AOB=,∴AM=OA?sin∠AOB=a,OM==a,∴點A的坐標(biāo)為(a,a).∵點A在反比例函數(shù)y=的圖象上,∴a?a=a2=48,解得:a=1,或a=-1(舍去).∴AM=8,OM=6,OB=OA=1.∵四邊形OACB是菱形,點F在邊BC上,∴S△AOF=S菱形OBCA=OB?AM=2.故選B.【點睛】本題考查了菱形的性質(zhì)、解直角三角形以及反比例函數(shù)圖象上點的坐標(biāo)特征,解題的關(guān)鍵是找出S△AOF=S菱形OBCA.7、D【解析】

根據(jù)正方形的性質(zhì)可得AB=BC=AD,∠ABC=∠BAD=90°,再根據(jù)中點定義求出AE=BF,然后利用“邊角邊”證明△ABF和△DAE全等,根據(jù)全等三角形對應(yīng)角相等可得∠BAF=∠ADE,然后求出∠ADE+∠DAF=∠BAD=90°,從而求出∠AMD=90°,再根據(jù)鄰補角的定義可得∠AME=90°,從而判斷①正確;根據(jù)中線的定義判斷出∠ADE≠∠EDB,然后求出∠BAF≠∠EDB,判斷出②錯誤;根據(jù)直角三角形的性質(zhì)判斷出△AED、△MAD、△MEA三個三角形相似,利用相似三角形對應(yīng)邊成比例可得,然后求出MD=2AM=4EM,判斷出④正確,設(shè)正方形ABCD的邊長為2a,利用勾股定理列式求出AF,再根據(jù)相似三角形對應(yīng)邊成比例求出AM,然后求出MF,消掉a即可得到AM=MF,判斷出⑤正確;過點M作MN⊥AB于N,求出MN、NB,然后利用勾股定理列式求出BM,過點M作GH∥AB,過點O作OK⊥GH于K,然后求出OK、MK,再利用勾股定理列式求出MO,根據(jù)正方形的性質(zhì)求出BO,然后利用勾股定理逆定理判斷出∠BMO=90°,從而判斷出③正確.【詳解】在正方形ABCD中,AB=BC=AD,∠ABC=∠BAD=90°,

∵E、F分別為邊AB,BC的中點,

∴AE=BF=BC,

在△ABF和△DAE中,,

∴△ABF≌△DAE(SAS),

∴∠BAF=∠ADE,

∵∠BAF+∠DAF=∠BAD=90°,

∴∠ADE+∠DAF=∠BAD=90°,

∴∠AMD=180°-(∠ADE+∠DAF)=180°-90°=90°,

∴∠AME=180°-∠AMD=180°-90°=90°,故①正確;

∵DE是△ABD的中線,

∴∠ADE≠∠EDB,

∴∠BAF≠∠EDB,故②錯誤;

∵∠BAD=90°,AM⊥DE,

∴△AED∽△MAD∽△MEA,

∴∴AM=2EM,MD=2AM,

∴MD=2AM=4EM,故④正確;

設(shè)正方形ABCD的邊長為2a,則BF=a,

在Rt△ABF中,AF=∵∠BAF=∠MAE,∠ABC=∠AME=90°,

∴△AME∽△ABF,

∴,

即,

解得AM=

∴MF=AF-AM=,

∴AM=MF,故⑤正確;

如圖,過點M作MN⊥AB于N,

則即解得MN=,AN=,

∴NB=AB-AN=2a-=,

根據(jù)勾股定理,BM=過點M作GH∥AB,過點O作OK⊥GH于K,

則OK=a-=,MK=-a=,

在Rt△MKO中,MO=根據(jù)正方形的性質(zhì),BO=2a×,

∵BM2+MO2=

∴BM2+MO2=BO2,

∴△BMO是直角三角形,∠BMO=90°,故③正確;

