人教A版高中數(shù)學(xué)(必修第一冊)同步講義 4.5 函數(shù)與方程(原卷版)_第1頁
人教A版高中數(shù)學(xué)(必修第一冊)同步講義 4.5 函數(shù)與方程(原卷版)_第2頁
人教A版高中數(shù)學(xué)(必修第一冊)同步講義 4.5 函數(shù)與方程(原卷版)_第3頁
人教A版高中數(shù)學(xué)(必修第一冊)同步講義 4.5 函數(shù)與方程(原卷版)_第4頁
人教A版高中數(shù)學(xué)(必修第一冊)同步講義 4.5 函數(shù)與方程(原卷版)_第5頁
已閱讀5頁,還剩37頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

第第頁第05講4.5.1函數(shù)的零點(diǎn)與方程的解課程標(biāo)準(zhǔn)學(xué)習(xí)目標(biāo)①了解函數(shù)的零點(diǎn)與方程的解的關(guān)系,并能結(jié)合函數(shù)的圖象判定函數(shù)的零點(diǎn)。②能根據(jù)函數(shù)零點(diǎn)存在性定理對函數(shù)零點(diǎn)存在進(jìn)行判定,同時(shí)能處理與函數(shù)零點(diǎn)問題相結(jié)合的求參數(shù)及綜合類的問題。通過本節(jié)課的學(xué)習(xí),要求能判定函數(shù)零點(diǎn)的存在,同時(shí)能解決與函數(shù)零點(diǎn)相結(jié)合的綜合問題知識點(diǎn)01:函數(shù)零點(diǎn)的概念1、函數(shù)零點(diǎn)的概念對于一般函數(shù)SKIPIF1<0,我們把使SKIPIF1<0的實(shí)數(shù)SKIPIF1<0叫做函數(shù)SKIPIF1<0的零點(diǎn).幾何定義:函數(shù)SKIPIF1<0的零點(diǎn)就是方程SKIPIF1<0的實(shí)數(shù)解,也就是函數(shù)SKIPIF1<0的圖象與SKIPIF1<0軸的公共點(diǎn)的橫坐標(biāo).

這樣:方程SKIPIF1<0有實(shí)數(shù)解SKIPIF1<0函數(shù)SKIPIF1<0有零點(diǎn)SKIPIF1<0函數(shù)SKIPIF1<0的圖象與SKIPIF1<0軸有公共點(diǎn)2、已學(xué)基本初等函數(shù)的零點(diǎn)①一次函數(shù)SKIPIF1<0只有一個(gè)零點(diǎn)SKIPIF1<0;②反比例函數(shù)SKIPIF1<0沒有零點(diǎn);③指數(shù)函數(shù)SKIPIF1<0(SKIPIF1<0且SKIPIF1<0)沒有零點(diǎn);④對數(shù)函數(shù)SKIPIF1<0(SKIPIF1<0且SKIPIF1<0)只有一個(gè)零點(diǎn)1;⑤冪函數(shù)SKIPIF1<0當(dāng)SKIPIF1<0時(shí),有一個(gè)零點(diǎn)0;當(dāng)SKIPIF1<0時(shí),無零點(diǎn)。知識點(diǎn)02:函數(shù)零點(diǎn)存在定理及其應(yīng)用1、函數(shù)零點(diǎn)存在定理如果函數(shù)SKIPIF1<0在區(qū)間SKIPIF1<0上的圖象是一條連續(xù)不斷的曲線,且有SKIPIF1<0,那么函數(shù)SKIPIF1<0在區(qū)間SKIPIF1<0內(nèi)至少有一個(gè)零點(diǎn),即存在SKIPIF1<0,使得SKIPIF1<0,這個(gè)SKIPIF1<0也就是方程SKIPIF1<0的解.說明:定理要求具備兩個(gè)條件:①函數(shù)在區(qū)間SKIPIF1<0上的圖象是連續(xù)不斷的;②SKIPIF1<0.兩個(gè)條件缺一不可.2、函數(shù)零點(diǎn)的求法①代數(shù)法:根據(jù)零點(diǎn)定義,求出方程SKIPIF1<0的實(shí)數(shù)解;②數(shù)形結(jié)合法:作出函數(shù)圖象,利用函數(shù)性質(zhì)求解【即學(xué)即練1】(2023春·四川廣安·高一??茧A段練習(xí))函數(shù)SKIPIF1<0的零點(diǎn)為.3、函數(shù)零點(diǎn)個(gè)數(shù)的判斷①利用代數(shù)法,求出所有零點(diǎn);②數(shù)形結(jié)合,通過作圖,找出圖象與SKIPIF1<0軸交點(diǎn)的個(gè)數(shù);③數(shù)形結(jié)合,通過分離,將原函數(shù)拆分成兩個(gè)函數(shù),找到兩個(gè)函數(shù)圖象交點(diǎn)的個(gè)數(shù);④函數(shù)零點(diǎn)唯一:函數(shù)存在零點(diǎn)+函數(shù)單調(diào).知識點(diǎn)03:二次函數(shù)的零點(diǎn)問題一元二次方程SKIPIF1<0的實(shí)數(shù)根也稱為函數(shù)SKIPIF1<0的零點(diǎn).當(dāng)SKIPIF1<0時(shí),一元二次方程SKIPIF1<0的實(shí)數(shù)根、二次函數(shù)SKIPIF1<0的零點(diǎn)之間的關(guān)系如下表所示:SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0的實(shí)數(shù)根SKIPIF1<0(其中SKIPIF1<0)SKIPIF1<0方程無實(shí)數(shù)根SKIPIF1<0的圖象SKIPIF1<0的零點(diǎn)SKIPIF1<0SKIPIF1<0函數(shù)無零點(diǎn)【即學(xué)即練2】(2023·高一課時(shí)練習(xí))若函數(shù)SKIPIF1<0的一個(gè)零點(diǎn)是1,則它的另一個(gè)零點(diǎn)是.題型01求函數(shù)的零點(diǎn)【典例1】函數(shù)SKIPIF1<0的零點(diǎn)為.【典例2】已知函數(shù)SKIPIF1<0,則函數(shù)SKIPIF1<0的零點(diǎn)為.【變式1】函數(shù)SKIPIF1<0的零點(diǎn)是【變式2】求下列函數(shù)的零點(diǎn).(1)SKIPIF1<0;(2)SKIPIF1<0.題型02函數(shù)零點(diǎn)個(gè)數(shù)的判斷【典例1】函數(shù)SKIPIF1<0的零點(diǎn)個(gè)數(shù)為()A.1B.2C.1或2D.0【典例2】方程SKIPIF1<0的實(shí)數(shù)解的個(gè)數(shù)是(