綜上所述,正確的結(jié)論有①③④⑤共4個.故選:D【點睛】本題考查了正方形的性質(zhì),全等三角形的判定與性質(zhì),相似三角形的判定與性質(zhì),勾股定理的應(yīng)用,勾股定理逆定理的應(yīng)用,綜合性較強,難度較大,仔細分析圖形并作出輔助線構(gòu)造出直角三角形與相似三角形是解題的關(guān)鍵.8、C【解析】試題分析:28000=1.1×1.故選C.考點:科學(xué)記數(shù)法—表示較大的數(shù).9、D【解析】

根據(jù)二次根式的加法法則、實數(shù)與數(shù)軸上的點是一一對應(yīng)的關(guān)系、二次根式的化簡及無理數(shù)的估算對各項依次分析,即可解答.【詳解】選項A,+無法計算;選項B,在數(shù)軸上存在表示的點;選項C,;選項D,與最接近的整數(shù)是=1.故選D.【點睛】本題考查了二次根式的加法法則、實數(shù)與數(shù)軸上的點是一一對應(yīng)的關(guān)系、二次根式的化簡及無理數(shù)的估算等知識點,熟記這些知識點是解題的關(guān)鍵.10、C【解析】

根據(jù)扇形的面積公式列方程即可得到結(jié)論.【詳解】∵OB=10cm,AB=20cm,∴OA=OB+AB=30cm,設(shè)扇形圓心角的度數(shù)為α,∵紙面面積為πcm2,∴,∴α=150°,故選:C.【點睛】本題考了扇形面積的計算的應(yīng)用,解題的關(guān)鍵是熟練掌握扇形面積計算公式:扇形的面積=.11、C【解析】分析:將一般式配方成頂點式,得出對稱軸方程根據(jù)拋物線與x軸交于兩點,得出求得距離對稱軸越遠,函數(shù)的值越大,根據(jù)判斷出它們與對稱軸之間的關(guān)系即可判定.詳解:∵∴此拋物線對稱軸為∵拋物線與x軸交于兩點,∴當(dāng)時,得∵∴∴故選C.點睛:考查二次函數(shù)的圖象以及性質(zhì),開口向上,距離對稱軸越遠的點,對應(yīng)的函數(shù)值越大,12、A【解析】

設(shè)這個正多邊形的邊數(shù)是n,就得到方程,從而求出邊數(shù),即可求出答案.【詳解】設(shè)這個多邊形的邊數(shù)為n,依題意得:180(n-2)=360×3-180,解之得n=7.故選A.【點睛】本題主要考查多邊形內(nèi)角與外角的知識點,此題要結(jié)合多邊形的內(nèi)角和與外角和,根據(jù)題目中的等量關(guān)系,構(gòu)建方程求解即可.二、填空題:(本大題共6個小題,每小題4分,共24分.)13、【解析】分析:過點D作DGAB于點G.根據(jù)折疊性質(zhì),可得AE=DE=2,AF=DF,CE=1,在Rt△DCE中,由勾股定理求得,所以DB=;在Rt△ABC中,由勾股定理得;在Rt△DGB中,由銳角三角函數(shù)求得,;設(shè)AF=DF=x,則FG=,在Rt△DFG中,根據(jù)勾股定理得方程=,解得,從而求得.的值詳解:如圖所示,過點D作DGAB于點G.根據(jù)折疊性質(zhì),可知△AEF△DEF,∴AE=DE=2,AF=DF,CE=AC-AE=1,在Rt△DCE中,由勾股定理得,∴DB=;在Rt△ABC中,由勾股定理得;在Rt△DGB中,,;設(shè)AF=DF=x,得FG=AB-AF-GB=,在Rt△DFG中,,即=,解得,∴==.故答案為.點睛:主要考查了翻折變換的性質(zhì)、勾股定理、銳角三件函數(shù)的定義;解題的關(guān)鍵是靈活運用折疊的性質(zhì)、勾股定理、銳角三角函數(shù)的定義等知識來解決問題.14、或【解析】