)A.0B.1C.2D.3【典例3】已知SKIPIF1<0,方程SKIPIF1<0的實(shí)根個(gè)數(shù)為.【典例4】若函數(shù)SKIPIF1<0,則函數(shù)SKIPIF1<0的零點(diǎn)個(gè)數(shù)是.【變式1】函數(shù)SKIPIF1<0的零點(diǎn)的個(gè)數(shù)是(

)A.0B.1C.2D.無數(shù)個(gè)【變式2】已知函數(shù)SKIPIF1<0.(1)作出函數(shù)SKIPIF1<0的圖象;(2)就a的取值范圍討論函數(shù)SKIPIF1<0的零點(diǎn)的個(gè)數(shù).【變式3】若SKIPIF1<0的值域?yàn)镾KIPIF1<0,則SKIPIF1<0至多有個(gè)零點(diǎn).【變式4】函數(shù)SKIPIF1<0的圖象與函數(shù)SKIPIF1<0的圖象的交點(diǎn)個(gè)數(shù)為個(gè).題型03判斷函數(shù)零點(diǎn)所在的區(qū)間【典例1】若SKIPIF1<0是方程SKIPIF1<0的解,則SKIPIF1<0(

)A.SKIPIF1<0B.SKIPIF1<0C.SKIPIF1<0D.SKIPIF1<0【典例2】設(shè)SKIPIF1<0為方程SKIPIF1<0的解,若SKIPIF1<0,則SKIPIF1<0的值為.【變式1】函數(shù)SKIPIF1<0的零點(diǎn)所在區(qū)間是(

)A.SKIPIF1<0B.SKIPIF1<0C.SKIPIF1<0D.SKIPIF1<0【變式2】函數(shù)SKIPIF1<0的零點(diǎn)為SKIPIF1<0,且SKIPIF1<0,SKIPIF1<0,則k的值為(

)A.1B.2C.0D.3題型04已知零點(diǎn)個(gè)數(shù)求參數(shù)的取值范圍【典例1】若方程SKIPIF1<0有兩個(gè)不同的實(shí)數(shù)根,則實(shí)數(shù)SKIPIF1<0的取值范圍為(

)A.SKIPIF1<0B.SKIPIF1<0C.SKIPIF1<0D.SKIPIF1<0【典例2】設(shè)SKIPIF1<0表示m,n中的較小數(shù).若函數(shù)SKIPIF1<0至少有3個(gè)零點(diǎn),則實(shí)數(shù)SKIPIF1<0的取值范圍是(

)A.SKIPIF1<0B.SKIPIF1<0C.SKIPIF1<0D.SKIPIF1<0【典例3】若函數(shù)SKIPIF1<0有2個(gè)零點(diǎn),求實(shí)數(shù)a的取值范圍.【典例4】已知函數(shù)SKIPIF1<0是偶函數(shù).當(dāng)SKIPIF1<0時(shí),SKIPIF1<0.(1)求函數(shù)SKIPIF1<0在SKIPIF1<0上的解析式;(2)若函數(shù)SKIPIF1<0在區(qū)間SKIPIF1<0上單調(diào),求實(shí)數(shù)a的取值范圍;(3)已知SKIPIF1<0,試討論SKIPIF1<0的零點(diǎn)個(gè)數(shù),并求對應(yīng)的m的取值范圍.【變式1】設(shè)SKIPIF1<0,函數(shù)SKIPIF1<0若SKIPIF1<0恰有一個(gè)零點(diǎn),則SKIPIF1<0的取值范圍是(

)A.SKIPIF1<0B.SKIPIF1<0C.SKIPIF1<0D.SKIPIF1<0【變式2】(多選)已知函數(shù)SKIPIF1<0,若關(guān)于x的方程SKIPIF1<0恰有兩個(gè)互異的實(shí)數(shù)解,則實(shí)數(shù)a的值可以是(

)A.0B.1C.SKIPIF1<0D.2【變式3】若函數(shù)SKIPIF1<0在SKIPIF1<0內(nèi)有且只有一個(gè)零點(diǎn),則SKIPIF1<0的取值集合是.【變式4】已知SKIPIF1<0是定義在SKIPIF1<0上的偶函數(shù).(1)求SKIPIF1<0的值;(2)畫出SKIPIF1<0的圖象,并指出其單調(diào)減區(qū)間;(3)若關(guān)于SKIPIF1<0的方程SKIPIF1<0有2個(gè)不相等的實(shí)數(shù)根,求實(shí)數(shù)SKIPIF1<0的取值范圍.題型05已知零點(diǎn)所在區(qū)間求參數(shù)的取值范圍【典例1】函數(shù)SKIPIF1<0在區(qū)間SKIPIF1<0上存在零點(diǎn),則實(shí)數(shù)SKIPIF1<0的取值范圍是(

)A.SKIPIF1<0B.SKIPIF1<0C.SKIPIF1<0D.SKIPIF1<0【典例2】(多選)函數(shù)SKIPIF1<0的一個(gè)零點(diǎn)在區(qū)間SKIPIF1<0內(nèi),則實(shí)數(shù)a的可能取值是(

)A.0B.1C.2D.3【典例3】設(shè)SKIPIF1<0為實(shí)數(shù),函數(shù)SKIPIF1<0在SKIPIF1<0上有零點(diǎn),則實(shí)數(shù)SKIPIF1<0的取值范圍為.【變式1】若函數(shù)SKIPIF1<0在SKIPIF1<0內(nèi)恰有一個(gè)零點(diǎn),則a的取值范圍(