作PH⊥CD,垂足為H,設(shè)運動時間為t秒,用t表示線段長,用勾股定理列方程求解.【詳解】設(shè)P,Q兩點從出發(fā)經(jīng)過t秒時,點P,Q間的距離是10cm,作PH⊥CD,垂足為H,則PH=AD=6,PQ=10,∵DH=PA=3t,CQ=2t,∴HQ=CD?DH?CQ=|16?5t|,由勾股定理,得解得即P,Q兩點從出發(fā)經(jīng)過1.6或4.8秒時,點P,Q間的距離是10cm.故答案為或.【點睛】考查矩形的性質(zhì),勾股定理,解一元二次方程等,表示出HQ=CD?DH?CQ=|16?5t|是解題的關(guān)鍵.15、.【解析】

由點A(1,1),可得OA的長,點A在第一象限的角平分線上,可得∠AOB=45°,,再根據(jù)弧長公式計算即可.【詳解】∵A(1,1),∴OA=,點A在第一象限的角平分線上,∵以點O為旋轉(zhuǎn)中心,將點A逆時針旋轉(zhuǎn)到點B的位置,∴∠AOB=45°,∴的長為=,故答案為:.【點睛】本題考查坐標(biāo)與圖形變化——旋轉(zhuǎn),弧長公式,熟練掌握旋轉(zhuǎn)的性質(zhì)以及弧長公式是解題的關(guān)鍵.本題中求出OA=以及∠AOB=45°也是解題的關(guān)鍵.16、4【解析】分析:首先由S△PAB=S矩形ABCD,得出動點P在與AB平行且與AB的距離是2的直線l上,作A關(guān)于直線l的對稱點E,連接AE,連接BE,則BE的長就是所求的最短距離.然后在直角三角形ABE中,由勾股定理求得BE的值,即PA+PB的最小值.詳解:設(shè)△ABP中AB邊上的高是h.∵S△PAB=S矩形ABCD,∴AB?h=AB?AD,∴h=AD=2,∴動點P在與AB平行且與AB的距離是2的直線l上,如圖,作A關(guān)于直線l的對稱點E,連接AE,連接BE,則BE的長就是所求的最短距離.在Rt△ABE中,∵AB=4,AE=2+2=4,∴BE=,即PA+PB的最小值為4.故答案為4.點睛:本題考查了軸對稱-最短路線問題,三角形的面積,矩形的性質(zhì),勾股定理,兩點之間線段最短的性質(zhì).得出動點P所在的位置是解題的關(guān)鍵.17、【解析】

連接OA,所以∠OAC=90°,因為AB=AC,所以∠B=∠C,根據(jù)圓周角定理可知∠AOD=2∠B=2∠C,故可求出∠B和∠C的度數(shù),在Rt△OAC中,求出OA的值,再在Rt△OAE中,求出OE的值,得到答案.【詳解】連接OA,由題意可知∠OAC=90°,∵AB=AC,∴∠B=∠C,根據(jù)圓周角定理可知∠AOD=2∠B=2∠C,∵∠OAC=90°∴∠C+∠AOD=90°,∴∠C+2∠C=90°,故∠C=30°=∠B,∴在Rt△OAC中,sin∠C==,∴OC=2OA,∵OA=OD,∴OD+CD=2OA,∴CD=OA=2,∵OB=OA,∴∠OAE=∠B=30°,∴在Rt△OAE中,sin∠OAE==,∴OA=2OE,∴OE=OA=,故答案為.【點睛】本題主要考查了圓周角定理,角的轉(zhuǎn)換,以及在直角三角形中的三角函數(shù)的運用,解本題的要點在于求出OA的值,從而利用直角三角形的三角函數(shù)的運用求出答案.18、.【解析】解:==,故答案為:.三、解答題:(本大題共9個小題,共78分,解答應(yīng)寫出文字說明、證明過程或演算步驟.19、(1);(2)30°【解析】