)A.SKIPIF1<0B.SKIPIF1<0C.SKIPIF1<0D.SKIPIF1<0【變式2】)若關(guān)于SKIPIF1<0的方程SKIPIF1<0在SKIPIF1<0上有解,則實(shí)數(shù)SKIPIF1<0的取值范圍是.【變式3】若函數(shù)SKIPIF1<0在區(qū)間SKIPIF1<0內(nèi)有零點(diǎn),則實(shí)數(shù)SKIPIF1<0的取值范圍是.題型06二次函數(shù)的零點(diǎn)問題【典例1】已知函數(shù)SKIPIF1<0的零點(diǎn)為SKIPIF1<0,滿足SKIPIF1<0,則SKIPIF1<0的取值范圍為(

)A.SKIPIF1<0B.SKIPIF1<0C.SKIPIF1<0D.SKIPIF1<0【典例2】方程SKIPIF1<0的一根大于1,一根小于1,則實(shí)數(shù)SKIPIF1<0的取值范圍是.【典例3】(1)判斷二次函數(shù)SKIPIF1<0在SKIPIF1<0內(nèi)是否存在零點(diǎn);(2)若二次函數(shù)SKIPIF1<0SKIPIF1<0的兩個(gè)零點(diǎn)均為正數(shù),求實(shí)數(shù)SKIPIF1<0的取值范圍.【變式1】已知關(guān)于SKIPIF1<0的方程SKIPIF1<0,SKIPIF1<0存在兩個(gè)不同的實(shí)根,則實(shí)數(shù)SKIPIF1<0的取值范圍為(

)A.SKIPIF1<0B.SKIPIF1<0C.SKIPIF1<0D.SKIPIF1<0【變式2】若關(guān)于SKIPIF1<0的方程SKIPIF1<0在SKIPIF1<0內(nèi)有解,則實(shí)數(shù)SKIPIF1<0的取值范圍是(

)A.SKIPIF1<0B.SKIPIF1<0C.SKIPIF1<0D.SKIPIF1<0【變式3】已知函數(shù)SKIPIF1<0SKIPIF1<0.(1)若該函數(shù)有兩個(gè)不相等的正零點(diǎn),求SKIPIF1<0的取值范圍;(2)若該函數(shù)有兩個(gè)零點(diǎn),一個(gè)大于1,另一個(gè)小于1,求SKIPIF1<0的取值范圍.題型07函數(shù)與方程綜合【典例1】已知函數(shù)SKIPIF1<0,常數(shù)SKIPIF1<0.(1)若SKIPIF1<0是奇函數(shù),求SKIPIF1<0的值;(2)若SKIPIF1<0,SKIPIF1<0在區(qū)間SKIPIF1<0內(nèi)有且僅有一個(gè)零點(diǎn),求實(shí)數(shù)SKIPIF1<0的取值范圍.【典例2】已知函數(shù)SKIPIF1<0(1)證明:函數(shù)SKIPIF1<0在SKIPIF1<0上單調(diào)遞減;(2)討論關(guān)于x的方程SKIPIF1<0的實(shí)數(shù)解的個(gè)數(shù).【變式1】已知函數(shù)SKIPIF1<0為奇函數(shù).(1)求實(shí)數(shù)a的值;(2)若方程SKIPIF1<0在區(qū)間SKIPIF1<0上無解,求實(shí)數(shù)m的取值范圍.【變式2】已知函數(shù)SKIPIF1<0是定義在SKIPIF1<0上的偶函數(shù),且當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,函數(shù)SKIPIF1<0在SKIPIF1<0軸左側(cè)的圖象如圖所示.(1)求函數(shù)SKIPIF1<0的解析式;(2)若關(guān)于SKIPIF1<0的方程SKIPIF1<0有SKIPIF1<0個(gè)不相等的實(shí)數(shù)根,求實(shí)數(shù)SKIPIF1<0的取值范圍.A夯實(shí)基礎(chǔ)一、單選題1.已知函數(shù)SKIPIF1<0,則SKIPIF1<0的零點(diǎn)所在的區(qū)間為(

).A.SKIPIF1<0B.SKIPIF1<0C.SKIPIF1<0D.SKIPIF1<02.已知方程SKIPIF1<0的解在SKIPIF1<0內(nèi),則SKIPIF1<0(

)A.3B.2C.1D.03.已知函數(shù)SKIPIF1<0的兩個(gè)零點(diǎn)都大于2,則實(shí)數(shù)m的取值范圍是()A.SKIPIF1<0B.SKIPIF1<0C.SKIPIF1<0D.SKIPIF1<04.已知二次函數(shù)SKIPIF1<0,若SKIPIF1<0,則SKIPIF1<0在區(qū)間SKIPIF1<0內(nèi)的零點(diǎn)情況是(

)A.有兩個(gè)零點(diǎn)B.有唯一零點(diǎn)C.沒有零點(diǎn)D.不確定5.已知函數(shù)SKIPIF1<0,SKIPIF1<0,SKIPIF1<0的零點(diǎn)分別為SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,則(

)A.SKIPIF1<0B.SKIPIF1<0C.SKIPIF1<0D.SKIPIF1<06.設(shè)實(shí)數(shù)a為常數(shù),則函數(shù)SKIPIF1<0存在零點(diǎn)的充分必要條件是(

)A.SKIPIF1<0B.SKIPIF1<0C.SKIPIF1<0D.SKIPIF1<07.已知函數(shù)SKIPIF1<0若函數(shù)SKIPIF1<0有五個(gè)零點(diǎn),則實(shí)數(shù)SKIPIF1<0的取值范圍是(

)A.SKIPIF1<0B.SKIPIF1<0C.SKIPIF1<0D.SKIPIF1<08.享有“數(shù)學(xué)王子”稱號的德國數(shù)學(xué)家高斯,是近代數(shù)學(xué)奠基者之一,SKIPIF1<0被稱為“高斯函數(shù)”,其中SKIPIF1<0表示不超過SKIPIF1<0的最大整數(shù),例如:SKIPIF1<0,設(shè)SKIPIF1<0為函數(shù)SKIPIF1<0的零點(diǎn),則SKIPIF1<0(

)A.3B.4C.5D.6二、多選題9.函數(shù)SKIPIF1<0的零點(diǎn)可以是()A.SKIPIF1<0B.SKIPIF1<0C.SKIPIF1<0D.SKIPIF1<010.設(shè)SKIPIF1<0為定義在R上的奇函數(shù),當(dāng)SKIPIF1<0時(shí),SKIPIF1<0為常數(shù)),則(