(1)由于DE垂直平分AC,那么AE=EC,∠DEC=90°,而∠ABC=∠DEC=90°,∠C=∠C,易證,△ABC∽△DEC,∠A=∠CDE,于是sin∠CDE=sinA=,AB:AC=DE:DC,而DC=4,易求EC,利用勾股定理可求DE,易知AC=6,利用相似三角形中的比例線段可求AB;

(2)連接OE,由于∠DEC=90°,那么∠EDC+∠C=90°,又BE是切線,那么∠BEO=90°,于是∠EOB+∠EBC=90°,而BE是直角三角形斜邊上的中線,那么BE=CE,于是∠EBC=∠C,從而有∠EOB=∠EDC,又OE=OD,易證△DEO是等邊三角形,那么∠EDC=60°,從而可求∠C.【詳解】解:(1)∵AC的垂直平分線交BC于D點,交AC于E點,∴∠DEC=90°,AE=EC,∵∠ABC=90°,∠C=∠C,∴∠A=∠CDE,△ABC∽△DEC,∴sin∠CDE=,AB:AC=DE:DC,∵DC=4,∴ED=3,∴DE=,∴AC=6,∴AB:6=:4,∴AB=;(2)連接OE,∵∠DEC=90°,∴∠EDC+∠C=90°,∵BE是⊙O的切線,∴∠BEO=90°,∴∠EOB+∠EBC=90°,∵E是AC的中點,∠ABC=90°,∴BE=EC,∴∠EBC=∠C,∴∠EOB=∠EDC,又∵OE=OD,∴△DOE是等邊三角形,∴∠EDC=60°,∴∠C=30°.【點睛】考查了切線的性質(zhì)、線段垂直平分線的性質(zhì)、相似三角形的判定和性質(zhì)、勾股定理、等邊三角形的判定和性質(zhì).解題的關(guān)鍵是連接OE,構(gòu)造直角三角形.20、(1)300、144;(2)補全頻數(shù)分布直方圖見解析;(3)該校創(chuàng)新意識不強的學(xué)生約有528人.【解析】

(1)由D組頻數(shù)及其所占比例可得總?cè)藬?shù),用360°乘以C組人數(shù)所占比例可得;

(2)用總?cè)藬?shù)分別乘以A、B組的百分比求得其人數(shù),再用總?cè)藬?shù)減去A、B、C、D的人數(shù)求得E組的人數(shù)可得;

(3)用總?cè)藬?shù)乘以樣本中A、B組的百分比之和可得.【詳解】解:(1)抽取學(xué)生的總?cè)藬?shù)為78÷26%=300人,扇形C的圓心角是360°×=144°,故答案為300、144;(2)A組人數(shù)為300×7%=21人,B組人數(shù)為300×17%=51人,則E組人數(shù)為300﹣(21+51+120+78)=30人,補全頻數(shù)分布直方圖如下:(3)該校創(chuàng)新意識不強的學(xué)生約有2200×(7%+17%)=528人.【點睛】考查了頻數(shù)(率)分布直方圖:提高讀頻數(shù)分布直方圖的能力和利用統(tǒng)計圖獲取信息的能力.利用統(tǒng)計圖獲取信息時,必須認(rèn)真觀察、分析、研究統(tǒng)計圖,才能作出正確的判斷和解決問題.也考查了用樣本估計總體.21、;(3)該水果店將這批水果存放50天后一次性售出,可以獲得最大利潤,最大利潤為12500元.【解析】

(1)根據(jù)按每千克元的市場價收購了這種蘋果千克,此后每天每千克蘋果價格會上漲元,進而得出天后每千克蘋果的價格為元與的函數(shù)關(guān)系;(2)根據(jù)每千克售價乘以銷量等于銷售總金額,求出即可;(3)利用總售價-成本-費用=利潤,進而求出即可.【詳解】根據(jù)題意知,;.當(dāng)時,最大利潤12500元,答:該水果店將這批水果存放50天后一次性售出,可以獲得最大利潤,最大利潤為12500元.【點睛】此題主要考查了二次函數(shù)的應(yīng)用以及二次函數(shù)最值求法,得出與的函數(shù)關(guān)系是解題關(guān)鍵.22、(1)證明見解析;(2).【解析】