)A.SKIPIF1<0B.SKIPIF1<0C.SKIPIF1<0D.函數(shù)SKIPIF1<0僅有一個(gè)零點(diǎn)三、填空題11.已知函數(shù)SKIPIF1<0在SKIPIF1<0上有零點(diǎn),則實(shí)數(shù)a的取值范圍是.12.若SKIPIF1<0是方程SKIPIF1<0的解,則SKIPIF1<0在區(qū)間內(nèi)(填序號).①SKIPIF1<0;②SKIPIF1<0;③SKIPIF1<0;④SKIPIF1<0.四、解答題13.已知一次函數(shù)SKIPIF1<0滿足SKIPIF1<0,SKIPIF1<0.(1)求這個(gè)函數(shù)的解析式;(2)若函數(shù)SKIPIF1<0,求函數(shù)SKIPIF1<0的零點(diǎn).14.已知函數(shù)SKIPIF1<0,且SKIPIF1<0的圖象經(jīng)過點(diǎn)SKIPIF1<0.(1)求SKIPIF1<0的值;(2)求SKIPIF1<0在區(qū)間SKIPIF1<0上的最小值;(3)若SKIPIF1<0,求證:SKIPIF1<0在區(qū)間SKIPIF1<0內(nèi)存在零點(diǎn).B能力提升1.已知函數(shù)SKIPIF1<0,若SKIPIF1<0且SKIPIF1<0,則SKIPIF1<0的取值范圍是(

)A.SKIPIF1<0B.SKIPIF1<0C.SKIPIF1<0D.SKIPIF1<02.已知函數(shù)SKIPIF1<0,SKIPIF1<0,SKIPIF1<0.若SKIPIF1<0恰有2個(gè)零點(diǎn),則實(shí)數(shù)SKIPIF1<0的取值范圍是(

)A.SKIPIF1<0B.SKIPIF1<0C.SKIPIF1<0D.SKIPIF1<03.函數(shù)SKIPIF1<0滿足:①SKIPIF1<0在SKIPIF1<0內(nèi)是單調(diào)遞增函數(shù);②SKIPIF1<0在SKIPIF1<0上的值域?yàn)镾KIPIF1<0,則稱區(qū)間SKIPIF1<0為SKIPIF1<0的SKIPIF1<0級“調(diào)和區(qū)間”.若函數(shù)SKIPIF1<0存在SKIPIF1<0級“調(diào)和區(qū)間”,則SKIPIF1<0的取值范圍是.4.對于函數(shù)SKIPIF1<0,若存在SKIPIF1<0,使得SKIPIF1<0,則稱SKIPIF1<0為函數(shù)SKIPIF1<0的“不動(dòng)點(diǎn)”.若存在SKIPIF1<0,使得SKIPIF1<0,則稱SKIPIF1<0為函數(shù)SKIPIF1<0的“穩(wěn)定點(diǎn)”.記函數(shù)SKIPIF1<0的“不動(dòng)點(diǎn)”和“穩(wěn)定點(diǎn)”的集合分別為SKIPIF1<0和SKIPIF1<0,即SKIPIF1<0.經(jīng)研究發(fā)現(xiàn):若函數(shù)SKIPIF1<0為增函數(shù),則SKIPIF1<0.設(shè)函數(shù)SKIPIF1<0,若存在SKIPIF1<0使SKIPIF1<0成立,則SKIPIF1<0的取值范圍是.C綜合素養(yǎng)1.已知SKIPIF1<0.(1)當(dāng)SKIPIF1<0時(shí),作出函數(shù)SKIPIF1<0的圖象,若關(guān)于SKIPIF1<0的方程SKIPIF1<0有四個(gè)解,直接寫出SKIPIF1<0的取值范圍;(2)若SKIPIF1<0的定義域和值域均為SKIPIF1<0,求實(shí)數(shù)SKIPIF1<0的值;(3)若SKIPIF1<0是SKIPIF1<0上的嚴(yán)格減函數(shù),且對任意的SKIPIF1<0,總有SKIPIF1<0成立,求實(shí)數(shù)SKIPIF1<0的取值范圍.2.已知SKIPIF1<0為R上的奇函數(shù),當(dāng)SKIPIF1<0時(shí),SKIPIF1<0.(1)求SKIPIF1<0的值;(2)求SKIPIF1<0的解析式;(3)作出SKIPIF1<0的圖象,并求當(dāng)函數(shù)SKIPIF1<0與函數(shù)SKIPIF1<0圖象恰有三個(gè)不同的交點(diǎn)時(shí),實(shí)數(shù)m的取值范圍.4.5.2用二分法求方程的近似解課程標(biāo)準(zhǔn)學(xué)習(xí)目標(biāo)①理解運(yùn)用二分法逼近方程近似解的數(shù)學(xué)思想。②了解二分法只能用于求變號零點(diǎn)的方法。③借助數(shù)學(xué)工具用二分法求方程的近似解。④能解決與方程近似解有關(guān)的問題。通過本節(jié)課的學(xué)習(xí),要求會(huì)用二分法進(jìn)行簡單方程近似解的求解,并能根據(jù)題的要求,解決與二分法相關(guān)的參數(shù)問題的處理。知識點(diǎn)01:區(qū)間中點(diǎn)對于區(qū)間SKIPIF1<0,其中點(diǎn)SKIPIF1<0知識點(diǎn)02:二分法1、二分法的概念對于在區(qū)間SKIPIF1<0上圖象連續(xù)不斷且SKIPIF1<0的函數(shù)SKIPIF1<0,通過不斷的把它的零點(diǎn)所在區(qū)間一分為二,使所得區(qū)間的兩個(gè)端點(diǎn)逐步逼近零點(diǎn),進(jìn)而得到零點(diǎn)近似值的方法叫做二分法(bisection)【即學(xué)即練1】下列圖象中,不能用二分法求函數(shù)零點(diǎn)的是(

)A.

B.

C.

D.