(1)連接AF、AC,易證∠EAC=∠DAF,再證明ΔEAC?ΔDAF,根據(jù)全等三角形的性質(zhì)即可得CE=DF;(2)由旋轉(zhuǎn)的性質(zhì)可得∠DAG、∠BAE都是旋轉(zhuǎn)角,在四邊形AEMB中,∠BAE+∠EMB=180°,∠FMC+∠EMB=180°,可得∠FMC=∠BAE,同理可得∠DAG=∠CNF,由此即可解答.【詳解】(1)證明:連接,∵正方形旋轉(zhuǎn)至正方形∴,∴∴在和中,,∴∴(2).∠DAG、∠BAE、∠FMC、∠CNF;由旋轉(zhuǎn)的性質(zhì)可得∠DAG、∠BAE都是旋轉(zhuǎn)角,在四邊形AEMB中,∠BAE+∠EMB=180°,∠FMC+∠EMB=180°,可得∠FMC=∠BAE,同理可得∠DAG=∠CNF,【點睛】本題考查了正方形的性質(zhì)、旋轉(zhuǎn)的性質(zhì)及全等三角形的判定與性質(zhì),證明ΔEAC?ΔDAF是解決問題的關(guān)鍵.23、(1);(2).【解析】

(1)根據(jù)題意和圖形,可以求得顧客選擇方式一,享受優(yōu)惠的概率;(2)根據(jù)題意可以畫出相應(yīng)的樹狀圖,從而可以求得相應(yīng)的概率.【詳解】解:(1)由題意可得,顧客選擇方式一,則享受優(yōu)惠的概率為:,故答案為:;(2)樹狀圖如下圖所示,則顧客享受折上折優(yōu)惠的概率是:,即顧客享受折上折優(yōu)惠的概率是.【點睛】本題考查列表法與樹狀圖法,解答本題的關(guān)鍵是明確題意,列出相應(yīng)的樹狀圖,求出相應(yīng)的概率.24、(1)詳見解析;(2)詳見解析;(3)①6;②6或4.1.【解析】

(1)由題意得出BC=3cm時,CD=2.85cm,從點C與點B重合開始,一直到BC=4,CD、AC隨著BC的增大而增大,則CD一直與AB的延長線相交,由勾股定理得出BD=BC2-CD2≈0.9367(cm),得出AD=AB(2)描出補全后的表中各組數(shù)值所對應(yīng)的點(x,y1),(x,y2),畫出函數(shù)y1、y2的圖象即可;(3)①∵BC=6時,CD=AC=4.1,即點C與點E重合,CD與AC重合,BC為直徑,得出BE=BC=6即可;②分兩種情況:當(dāng)∠CAB=90°時,AC=CD,即圖象y1與y2的交點,由圖象可得:BC=6;當(dāng)∠CBA=90°時,BC=AD,由圓的對稱性與∠CAB=90°時對稱,AC=6,由圖象可得:BC=4.1.【詳解】(1)由表中自變量x的值進行取點、畫圖、測量,分別得到了y1、y2與x的幾組對應(yīng)值知:BC=3cm時,CD=2.85cm,從點C與點B重合開始,一直到BC=4,CD、AC隨著BC的增大而增大,則CD一直與AB的延長線相交,如圖1所示:∵CD⊥AB,∴BD=BC2-∴AD=AB+BD=4+0.9367=4.9367(cm),∴AC=CD2補充完整如下表:(2)描出補全后的表中各組數(shù)值所對應(yīng)的點(x,y1),(x,y2),畫出函數(shù)y1、y2的圖象如圖2所示:(3)①∵BC=6cm時,CD=AC=4.1cm,即點C與點E重合,CD與AC重合,BC為直徑,∴BE=BC=6cm,故答案為:6;②以A、B、C為頂點組成的三角形是直角三角形時,分兩種情況:當(dāng)∠C

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論