2、用二分法求零點(diǎn)的近似值給定精確度SKIPIF1<0,用二分法求函數(shù)SKIPIF1<0零點(diǎn)SKIPIF1<0的近似值的一般步驟如下:(1)確定零點(diǎn)SKIPIF1<0的初始區(qū)間SKIPIF1<0,驗(yàn)證SKIPIF1<0;(2)求區(qū)間SKIPIF1<0的中點(diǎn)SKIPIF1<0(3)計(jì)算SKIPIF1<0;①若SKIPIF1<0(此時(shí)SKIPIF1<0),則SKIPIF1<0就是函數(shù)的零點(diǎn);②若SKIPIF1<0(此時(shí)SKIPIF1<0),則令SKIPIF1<0;③若SKIPIF1<0(此時(shí)SKIPIF1<0),則令SKIPIF1<0;(4)判斷是否達(dá)到精確度SKIPIF1<0,若SKIPIF1<0,則得到零點(diǎn)近似值SKIPIF1<0(或SKIPIF1<0),否則重復(fù)2--4【即學(xué)即練2】已知函數(shù)SKIPIF1<0的表達(dá)式為SKIPIF1<0,用二分法計(jì)算此函數(shù)在區(qū)間SKIPIF1<0上零點(diǎn)的近似值,第一次計(jì)算SKIPIF1<0、SKIPIF1<0的值,第二次計(jì)算SKIPIF1<0的值,第三次計(jì)算SKIPIF1<0的值,則SKIPIF1<0.題型01二分法概念的理解【典例1】用二分法求函數(shù)零點(diǎn)的近似值適合于(

)A.變號零點(diǎn)B.不變號零點(diǎn)C.都適合D.都不適合【典例2】下列函數(shù)圖象與x軸都有公共點(diǎn),其中不能用二分法求圖中函數(shù)零點(diǎn)近似值的是(

)A.B.C.D.【典例3】(多選)下列函數(shù)中,能用二分法求函數(shù)零點(diǎn)的有(

)A.SKIPIF1<0B.SKIPIF1<0C.SKIPIF1<0D.SKIPIF1<0【變式1】下列函數(shù)中,不能用二分法求零點(diǎn)的是(

)A.SKIPIF1<0B.SKIPIF1<0C.SKIPIF1<0D.SKIPIF1<0【變式2】下列函數(shù)一定能用“二分法”求其零點(diǎn)的是(

)A.SKIPIF1<0(k,b為常數(shù),且SKIPIF1<0)B.SKIPIF1<0(a,b,c為常數(shù),且SKIPIF1<0)C.SKIPIF1<0D.SKIPIF1<0(SKIPIF1<0,k為常數(shù))【變式3】下列函數(shù)圖象均與SKIPIF1<0軸有交點(diǎn),其中能用二分法求函數(shù)零點(diǎn)的是題型02確定零點(diǎn)(根)所在區(qū)間【典例1】函數(shù)SKIPIF1<0在區(qū)間SKIPIF1<0上的零點(diǎn)必屬于區(qū)間(

)A.SKIPIF1<0B.SKIPIF1<0C.SKIPIF1<0D.SKIPIF1<0【典例2】函數(shù)SKIPIF1<0的零點(diǎn)SKIPIF1<0,對區(qū)間SKIPIF1<0利用兩次“二分法”,可確定SKIPIF1<0所在的區(qū)間為.【典例3】已知定義在SKIPIF1<0上的偶函數(shù)SKIPIF1<0滿足SKIPIF1<0,且當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,若在SKIPIF1<0內(nèi)關(guān)于SKIPIF1<0的方程SKIPIF1<0恰有3個(gè)不同的實(shí)數(shù)根,則SKIPIF1<0的取值范圍是A.SKIPIF1<0B.SKIPIF1<0C.SKIPIF1<0D.SKIPIF1<0【變式1】用二分法求方程SKIPIF1<0在SKIPIF1<0內(nèi)的近似解,已知SKIPIF1<0判斷,方程的根應(yīng)落在區(qū)間(

)A.SKIPIF1<0B.SKIPIF1<0C.SKIPIF1<0D.SKIPIF1<0【變式2】用二分法求函數(shù)SKIPIF1<0的零點(diǎn)可以取的初始區(qū)間是(

)A.SKIPIF1<0B.SKIPIF1<0C.SKIPIF1<0D.SKIPIF1<0【變式3】用二分法求方程SKIPIF1<0近似解時(shí),所取的第一個(gè)區(qū)間可以是(

)A.SKIPIF1<0B.SKIPIF1<0C.SKIPIF1<0D.SKIPIF1<0題型03用二分法求函數(shù)的零點(diǎn)的近似值【典例1】某同學(xué)在用二分法研究函數(shù)SKIPIF1<0的零點(diǎn)時(shí),.得到如下函數(shù)值的參考數(shù)據(jù):x11.251.3751.406251.43751.5SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<00.05670.14600.3284則下列說法正確的是(

)A.1.25是滿足精確度為0.1的近似值B.1.5是滿足精確度為0.1的近似值C.1.4375是滿足精確度為0.05的近似值D.1.375是滿足精確度為0.05的近似值【典例2】(多選)某同學(xué)求函數(shù)SKIPIF1<0的零點(diǎn)時(shí),用計(jì)算器算得部分函數(shù)值如表所示:SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0則方程SKIPIF1<0的近似解(精確度SKIPIF1<0)可取為(

)A.SKIPIF1<0B.SKIPIF1<0C.SKIPIF1<0D.SKIPIF1<0【典例3】用二分法求函數(shù)SKIPIF1<0的一個(gè)零點(diǎn),其參考數(shù)據(jù)如下:SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0據(jù)此數(shù)據(jù),可知SKIPIF1<0的一個(gè)零點(diǎn)的近似值可取為(誤差不超過0.005).【變式1】已知函數(shù)SKIPIF1<0的部分函數(shù)值如下表所示:那么函數(shù)SKIPIF1<0的一個(gè)零點(diǎn)的近似值(精確度為0.1)為(

)x10.50.750.6250.5625SKIPIF1<00.6321SKIPIF1<00.27760.0897SKIPIF1<0A.0.55B.0.57C.0.65D.0.7【變式2】)函數(shù)SKIPIF1<0的一個(gè)正數(shù)零點(diǎn)附近的函數(shù)值用二分法逐次計(jì)算,參考數(shù)據(jù)如下:SKIPIF1<0

SKIPIF1<0

SKIPIF1<0SKIPIF1<0

SKIPIF1<0

SKIPIF1<0那么方程的一個(gè)近似解(精確度為0.1)為(

)A.1.5B.1.25C.1.41D.1.44【變式3】用二分法求方程的近似解,求得SKIPIF1<0的部分函數(shù)值數(shù)據(jù)如下表所示:SKIPIF1<0121.51.6251.751.8751.8125SKIPIF1<0-63-2.625-1.459-0.141.34180.5793則當(dāng)精確度為0.1時(shí),方程SKIPIF1<0的近似解可取為A.SKIPIF1<0B.SKIPIF1<0C.SKIPIF1<0D.SKIPIF1<0題型04二分法的過程【典例1】用二分法求方程SKIPIF1<0在SKIPIF1<0內(nèi)的近似解,已知SKIPIF1<0判斷,方程的根應(yīng)落在區(qū)間(

)A.SKIPIF1<0B.SKIPIF1<0C.SKIPIF1<0D.SKIPIF1<0【典例2】用二分法求函數(shù)SKIPIF1<0在SKIPIF1<0內(nèi)的唯一零點(diǎn)時(shí),精度為0.001,則經(jīng)過一次二分就結(jié)束計(jì)算的條件是(

)A.SKIPIF1<0B.SKIPIF1<0C.SKIPIF1<0D.SKIPIF1<0【典例3】已知函數(shù)SKIPIF1<0在SKIPIF1<0上有零點(diǎn),用二分法求零點(diǎn)的近似值(精確度小于0.1)時(shí),至少需要進(jìn)行次函數(shù)值的計(jì)算.【變式1】已知函數(shù)SKIPIF1<0在SKIPIF1<0內(nèi)有一個(gè)零點(diǎn),要使零點(diǎn)的近似值的精確度為0.001,若只從二等分區(qū)間的角度來考慮,則對區(qū)間SKIPIF1<0至少需要二等分(

)A.8次B.9次C.10次D.11次【變式2】已知函數(shù)SKIPIF1<0的表達(dá)式為SKIPIF1<0,用二分法計(jì)算此函數(shù)在區(qū)間SKIPIF1<0上零點(diǎn)的近似值,第一次計(jì)算SKIPIF1<0、SKIPIF1<0的值,第二次計(jì)算SKIPIF1<0的值,第三次計(jì)算SKIPIF1<0的值,則SKIPIF1<0.【變式3】)用“二分法”研究函數(shù)SKIPIF1<0的零點(diǎn)時(shí),第一次計(jì)算SKIPIF1<0,可知必存在零點(diǎn)SKIPIF1<0,則第二次應(yīng)計(jì)算,這時(shí)可以判斷零點(diǎn)SKIPIF1<0.A夯實(shí)基礎(chǔ)一、單選題1.函數(shù)SKIPIF1<0的圖象是連續(xù)不斷的曲線,在用二分法求方程SKIPIF1<0在SKIPIF1<0內(nèi)近似解的過程中可得SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,則方程的解所在區(qū)間為(

)A.SKIPIF1<0B.SKIPIF1<0C.SKIPIF1<0D.不能確定2.已知函數(shù)SKIPIF1<0的一個(gè)零點(diǎn)附近的函數(shù)值的參考數(shù)據(jù)如下表:x00.50.531250.56250.6250.751SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<00.0660.2150.5121.099由二分法,方程SKIPIF1<0的近似解(精確度為0.05)可能是(

)A.0.625B.SKIPIF1<0C.0.5625D.0.0663.用二分法求函數(shù)SKIPIF1<0的一個(gè)零點(diǎn)的近似值(誤差不超過SKIPIF1<0)時(shí),依次計(jì)算得到如下數(shù)據(jù):SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,關(guān)于下一步的說法正確的是()A.已經(jīng)達(dá)到對誤差的要求,可以取SKIPIF1<0作為近似值B.已經(jīng)達(dá)到對誤差的要求,可以取SKIPIF1<0作為近似值C.沒有達(dá)到對誤差的要求,應(yīng)該接著計(jì)算SKIPIF1<0D.沒有達(dá)到對誤差的要求,應(yīng)該接著計(jì)算SKIPIF1<04.用二分法研究函數(shù)SKIPIF1<0的零點(diǎn)時(shí),第一次計(jì)算,得SKIPIF1<0,SKIPIF1<0,第二次應(yīng)計(jì)算SKIPIF1<0,則SKIPIF1<0等于(

)A.1B.SKIPIF1<0C.0.25D.0.755.在用“二分法”求函數(shù)SKIPIF1<0零點(diǎn)近似值時(shí),若第一次所取區(qū)間為SKIPIF1<0,則第三次所取區(qū)間可能是(

)A.SKIPIF1<0B.SKIPIF1<0C.SKIPIF1<0D.SKIPIF1<06.下列函數(shù)中,不能用二分法求零點(diǎn)的是(

)A.SKIPIF1<0B.SKIPIF1<0C.SKIPIF1<0D.SKIPIF1<07.用二分法求函數(shù)SKIPIF1<0在區(qū)間SKIPIF1<0上的零點(diǎn),要求精確度為SKIPIF1<0時(shí),所需二分區(qū)間的次數(shù)最少為(

)A.SKIPIF1<0B.SKIPIF1<0C.SKIPIF1<0D.SKIPIF1<08.在使用二分法計(jì)算函數(shù)SKIPIF1<0的零點(diǎn)的近似解時(shí),現(xiàn)已知其所在區(qū)間為SKIPIF1<0,如果要求近似解的精確度為0.1,則接下來至少需要計(jì)算(

)次區(qū)間中點(diǎn)的函數(shù)值.A.2B.3C.4D.5二、多選題9.在用二分法求函數(shù)SKIPIF1<0的一個(gè)正實(shí)數(shù)零點(diǎn)時(shí),經(jīng)計(jì)算,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,則函數(shù)SKIPIF1<0的一個(gè)誤差不超過SKIPIF1<0的正實(shí)數(shù)零點(diǎn)可以為(

)A.SKIPIF1<0B.SKIPIF1<0C.SKIPIF1<0D.SKIPIF1<010.關(guān)于函數(shù)SKIPIF1<0的零點(diǎn),下列說法正確的是:()(參考數(shù)據(jù):SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0)A.函數(shù)SKIPIF1<0的零點(diǎn)個(gè)數(shù)為1B.函數(shù)SKIPIF1<0的零點(diǎn)個(gè)數(shù)為2C.用二分法求函數(shù)SKIPIF1<0的一個(gè)零點(diǎn)的近似解可取為SKIPIF1<0(精確到SKIPIF1<0)D.用二分法求函數(shù)SKIPIF1<0的一個(gè)零點(diǎn)的近似解可取為SKIPIF1<0(精確到SKIPIF1<0)三、填空題11.函數(shù)SKIPIF1<0的零點(diǎn)SKIPIF1<0,對區(qū)間SKIPIF1<0利用兩次“二分法”,可確定SKIPIF1<0所在的區(qū)間為.12.在用二分法求函數(shù)SKIPIF1<0的零點(diǎn)近似值時(shí),若第一次所取區(qū)間為SKIPIF1<0,則第三次所取區(qū)間可能是.(寫出一個(gè)符合條件的區(qū)間即可)四、解答題13.利用二分法,求方程SKIPIF1<0的近似解.(精確度為0.1)14.用二分法求SKIPIF1<0在SKIPIF1<0內(nèi)的近似解(精確度為SKIPIF1<0).參考數(shù)據(jù):x1.1251.251.3751.51.6251.751.8752x2.182.382.592.833.083.363.67

4.5.3函數(shù)模型的應(yīng)用課程標(biāo)準(zhǔn)學(xué)習(xí)目標(biāo)①了解函數(shù)模型(如指數(shù)函數(shù)、對數(shù)函數(shù)、冪函數(shù)、分段函數(shù)等在社會(huì)生活中普遍使用的函數(shù)模型)的廣泛應(yīng)用。②在實(shí)際情境中,會(huì)選擇合適的函數(shù)類型刻畫現(xiàn)實(shí)問題的變化規(guī)律。通過本節(jié)課的學(xué)習(xí),掌握一次函數(shù)、二次函數(shù)、指數(shù)函數(shù)、對數(shù)函數(shù)、冪函數(shù)以及其他函數(shù)模型;會(huì)從實(shí)際問題中抽象出函數(shù)模型,進(jìn)而利用函數(shù)知識求解.高考對函數(shù)應(yīng)用的考查,常與二次函數(shù)、基本不等式等知識交匯.知識點(diǎn)一:常見函數(shù)模型1、一次函數(shù)模型SKIPIF1<0(SKIPIF1<0,SKIPIF1<0為常數(shù))2、反比例函數(shù)模型SKIPIF1<0(SKIPIF1<0)3、二次函數(shù)模型SKIPIF1<0(SKIPIF1<0)4、指數(shù)函數(shù)模型SKIPIF1<0(SKIPIF1<0且SKIPIF1<0,SKIPIF1<0)5、對數(shù)函數(shù)模型SKIPIF1<0(SKIPIF1<0且SKIPIF1<0,SKIPIF1<0)6、冪函數(shù)模型SKIPIF1<0(SKIPIF1<0,SKIPIF1<0)7、分段函數(shù)模型:兩種或兩種以上上述六種模型的綜合8、對勾函數(shù)模型:SKIPIF1<0題型01指數(shù)、對數(shù)、冪函數(shù)模型的增長差異【典例1】若三個(gè)變量SKIPIF1<0,SKIPIF1<0,SKIPIF1<0隨著變量x的變化情況如下表.x1357911SKIPIF1<0525456585105SKIPIF1<0529245218919685177149SKIPIF1<056.106.616.957.27.6則關(guān)于x分別呈函數(shù)模型:SKIPIF1<0,SKIPIF1<0,SKIPIF1<0變化的變量依次是(

)A.SKIPIF1<0,SKIPIF1<0,SKIPIF1<0B.SKIPIF1<0,SKIPIF1<0,SKIPIF1<0C.SKIPIF1<0,SKIPIF1<0,SKIPIF1<0D.SKIPIF1<0,SKIPIF1<0,SKIPIF1<0【典例2】下列選項(xiàng)是四種生意預(yù)期的收益y關(guān)于時(shí)間x的函數(shù),從足夠長遠(yuǎn)的角度看,更為有前途的生意是.①SKIPIF1<0;②SKIPIF1<0;③SKIPIF1<0;④SKIPIF1<0【變式1】下列函數(shù)中,隨著SKIPIF1<0的增大,函數(shù)值的增長速度最快的是(

)A.SKIPIF1<0B.SKIPIF1<0C.SKIPIF1<0D.SKIPIF1<0【變式2】下列函數(shù)中,隨著SKIPIF1<0的增大,增長速度最快的是(

)A.SKIPIF1<0B.SKIPIF1<0C.SKIPIF1<0D.SKIPIF1<0題型02根據(jù)實(shí)際問題增長率選擇合適的模型【典例1】在一次數(shù)學(xué)實(shí)驗(yàn)中,運(yùn)用計(jì)算器采集到如下一組數(shù)據(jù):xSKIPIF1<0SKIPIF1<001.02.03.0y0.240.5112.023.988.02則x、y的函數(shù)關(guān)系與下列哪類函數(shù)最接近(其中a、b為待定系數(shù))?(

)A.SKIPIF1<0B.SKIPIF1<0C.SKIPIF1<0D.SKIPIF1<0【典例2】某同學(xué)參加研究性學(xué)習(xí)活動(dòng),得到如下實(shí)驗(yàn)數(shù)據(jù):SKIPIF1<0392781SKIPIF1<02SKIPIF1<0SKIPIF1<0SKIPIF1<0以下函數(shù)中最符合變量SKIPIF1<0與SKIPIF1<0的對應(yīng)關(guān)系的是(

)A.SKIPIF1<0B.SKIPIF1<0C.SKIPIF1<0D.SKIPIF1<0【典例3】某旅游風(fēng)景區(qū)發(fā)行的紀(jì)念章即將投放市場,根據(jù)市場調(diào)研情況,預(yù)計(jì)每枚該紀(jì)念章的市場價(jià)SKIPIF1<0(單位:元)與上市時(shí)間SKIPIF1<0(單位:天)的數(shù)據(jù)如下:上市時(shí)間SKIPIF1<0天2620市場價(jià)SKIPIF1<0元10278120為了描述該紀(jì)念章的市場價(jià)SKIPIF1<0與上市時(shí)間SKIPIF1<0的變化關(guān)系,現(xiàn)有以下三種函數(shù)模型供選擇:(1)SKIPIF1<0;(2)SKIPIF1<0;(3)SKIPIF1<0.(1)根據(jù)如表數(shù)據(jù),請選取一個(gè)恰當(dāng)?shù)暮瘮?shù)模型并說明理由;(2)利用你選取的函數(shù),求該紀(jì)念章市場價(jià)最低時(shí)的上市天數(shù)及最低的價(jià)格.【變式1】在某種新型材料的研制中,實(shí)驗(yàn)人員獲得了下列一組實(shí)驗(yàn)數(shù)據(jù).現(xiàn)準(zhǔn)備用下列四個(gè)函數(shù)中的一個(gè)近似地表示這些數(shù)據(jù)的規(guī)律,其中最接近的一個(gè)是(

)SKIPIF1<01.953.003.945.106.12SKIPIF1<00.971.591.982.352.61A.SKIPIF1<0B.SKIPIF1<0C.SKIPIF1<0D.SKIPIF1<0【變式2】農(nóng)場為了解某農(nóng)作物的產(chǎn)量情況,將近四年的年產(chǎn)量SKIPIF1<0(單位:萬斤)與年份序號x之間的關(guān)系統(tǒng)計(jì)如下:x(第×年)1234SKIPIF1<0(萬斤)4.005.627.008.86若SKIPIF1<0近似符合以下兩種函數(shù)模型之一:①SKIPIF1<0;②SKIPIF1<0.則你認(rèn)為最適合的函數(shù)模型的序號是__________.請簡要說明理由.【變式3】某地西紅柿上市后,通過市場調(diào)查,得到西紅柿種植成本Q(單位:元/10kg)與上市時(shí)間t(單位:天)的數(shù)據(jù)如下表:時(shí)間t79101113種植成本Q1911101119為了描述西紅柿種植成本Q與上市時(shí)間t的變化關(guān)系,現(xiàn)有以下四種函數(shù)模型供選擇:①SKIPIF1<0,②SKIPIF1<0,③SKIPIF1<0,④SKIPIF1<0.(1)選出你認(rèn)為最符合實(shí)際的函數(shù)模型并說明理由,同時(shí)求出相應(yīng)的函數(shù)解析式;(2)在第(1)問的條件下,若函數(shù)SKIPIF1<0在區(qū)間SKIPIF1<0上的最大值為110,最小值為10,求實(shí)數(shù)m的最大值.題型03利用二次函數(shù)模型解決實(shí)際問題【典例1】一個(gè)車輛制造廠引進(jìn)了一條摩托車整車裝配流水線,這條流水線生產(chǎn)的摩托車數(shù)量SKIPIF1<0(單位:輛)與創(chuàng)造的價(jià)值SKIPIF1<0(單位:元)之間的關(guān)系為:SKIPIF1<0.如果這家工廠希望在一個(gè)星期內(nèi)利用這條流水線創(chuàng)收60000元以上,請你給出一個(gè)該工廠在這周內(nèi)生成的摩托車數(shù)量的建議,使工廠能夠達(dá)成這個(gè)周創(chuàng)收目標(biāo),那么你的建議是.【典例2】由于慣性作用,行駛中的汽車在剎車后要滑行一段距離才能停下,這段距離叫做剎車距離.下表是對某種型號汽車剎車性能的測試數(shù)據(jù).剎車時(shí)車速SKIPIF1<0153040506080剎車距離SKIPIF1<01.236.2011.517.8025.2044.40(1)試選擇合適的函數(shù)模型擬合測試數(shù)據(jù),并寫出函數(shù)解析式;(2)若車速為SKIPIF1<0,剎車距離為多少?若測得剎車距離為SKIPIF1<0,剎車時(shí)的車速是多少?(可以使用計(jì)算器輔助計(jì)算)【變式1】某商品進(jìn)貨單價(jià)為SKIPIF1<0元,若銷售價(jià)為SKIPIF1<0元,可賣出SKIPIF1<0個(gè),如果銷售單價(jià)每漲SKIPIF1<0元,銷售量就減少SKIPIF1<0個(gè),為了獲得最大利潤,則此商品的最佳售價(jià)應(yīng)為.【變式2】為弘揚(yáng)“中國女排精神”,加強(qiáng)青少年體育發(fā)展.學(xué)校在體育課中組織學(xué)生進(jìn)行排球練習(xí),某同學(xué)以初速度SKIPIF1<0豎直上拋一排球,該排球能夠在拋出點(diǎn)2m以上的位置最多停留時(shí)間為秒(小數(shù)點(diǎn)后保留兩位有效數(shù)字).(注:若不計(jì)空氣阻力,則豎直上拋的物體距離拋出點(diǎn)的高度SKIPIF1<0與時(shí)間SKIPIF1<0滿足關(guān)系式SKIPIF1<0,其中SKIPIF1<0.)

題型04分段函數(shù)模型的應(yīng)用【典例1】華為消費(fèi)者業(yè)務(wù)產(chǎn)品全面覆蓋手機(jī)、移動(dòng)寬帶終端、終端云等,憑借自身的全球化網(wǎng)絡(luò)優(yōu)勢、全球化運(yùn)營能力,致力于將最新的科技帶給消費(fèi)者,讓世界各地享受到技術(shù)進(jìn)步的喜悅,以行踐言,實(shí)現(xiàn)夢想.已知華為公司生產(chǎn)mate系列的某款手機(jī)的年固定成本為200萬元,每生產(chǎn)1只還需另投入80元.設(shè)華為公司一年內(nèi)共生產(chǎn)該款手機(jī)x萬只并全部銷售完,每萬只的銷售收入為SKIPIF1<0萬元,且SKIPIF1<0(1)寫出年利潤SKIPIF1<0(萬元)關(guān)于年產(chǎn)量SKIPIF1<0(萬只)的函數(shù)解

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論